diff --git a/src/linalg/decomposition.rs b/src/linalg/decomposition.rs index 91ad03d9..c72babf3 100644 --- a/src/linalg/decomposition.rs +++ b/src/linalg/decomposition.rs @@ -1,8 +1,8 @@ use crate::storage::Storage; use crate::{ Allocator, Bidiagonal, Cholesky, ColPivQR, ComplexField, DefaultAllocator, Dim, DimDiff, - DimMin, DimMinimum, DimSub, FullPivLU, Hessenberg, Matrix, RealField, Schur, SymmetricEigen, - SymmetricTridiagonal, LU, QR, SVD, U1, UDU, + DimMin, DimMinimum, DimSub, FullPivLU, Hessenberg, Matrix, OMatrix, RealField, Schur, + SymmetricEigen, SymmetricTridiagonal, LU, QR, SVD, U1, UDU, }; /// # Rectangular matrix decomposition @@ -17,6 +17,7 @@ use crate::{ /// | LU with partial pivoting | `P⁻¹ * L * U` | `L` is lower-triangular with a diagonal filled with `1` and `U` is upper-triangular. `P` is a permutation matrix. | /// | LU with full pivoting | `P⁻¹ * L * U * Q⁻¹` | `L` is lower-triangular with a diagonal filled with `1` and `U` is upper-triangular. `P` and `Q` are permutation matrices. | /// | SVD | `U * Σ * Vᵀ` | `U` and `V` are two orthogonal matrices and `Σ` is a diagonal matrix containing the singular values. | +/// | Polar (Left Polar) | `P' * U` | `U` is semi-unitary/unitary and `P'` is a positive semi-definite Hermitian Matrix impl> Matrix { /// Computes the bidiagonalization using householder reflections. pub fn bidiagonalize(self) -> Bidiagonal @@ -186,6 +187,62 @@ impl> Matrix { { SVD::try_new_unordered(self.into_owned(), compute_u, compute_v, eps, max_niter) } + + /// Computes the Polar Decomposition of a `matrix` (indirectly uses SVD). + pub fn polar(self) -> (OMatrix, OMatrix) + where + R: DimMin, + DimMinimum: DimSub, // for Bidiagonal. + DefaultAllocator: Allocator + + Allocator, R> + + Allocator> + + Allocator + + Allocator, DimMinimum> + + Allocator + + Allocator + + Allocator, U1>> + + Allocator, C> + + Allocator> + + Allocator> + + Allocator> + + Allocator, U1>>, + { + SVD::new_unordered(self.into_owned(), true, true) + .to_polar() + .unwrap() + } + + /// Attempts to compute the Polar Decomposition of a `matrix` (indirectly uses SVD). + /// + /// # Arguments + /// + /// * `eps` − tolerance used to determine when a value converged to 0 when computing the SVD. + /// * `max_niter` − maximum total number of iterations performed by the SVD computation algorithm. + pub fn try_polar( + self, + eps: T::RealField, + max_niter: usize, + ) -> Option<(OMatrix, OMatrix)> + where + R: DimMin, + DimMinimum: DimSub, // for Bidiagonal. + DefaultAllocator: Allocator + + Allocator, R> + + Allocator> + + Allocator + + Allocator, DimMinimum> + + Allocator + + Allocator + + Allocator, U1>> + + Allocator, C> + + Allocator> + + Allocator> + + Allocator> + + Allocator, U1>>, + { + SVD::try_new_unordered(self.into_owned(), true, true, eps, max_niter) + .and_then(|svd| svd.to_polar()) + } } /// # Square matrix decomposition diff --git a/src/linalg/svd.rs b/src/linalg/svd.rs index 5fd3debc..3f945a65 100644 --- a/src/linalg/svd.rs +++ b/src/linalg/svd.rs @@ -641,6 +641,28 @@ where } } } + + /// converts SVD results to Polar decomposition form of the original Matrix: `A = P' * U`. + /// + /// The polar decomposition used here is Left Polar Decomposition (or Reverse Polar Decomposition) + /// Returns None if the singular vectors of the SVD haven't been calculated + pub fn to_polar(&self) -> Option<(OMatrix, OMatrix)> + where + DefaultAllocator: Allocator //result + + Allocator, R> // adjoint + + Allocator> // mapped vals + + Allocator // result + + Allocator, DimMinimum>, // square matrix + { + match (&self.u, &self.v_t) { + (Some(u), Some(v_t)) => Some(( + u * OMatrix::from_diagonal(&self.singular_values.map(|e| T::from_real(e))) + * u.adjoint(), + u * v_t, + )), + _ => None, + } + } } impl, C: Dim> SVD diff --git a/tests/linalg/svd.rs b/tests/linalg/svd.rs index d76d1759..deb3d38d 100644 --- a/tests/linalg/svd.rs +++ b/tests/linalg/svd.rs @@ -153,6 +153,25 @@ mod proptest_tests { prop_assert!(relative_eq!(&m * &sol2, b2, epsilon = 1.0e-6)); } } + + #[test] + fn svd_polar_decomposition(m in dmatrix_($scalar)) { + let svd = m.clone().svd_unordered(true, true); + let (p, u) = svd.to_polar().unwrap(); + + assert_relative_eq!(m, &p* &u, epsilon = 1.0e-5); + // semi-unitary check + assert!(u.is_orthogonal(1.0e-5) || u.transpose().is_orthogonal(1.0e-5)); + // hermitian check + assert_relative_eq!(p, p.adjoint(), epsilon = 1.0e-5); + + /* + * Same thing, but using the method instead of calling the SVD explicitly. + */ + let (p2, u2) = m.clone().polar(); + assert_eq!(p, p2); + assert_eq!(u, u2); + } } } }