Implement dynamic matrix with a maximum size.

Those are named DMat1 to DMat6 and have the same relation with DMat as DVec1 to DVec6 are related
to DVec.

As a side effect, the method `to_vec` of DMat was renamed `into_vec` to be more in line with the std lib.
Addresses the second point of #100.
This commit is contained in:
Sébastien Crozet 2016-01-10 14:50:02 +01:00
parent 3cd4221bf7
commit 581251d5b4
4 changed files with 976 additions and 740 deletions

View File

@ -135,7 +135,7 @@ pub use traits::{
pub use structs::{
Identity,
DMat,
DMat, DMat1, DMat2, DMat3, DMat4, DMat5, DMat6,
DVec, DVec1, DVec2, DVec3, DVec4, DVec5, DVec6,
Iso2, Iso3, Iso4,
Mat1, Mat2, Mat3, Mat4,

View File

@ -3,6 +3,7 @@
#![allow(missing_docs)] // we hide doc to not have to document the $trhs double dispatch trait.
use std::cmp;
use std::mem;
use std::iter::repeat;
use std::ops::{Add, Sub, Mul, Div, Index, IndexMut};
use std::fmt::{Debug, Formatter, Result};
@ -38,47 +39,6 @@ impl<N> DMat<N> {
}
}
impl<N: Zero + Clone + Copy> DMat<N> {
/// Builds a matrix filled with zeros.
///
/// # Arguments
/// * `dim` - The dimension of the matrix. A `dim`-dimensional matrix contains `dim * dim`
/// components.
#[inline]
pub fn new_zeros(nrows: usize, ncols: usize) -> DMat<N> {
DMat::from_elem(nrows, ncols, ::zero())
}
/// Tests if all components of the matrix are zeroes.
#[inline]
pub fn is_zero(&self) -> bool {
self.mij.iter().all(|e| e.is_zero())
}
#[inline]
pub fn reset(&mut self) {
for mij in self.mij.iter_mut() {
*mij = ::zero();
}
}
}
impl<N: Rand> DMat<N> {
/// Builds a matrix filled with random values.
#[inline]
pub fn new_random(nrows: usize, ncols: usize) -> DMat<N> {
DMat::from_fn(nrows, ncols, |_, _| rand::random())
}
}
impl<N: One + Clone + Copy> DMat<N> {
/// Builds a matrix filled with a given constant.
#[inline]
pub fn new_ones(nrows: usize, ncols: usize) -> DMat<N> {
DMat::from_elem(nrows, ncols, ::one())
}
}
impl<N: Clone + Copy> DMat<N> {
/// Builds a matrix filled with a given constant.
#[inline]
@ -92,7 +52,7 @@ impl<N: Clone + Copy> DMat<N> {
/// Builds a matrix filled with the components provided by a vector.
/// The vector contains the matrix data in row-major order.
/// Note that `from_col_vec` is a lot faster than `from_row_vec` since a `DMat` stores its data
/// Note that `from_col_vec` is much faster than `from_row_vec` since a `DMat` stores its data
/// in column-major order.
///
/// The vector must have at least `nrows * ncols` elements.
@ -108,7 +68,7 @@ impl<N: Clone + Copy> DMat<N> {
/// Builds a matrix filled with the components provided by a vector.
/// The vector contains the matrix data in column-major order.
/// Note that `from_col_vec` is a lot faster than `from_row_vec` since a `DMat` stores its data
/// Note that `from_col_vec` is much faster than `from_row_vec` since a `DMat` stores its data
/// in column-major order.
///
/// The vector must have at least `nrows * ncols` elements.
@ -125,7 +85,7 @@ impl<N: Clone + Copy> DMat<N> {
}
impl<N> DMat<N> {
/// Builds a matrix filled with a given constant.
/// Builds a matrix using an initialization function.
#[inline(always)]
pub fn from_fn<F: FnMut(usize, usize) -> N>(nrows: usize, ncols: usize, mut f: F) -> DMat<N> {
DMat {
@ -135,723 +95,102 @@ impl<N> DMat<N> {
}
}
/// The number of row on the matrix.
#[inline]
pub fn nrows(&self) -> usize {
self.nrows
}
/// The number of columns on the matrix.
#[inline]
pub fn ncols(&self) -> usize {
self.ncols
}
/// Transforms this matrix isizeo an array. This consumes the matrix and is O(1).
/// Transforms this matrix into an array. This consumes the matrix and is O(1).
/// The returned vector contains the matrix data in column-major order.
#[inline]
pub fn to_vec(self) -> Vec<N> {
pub fn into_vec(self) -> Vec<N> {
self.mij
}
/// Gets a reference to this matrix data.
/// The returned vector contains the matrix data in column-major order.
#[inline]
pub fn as_vec(&self) -> &[N] {
&self.mij
}
/// Gets a mutable reference to this matrix data.
/// The returned vector contains the matrix data in column-major order.
#[inline]
pub fn as_mut_vec(&mut self) -> &mut [N] {
&mut self.mij[..]
}
}
// FIXME: add a function to modify the dimension (to avoid useless allocations)?
impl<N: One + Zero + Clone + Copy> Eye for DMat<N> {
/// Builds an identity matrix.
///
/// # Arguments
/// * `dim` - The dimension of the matrix. A `dim`-dimensional matrix contains `dim * dim`
/// components.
#[inline]
fn new_identity(dim: usize) -> DMat<N> {
let mut res = DMat::new_zeros(dim, dim);
for i in 0..dim {
let _1: N = ::one();
res[(i, i)] = _1;
}
res
}
}
impl<N> DMat<N> {
#[inline(always)]
fn offset(&self, i: usize, j: usize) -> usize {
i + j * self.nrows
}
}
impl<N: Copy> Indexable<(usize, usize), N> for DMat<N> {
/// Just like `set` without bounds checking.
#[inline]
unsafe fn unsafe_set(&mut self, rowcol: (usize, usize), val: N) {
let (row, col) = rowcol;
let offset = self.offset(row, col);
*self.mij[..].get_unchecked_mut(offset) = val
}
/// Just like `at` without bounds checking.
#[inline]
unsafe fn unsafe_at(&self, rowcol: (usize, usize)) -> N {
let (row, col) = rowcol;
*self.mij.get_unchecked(self.offset(row, col))
}
#[inline]
fn swap(&mut self, rowcol1: (usize, usize), rowcol2: (usize, usize)) {
let (row1, col1) = rowcol1;
let (row2, col2) = rowcol2;
let offset1 = self.offset(row1, col1);
let offset2 = self.offset(row2, col2);
let count = self.mij.len();
assert!(offset1 < count);
assert!(offset2 < count);
self.mij[..].swap(offset1, offset2);
}
}
impl<N> Shape<(usize, usize)> for DMat<N> {
#[inline]
fn shape(&self) -> (usize, usize) {
(self.nrows, self.ncols)
}
}
impl<N> Index<(usize, usize)> for DMat<N> {
type Output = N;
fn index(&self, (i, j): (usize, usize)) -> &N {
assert!(i < self.nrows);
assert!(j < self.ncols);
unsafe {
self.mij.get_unchecked(self.offset(i, j))
}
}
}
impl<N> IndexMut<(usize, usize)> for DMat<N> {
fn index_mut(&mut self, (i, j): (usize, usize)) -> &mut N {
assert!(i < self.nrows);
assert!(j < self.ncols);
let offset = self.offset(i, j);
dmat_impl!(DMat);
unsafe {
self.mij[..].get_unchecked_mut(offset)
}
}
}
impl<N: Copy + Mul<N, Output = N> + Add<N, Output = N> + Zero> Mul<DMat<N>> for DMat<N> {
type Output = DMat<N>;
#[inline]
fn mul(self, right: DMat<N>) -> DMat<N> {
(&self) * (&right)
}
pub struct DMat1<N> {
nrows: usize,
ncols: usize,
mij: [N; 1 * 1],
}
impl<'a, N: Copy + Mul<N, Output = N> + Add<N, Output = N> + Zero> Mul<&'a DMat<N>> for DMat<N> {
type Output = DMat<N>;
small_dmat_impl!(DMat1, 1, 0);
small_dmat_from_impl!(DMat1, 1, ::zero());
#[inline]
fn mul(self, right: &'a DMat<N>) -> DMat<N> {
(&self) * right
}
}
impl<'a, N: Copy + Mul<N, Output = N> + Add<N, Output = N> + Zero> Mul<DMat<N>> for &'a DMat<N> {
type Output = DMat<N>;
#[inline]
fn mul(self, right: DMat<N>) -> DMat<N> {
self * (&right)
}
pub struct DMat2<N> {
nrows: usize,
ncols: usize,
mij: [N; 2 * 2],
}
impl<'a, 'b, N: Copy + Mul<N, Output = N> + Add<N, Output = N> + Zero> Mul<&'b DMat<N>> for &'a DMat<N> {
type Output = DMat<N>;
small_dmat_impl!(DMat2, 2, 0, 1,
2, 3);
small_dmat_from_impl!(DMat2, 2, ::zero(), ::zero(),
::zero(), ::zero());
#[inline]
fn mul(self, right: &DMat<N>) -> DMat<N> {
assert!(self.ncols == right.nrows);
let mut res = unsafe { DMat::new_uninitialized(self.nrows, right.ncols) };
for i in 0..self.nrows {
for j in 0..right.ncols {
let mut acc: N = ::zero();
unsafe {
for k in 0..self.ncols {
acc = acc
+ self.unsafe_at((i, k)) * right.unsafe_at((k, j));
}
res.unsafe_set((i, j), acc);
}
}
}
res
pub struct DMat3<N> {
nrows: usize,
ncols: usize,
mij: [N; 3 * 3],
}
}
impl<N: Copy + Add<N, Output = N> + Mul<N, Output = N> + Zero> Mul<DVec<N>> for DMat<N> {
type Output = DVec<N>;
fn mul(self, right: DVec<N>) -> DVec<N> {
assert!(self.ncols == right.at.len());
let mut res : DVec<N> = unsafe { DVec::new_uninitialized(self.nrows) };
small_dmat_impl!(DMat3, 3, 0, 1, 2,
3, 4, 5,
6, 7, 8);
small_dmat_from_impl!(DMat3, 3, ::zero(), ::zero(), ::zero(),
::zero(), ::zero(), ::zero(),
::zero(), ::zero(), ::zero());
for i in 0..self.nrows {
let mut acc: N = ::zero();
for j in 0..self.ncols {
unsafe {
acc = acc + self.unsafe_at((i, j)) * right.unsafe_at(j);
}
}
res.at[i] = acc;
}
res
}
pub struct DMat4<N> {
nrows: usize,
ncols: usize,
mij: [N; 4 * 4],
}
small_dmat_impl!(DMat4, 4, 0, 1, 2, 3,
4, 5, 6, 7,
8, 9, 10, 11,
12, 13, 14, 15);
small_dmat_from_impl!(DMat4, 4, ::zero(), ::zero(), ::zero(), ::zero(),
::zero(), ::zero(), ::zero(), ::zero(),
::zero(), ::zero(), ::zero(), ::zero(),
::zero(), ::zero(), ::zero(), ::zero());
impl<N: Copy + Add<N, Output = N> + Mul<N, Output = N> + Zero> Mul<DMat<N>> for DVec<N> {
type Output = DVec<N>;
fn mul(self, right: DMat<N>) -> DVec<N> {
assert!(right.nrows == self.at.len());
let mut res : DVec<N> = unsafe { DVec::new_uninitialized(right.ncols) };
for i in 0..right.ncols {
let mut acc: N = ::zero();
for j in 0..right.nrows {
unsafe {
acc = acc + self.unsafe_at(j) * right.unsafe_at((j, i));
}
pub struct DMat5<N> {
nrows: usize,
ncols: usize,
mij: [N; 5 * 5],
}
res.at[i] = acc;
}
small_dmat_impl!(DMat5, 5, 0, 1, 2, 3, 4,
5, 6, 7, 8, 9,
10, 11, 12, 13, 14,
15, 16, 17, 18, 19,
20, 21, 22, 23, 24);
small_dmat_from_impl!(DMat5, 5, ::zero(), ::zero(), ::zero(), ::zero(), ::zero(),
::zero(), ::zero(), ::zero(), ::zero(), ::zero(),
::zero(), ::zero(), ::zero(), ::zero(), ::zero(),
::zero(), ::zero(), ::zero(), ::zero(), ::zero(),
::zero(), ::zero(), ::zero(), ::zero(), ::zero());
res
}
}
impl<N: BaseNum + Clone> Inv for DMat<N> {
#[inline]
fn inv(&self) -> Option<DMat<N>> {
let mut res: DMat<N> = self.clone();
if res.inv_mut() {
Some(res)
}
else {
None
pub struct DMat6<N> {
nrows: usize,
ncols: usize,
mij: [N; 6 * 6],
}
}
fn inv_mut(&mut self) -> bool {
assert!(self.nrows == self.ncols);
let dim = self.nrows;
let mut res: DMat<N> = Eye::new_identity(dim);
// inversion using Gauss-Jordan elimination
for k in 0..dim {
// search a non-zero value on the k-th column
// FIXME: would it be worth it to spend some more time searching for the
// max instead?
let mut n0 = k; // index of a non-zero entry
while n0 != dim {
if unsafe { self.unsafe_at((n0, k)) } != ::zero() {
break;
}
n0 = n0 + 1;
}
if n0 == dim {
return false
}
// swap pivot line
if n0 != k {
for j in 0..dim {
let off_n0_j = self.offset(n0, j);
let off_k_j = self.offset(k, j);
self.mij[..].swap(off_n0_j, off_k_j);
res.mij[..].swap(off_n0_j, off_k_j);
}
}
unsafe {
let pivot = self.unsafe_at((k, k));
for j in k..dim {
let selfval = self.unsafe_at((k, j)) / pivot;
self.unsafe_set((k, j), selfval);
}
for j in 0..dim {
let resval = res.unsafe_at((k, j)) / pivot;
res.unsafe_set((k, j), resval);
}
for l in 0..dim {
if l != k {
let normalizer = self.unsafe_at((l, k));
for j in k..dim {
let selfval = self.unsafe_at((l, j)) - self.unsafe_at((k, j)) * normalizer;
self.unsafe_set((l, j), selfval);
}
for j in 0..dim {
let resval = res.unsafe_at((l, j)) - res.unsafe_at((k, j)) * normalizer;
res.unsafe_set((l, j), resval);
}
}
}
}
}
*self = res;
true
}
}
impl<N: Clone + Copy> Transpose for DMat<N> {
#[inline]
fn transpose(&self) -> DMat<N> {
if self.nrows == self.ncols {
let mut res = self.clone();
res.transpose_mut();
res
}
else {
let mut res = unsafe { DMat::new_uninitialized(self.ncols, self.nrows) };
for i in 0..self.nrows {
for j in 0..self.ncols {
unsafe {
res.unsafe_set((j, i), self.unsafe_at((i, j)))
}
}
}
res
}
}
#[inline]
fn transpose_mut(&mut self) {
if self.nrows == self.ncols {
let n = self.nrows;
for i in 0..n - 1 {
for j in i + 1..n {
let off_i_j = self.offset(i, j);
let off_j_i = self.offset(j, i);
self.mij[..].swap(off_i_j, off_j_i);
}
}
}
else {
// FIXME: implement a better algorithm which does that in-place.
*self = Transpose::transpose(self);
}
}
}
impl<N: BaseNum + Cast<f64> + Clone> Mean<DVec<N>> for DMat<N> {
fn mean(&self) -> DVec<N> {
let mut res: DVec<N> = DVec::new_zeros(self.ncols);
let normalizer: N = Cast::from(1.0f64 / self.nrows as f64);
for i in 0 .. self.nrows {
for j in 0 .. self.ncols {
unsafe {
let acc = res.unsafe_at(j) + self.unsafe_at((i, j)) * normalizer;
res.unsafe_set(j, acc);
}
}
}
res
}
}
impl<N: BaseNum + Cast<f64> + Clone> Cov<DMat<N>> for DMat<N> {
// FIXME: this could be heavily optimized, removing all temporaries by merging loops.
fn cov(&self) -> DMat<N> {
assert!(self.nrows > 1);
let mut centered = unsafe { DMat::new_uninitialized(self.nrows, self.ncols) };
let mean = self.mean();
// FIXME: use the rows iterator when available
for i in 0 .. self.nrows {
for j in 0 .. self.ncols {
unsafe {
centered.unsafe_set((i, j), self.unsafe_at((i, j)) - mean.unsafe_at(j));
}
}
}
// FIXME: return a triangular matrix?
let fnormalizer: f64 = Cast::from(self.nrows() - 1);
let normalizer: N = Cast::from(fnormalizer);
// FIXME: this will do 2 allocations for temporaries!
(Transpose::transpose(&centered) * centered) / normalizer
}
}
impl<N: Copy + Zero> Col<DVec<N>> for DMat<N> {
#[inline]
fn ncols(&self) -> usize {
self.ncols
}
#[inline]
fn set_col(&mut self, col_id: usize, v: DVec<N>) {
assert!(col_id < self.ncols);
assert!(self.nrows == v.len());
for (i, e) in v[..].iter().enumerate() {
unsafe {
self.unsafe_set((i, col_id), *e);
}
}
}
#[inline]
fn col(&self, col_id: usize) -> DVec<N> {
let mut res: DVec<N> = unsafe {
DVec::new_uninitialized(self.nrows)
};
for (row_id, e) in res[..].iter_mut().enumerate() {
*e = unsafe { self.unsafe_at((row_id, col_id)) };
}
res
}
}
impl<N: Copy + Clone> ColSlice<DVec<N>> for DMat<N> {
fn col_slice(&self, col_id :usize, row_start: usize, row_end: usize) -> DVec<N> {
assert!(col_id < self.ncols);
assert!(row_start < row_end);
assert!(row_end <= self.nrows);
// We can init from slice thanks to the matrix being column-major.
let start= self.offset(row_start, col_id);
let stop = self.offset(row_end, col_id);
let slice = DVec::from_slice(row_end - row_start, &self.mij[start .. stop]);
slice
}
}
impl<N: Copy + Zero> Row<DVec<N>> for DMat<N> {
#[inline]
fn nrows(&self) -> usize {
self.nrows
}
#[inline]
fn set_row(&mut self, row_id: usize, v: DVec<N>) {
assert!(row_id < self.nrows);
assert!(self.ncols == v.len());
for (i, e) in v[..].iter().enumerate() {
unsafe {
self.unsafe_set((row_id, i), *e);
}
}
}
#[inline]
fn row(&self, row_id: usize) -> DVec<N> {
let mut res: DVec<N> = unsafe {
DVec::new_uninitialized(self.ncols)
};
for (col_id, e) in res[..].iter_mut().enumerate() {
*e = unsafe { self.unsafe_at((row_id, col_id)) };
}
res
}
}
impl<N: Copy> RowSlice<DVec<N>> for DMat<N> {
fn row_slice(&self, row_id :usize, col_start: usize, col_end: usize) -> DVec<N> {
assert!(row_id < self.nrows);
assert!(col_start < col_end);
assert!(col_end <= self.ncols);
let mut slice : DVec<N> = unsafe {
DVec::new_uninitialized(col_end - col_start)
};
let mut slice_idx = 0;
for col_id in col_start..col_end {
unsafe {
slice.unsafe_set(slice_idx, self.unsafe_at((row_id, col_id)));
}
slice_idx += 1;
}
slice
}
}
impl<N: Copy + Clone + Zero> Diag<DVec<N>> for DMat<N> {
#[inline]
fn from_diag(diag: &DVec<N>) -> DMat<N> {
let mut res = DMat::new_zeros(diag.len(), diag.len());
res.set_diag(diag);
res
}
#[inline]
fn diag(&self) -> DVec<N> {
let smallest_dim = cmp::min(self.nrows, self.ncols);
let mut diag: DVec<N> = DVec::new_zeros(smallest_dim);
for i in 0..smallest_dim {
unsafe { diag.unsafe_set(i, self.unsafe_at((i, i))) }
}
diag
}
}
impl<N: Copy + Clone + Zero> DiagMut<DVec<N>> for DMat<N> {
#[inline]
fn set_diag(&mut self, diag: &DVec<N>) {
let smallest_dim = cmp::min(self.nrows, self.ncols);
assert!(diag.len() == smallest_dim);
for i in 0..smallest_dim {
unsafe { self.unsafe_set((i, i), diag.unsafe_at(i)) }
}
}
}
impl<N: ApproxEq<N>> ApproxEq<N> for DMat<N> {
#[inline]
fn approx_epsilon(_: Option<DMat<N>>) -> N {
ApproxEq::approx_epsilon(None::<N>)
}
#[inline]
fn approx_ulps(_: Option<DMat<N>>) -> u32 {
ApproxEq::approx_ulps(None::<N>)
}
#[inline]
fn approx_eq_eps(&self, other: &DMat<N>, epsilon: &N) -> bool {
let mut zip = self.mij.iter().zip(other.mij.iter());
zip.all(|(a, b)| ApproxEq::approx_eq_eps(a, b, epsilon))
}
#[inline]
fn approx_eq_ulps(&self, other: &DMat<N>, ulps: u32) -> bool {
let mut zip = self.mij.iter().zip(other.mij.iter());
zip.all(|(a, b)| ApproxEq::approx_eq_ulps(a, b, ulps))
}
}
impl<N: Debug + Copy> Debug for DMat<N> {
fn fmt(&self, form:&mut Formatter) -> Result {
for i in 0..self.nrows() {
for j in 0..self.ncols() {
let _ = write!(form, "{:?} ", self[(i, j)]);
}
let _ = write!(form, "\n");
}
write!(form, "\n")
}
}
impl<N: Copy + Mul<N, Output = N>> Mul<N> for DMat<N> {
type Output = DMat<N>;
#[inline]
fn mul(self, right: N) -> DMat<N> {
let mut res = self;
for mij in res.mij.iter_mut() {
*mij = *mij * right;
}
res
}
}
impl<N: Copy + Div<N, Output = N>> Div<N> for DMat<N> {
type Output = DMat<N>;
#[inline]
fn div(self, right: N) -> DMat<N> {
let mut res = self;
for mij in res.mij.iter_mut() {
*mij = *mij / right;
}
res
}
}
impl<N: Copy + Add<N, Output = N>> Add<N> for DMat<N> {
type Output = DMat<N>;
#[inline]
fn add(self, right: N) -> DMat<N> {
let mut res = self;
for mij in res.mij.iter_mut() {
*mij = *mij + right;
}
res
}
}
impl<N: Copy + Add<N, Output = N>> Add<DMat<N>> for DMat<N> {
type Output = DMat<N>;
#[inline]
fn add(self, right: DMat<N>) -> DMat<N> {
self + (&right)
}
}
impl<'a, N: Copy + Add<N, Output = N>> Add<DMat<N>> for &'a DMat<N> {
type Output = DMat<N>;
#[inline]
fn add(self, right: DMat<N>) -> DMat<N> {
right + self
}
}
impl<'a, N: Copy + Add<N, Output = N>> Add<&'a DMat<N>> for DMat<N> {
type Output = DMat<N>;
#[inline]
fn add(self, right: &'a DMat<N>) -> DMat<N> {
assert!(self.nrows == right.nrows && self.ncols == right.ncols,
"Unable to add matrices with different dimensions.");
let mut res = self;
for (mij, right_ij) in res.mij.iter_mut().zip(right.mij.iter()) {
*mij = *mij + *right_ij;
}
res
}
}
impl<N: Copy + Sub<N, Output = N>> Sub<N> for DMat<N> {
type Output = DMat<N>;
#[inline]
fn sub(self, right: N) -> DMat<N> {
let mut res = self;
for mij in res.mij.iter_mut() {
*mij = *mij - right;
}
res
}
}
impl<N: Copy + Sub<N, Output = N>> Sub<DMat<N>> for DMat<N> {
type Output = DMat<N>;
#[inline]
fn sub(self, right: DMat<N>) -> DMat<N> {
self - (&right)
}
}
impl<'a, N: Copy + Sub<N, Output = N>> Sub<DMat<N>> for &'a DMat<N> {
type Output = DMat<N>;
#[inline]
fn sub(self, right: DMat<N>) -> DMat<N> {
right - self
}
}
impl<'a, N: Copy + Sub<N, Output = N>> Sub<&'a DMat<N>> for DMat<N> {
type Output = DMat<N>;
#[inline]
fn sub(self, right: &'a DMat<N>) -> DMat<N> {
assert!(self.nrows == right.nrows && self.ncols == right.ncols,
"Unable to subtract matrices with different dimensions.");
let mut res = self;
for (mij, right_ij) in res.mij.iter_mut().zip(right.mij.iter()) {
*mij = *mij - *right_ij;
}
res
}
}
#[cfg(feature="arbitrary")]
impl<N: Arbitrary> Arbitrary for DMat<N> {
fn arbitrary<G: Gen>(g: &mut G) -> DMat<N> {
DMat::from_fn(
Arbitrary::arbitrary(g), Arbitrary::arbitrary(g),
|_, _| Arbitrary::arbitrary(g)
)
}
}
small_dmat_impl!(DMat6, 6, 0, 1, 2, 3, 4, 5,
6, 7, 8, 9, 10, 11,
12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23,
24, 25, 26, 27, 28, 29,
30, 31, 32, 33, 34, 35);
small_dmat_from_impl!(DMat6, 6, ::zero(), ::zero(), ::zero(), ::zero(), ::zero(), ::zero(),
::zero(), ::zero(), ::zero(), ::zero(), ::zero(), ::zero(),
::zero(), ::zero(), ::zero(), ::zero(), ::zero(), ::zero(),
::zero(), ::zero(), ::zero(), ::zero(), ::zero(), ::zero(),
::zero(), ::zero(), ::zero(), ::zero(), ::zero(), ::zero(),
::zero(), ::zero(), ::zero(), ::zero(), ::zero(), ::zero());

896
src/structs/dmat_macros.rs Normal file
View File

@ -0,0 +1,896 @@
#![macro_use]
macro_rules! dmat_impl(
($dmat: ident) => (
impl<N: Zero + Clone + Copy> $dmat<N> {
/// Builds a matrix filled with zeros.
///
/// # Arguments
/// * `dim` - The dimension of the matrix. A `dim`-dimensional matrix contains `dim * dim`
/// components.
#[inline]
pub fn new_zeros(nrows: usize, ncols: usize) -> $dmat<N> {
$dmat::from_elem(nrows, ncols, ::zero())
}
/// Tests if all components of the matrix are zeroes.
#[inline]
pub fn is_zero(&self) -> bool {
self.mij.iter().all(|e| e.is_zero())
}
#[inline]
pub fn reset(&mut self) {
for mij in self.mij.iter_mut() {
*mij = ::zero();
}
}
}
impl<N: Zero + Copy + Rand> $dmat<N> {
/// Builds a matrix filled with random values.
#[inline]
pub fn new_random(nrows: usize, ncols: usize) -> $dmat<N> {
$dmat::from_fn(nrows, ncols, |_, _| rand::random())
}
}
impl<N: One + Zero + Clone + Copy> $dmat<N> {
/// Builds a matrix filled with a given constant.
#[inline]
pub fn new_ones(nrows: usize, ncols: usize) -> $dmat<N> {
$dmat::from_elem(nrows, ncols, ::one())
}
}
impl<N> $dmat<N> {
/// The number of row on the matrix.
#[inline]
pub fn nrows(&self) -> usize {
self.nrows
}
/// The number of columns on the matrix.
#[inline]
pub fn ncols(&self) -> usize {
self.ncols
}
/// Gets a reference to this matrix data.
/// The returned vector contains the matrix data in column-major order.
#[inline]
pub fn as_vec(&self) -> &[N] {
&self.mij
}
/// Gets a mutable reference to this matrix data.
/// The returned vector contains the matrix data in column-major order.
#[inline]
pub fn as_mut_vec(&mut self) -> &mut [N] {
&mut self.mij[..]
}
}
// FIXME: add a function to modify the dimension (to avoid useless allocations)?
impl<N: One + Zero + Clone + Copy> Eye for $dmat<N> {
/// Builds an identity matrix.
///
/// # Arguments
/// * `dim` - The dimension of the matrix. A `dim`-dimensional matrix contains `dim * dim`
/// components.
#[inline]
fn new_identity(dim: usize) -> $dmat<N> {
let mut res = $dmat::new_zeros(dim, dim);
for i in 0..dim {
let _1: N = ::one();
res[(i, i)] = _1;
}
res
}
}
impl<N> $dmat<N> {
#[inline(always)]
fn offset(&self, i: usize, j: usize) -> usize {
i + j * self.nrows
}
}
impl<N: Copy> Indexable<(usize, usize), N> for $dmat<N> {
/// Just like `set` without bounds checking.
#[inline]
unsafe fn unsafe_set(&mut self, rowcol: (usize, usize), val: N) {
let (row, col) = rowcol;
let offset = self.offset(row, col);
*self.mij[..].get_unchecked_mut(offset) = val
}
/// Just like `at` without bounds checking.
#[inline]
unsafe fn unsafe_at(&self, rowcol: (usize, usize)) -> N {
let (row, col) = rowcol;
*self.mij.get_unchecked(self.offset(row, col))
}
#[inline]
fn swap(&mut self, rowcol1: (usize, usize), rowcol2: (usize, usize)) {
let (row1, col1) = rowcol1;
let (row2, col2) = rowcol2;
let offset1 = self.offset(row1, col1);
let offset2 = self.offset(row2, col2);
let count = self.mij.len();
assert!(offset1 < count);
assert!(offset2 < count);
self.mij[..].swap(offset1, offset2);
}
}
impl<N> Shape<(usize, usize)> for $dmat<N> {
#[inline]
fn shape(&self) -> (usize, usize) {
(self.nrows, self.ncols)
}
}
impl<N> Index<(usize, usize)> for $dmat<N> {
type Output = N;
fn index(&self, (i, j): (usize, usize)) -> &N {
assert!(i < self.nrows);
assert!(j < self.ncols);
unsafe {
self.mij.get_unchecked(self.offset(i, j))
}
}
}
impl<N> IndexMut<(usize, usize)> for $dmat<N> {
fn index_mut(&mut self, (i, j): (usize, usize)) -> &mut N {
assert!(i < self.nrows);
assert!(j < self.ncols);
let offset = self.offset(i, j);
unsafe {
self.mij[..].get_unchecked_mut(offset)
}
}
}
impl<N: Copy + Mul<N, Output = N> + Add<N, Output = N> + Zero> Mul<$dmat<N>> for $dmat<N> {
type Output = $dmat<N>;
#[inline]
fn mul(self, right: $dmat<N>) -> $dmat<N> {
(&self) * (&right)
}
}
impl<'a, N: Copy + Mul<N, Output = N> + Add<N, Output = N> + Zero> Mul<&'a $dmat<N>> for $dmat<N> {
type Output = $dmat<N>;
#[inline]
fn mul(self, right: &'a $dmat<N>) -> $dmat<N> {
(&self) * right
}
}
impl<'a, N: Copy + Mul<N, Output = N> + Add<N, Output = N> + Zero> Mul<$dmat<N>> for &'a $dmat<N> {
type Output = $dmat<N>;
#[inline]
fn mul(self, right: $dmat<N>) -> $dmat<N> {
self * (&right)
}
}
impl<'a, 'b, N: Copy + Mul<N, Output = N> + Add<N, Output = N> + Zero> Mul<&'b $dmat<N>> for &'a $dmat<N> {
type Output = $dmat<N>;
#[inline]
fn mul(self, right: &$dmat<N>) -> $dmat<N> {
assert!(self.ncols == right.nrows);
let mut res = unsafe { $dmat::new_uninitialized(self.nrows, right.ncols) };
for i in 0..self.nrows {
for j in 0..right.ncols {
let mut acc: N = ::zero();
unsafe {
for k in 0..self.ncols {
acc = acc
+ self.unsafe_at((i, k)) * right.unsafe_at((k, j));
}
res.unsafe_set((i, j), acc);
}
}
}
res
}
}
impl<N: Copy + Add<N, Output = N> + Mul<N, Output = N> + Zero> Mul<DVec<N>> for $dmat<N> {
type Output = DVec<N>;
fn mul(self, right: DVec<N>) -> DVec<N> {
assert!(self.ncols == right.at.len());
let mut res : DVec<N> = unsafe { DVec::new_uninitialized(self.nrows) };
for i in 0..self.nrows {
let mut acc: N = ::zero();
for j in 0..self.ncols {
unsafe {
acc = acc + self.unsafe_at((i, j)) * right.unsafe_at(j);
}
}
res.at[i] = acc;
}
res
}
}
impl<N: Copy + Add<N, Output = N> + Mul<N, Output = N> + Zero> Mul<$dmat<N>> for DVec<N> {
type Output = DVec<N>;
fn mul(self, right: $dmat<N>) -> DVec<N> {
assert!(right.nrows == self.at.len());
let mut res : DVec<N> = unsafe { DVec::new_uninitialized(right.ncols) };
for i in 0..right.ncols {
let mut acc: N = ::zero();
for j in 0..right.nrows {
unsafe {
acc = acc + self.unsafe_at(j) * right.unsafe_at((j, i));
}
}
res.at[i] = acc;
}
res
}
}
impl<N: BaseNum + Clone> Inv for $dmat<N> {
#[inline]
fn inv(&self) -> Option<$dmat<N>> {
let mut res: $dmat<N> = self.clone();
if res.inv_mut() {
Some(res)
}
else {
None
}
}
fn inv_mut(&mut self) -> bool {
assert!(self.nrows == self.ncols);
let dim = self.nrows;
let mut res: $dmat<N> = Eye::new_identity(dim);
// inversion using Gauss-Jordan elimination
for k in 0..dim {
// search a non-zero value on the k-th column
// FIXME: would it be worth it to spend some more time searching for the
// max instead?
let mut n0 = k; // index of a non-zero entry
while n0 != dim {
if unsafe { self.unsafe_at((n0, k)) } != ::zero() {
break;
}
n0 = n0 + 1;
}
if n0 == dim {
return false
}
// swap pivot line
if n0 != k {
for j in 0..dim {
let off_n0_j = self.offset(n0, j);
let off_k_j = self.offset(k, j);
self.mij[..].swap(off_n0_j, off_k_j);
res.mij[..].swap(off_n0_j, off_k_j);
}
}
unsafe {
let pivot = self.unsafe_at((k, k));
for j in k..dim {
let selfval = self.unsafe_at((k, j)) / pivot;
self.unsafe_set((k, j), selfval);
}
for j in 0..dim {
let resval = res.unsafe_at((k, j)) / pivot;
res.unsafe_set((k, j), resval);
}
for l in 0..dim {
if l != k {
let normalizer = self.unsafe_at((l, k));
for j in k..dim {
let selfval = self.unsafe_at((l, j)) - self.unsafe_at((k, j)) * normalizer;
self.unsafe_set((l, j), selfval);
}
for j in 0..dim {
let resval = res.unsafe_at((l, j)) - res.unsafe_at((k, j)) * normalizer;
res.unsafe_set((l, j), resval);
}
}
}
}
}
*self = res;
true
}
}
impl<N: Clone + Copy> Transpose for $dmat<N> {
#[inline]
fn transpose(&self) -> $dmat<N> {
if self.nrows == self.ncols {
let mut res = self.clone();
res.transpose_mut();
res
}
else {
let mut res = unsafe { $dmat::new_uninitialized(self.ncols, self.nrows) };
for i in 0..self.nrows {
for j in 0..self.ncols {
unsafe {
res.unsafe_set((j, i), self.unsafe_at((i, j)))
}
}
}
res
}
}
#[inline]
fn transpose_mut(&mut self) {
if self.nrows == self.ncols {
let n = self.nrows;
for i in 0..n - 1 {
for j in i + 1..n {
let off_i_j = self.offset(i, j);
let off_j_i = self.offset(j, i);
self.mij[..].swap(off_i_j, off_j_i);
}
}
}
else {
// FIXME: implement a better algorithm which does that in-place.
*self = Transpose::transpose(self);
}
}
}
impl<N: BaseNum + Cast<f64> + Clone> Mean<DVec<N>> for $dmat<N> {
fn mean(&self) -> DVec<N> {
let mut res: DVec<N> = DVec::new_zeros(self.ncols);
let normalizer: N = Cast::from(1.0f64 / self.nrows as f64);
for i in 0 .. self.nrows {
for j in 0 .. self.ncols {
unsafe {
let acc = res.unsafe_at(j) + self.unsafe_at((i, j)) * normalizer;
res.unsafe_set(j, acc);
}
}
}
res
}
}
impl<N: BaseNum + Cast<f64> + Clone> Cov<$dmat<N>> for $dmat<N> {
// FIXME: this could be heavily optimized, removing all temporaries by merging loops.
fn cov(&self) -> $dmat<N> {
assert!(self.nrows > 1);
let mut centered = unsafe { $dmat::new_uninitialized(self.nrows, self.ncols) };
let mean = self.mean();
// FIXME: use the rows iterator when available
for i in 0 .. self.nrows {
for j in 0 .. self.ncols {
unsafe {
centered.unsafe_set((i, j), self.unsafe_at((i, j)) - mean.unsafe_at(j));
}
}
}
// FIXME: return a triangular matrix?
let fnormalizer: f64 = Cast::from(self.nrows() - 1);
let normalizer: N = Cast::from(fnormalizer);
// FIXME: this will do 2 allocations for temporaries!
(Transpose::transpose(&centered) * centered) / normalizer
}
}
impl<N: Copy + Zero> Col<DVec<N>> for $dmat<N> {
#[inline]
fn ncols(&self) -> usize {
self.ncols
}
#[inline]
fn set_col(&mut self, col_id: usize, v: DVec<N>) {
assert!(col_id < self.ncols);
assert!(self.nrows == v.len());
for (i, e) in v[..].iter().enumerate() {
unsafe {
self.unsafe_set((i, col_id), *e);
}
}
}
#[inline]
fn col(&self, col_id: usize) -> DVec<N> {
let mut res: DVec<N> = unsafe {
DVec::new_uninitialized(self.nrows)
};
for (row_id, e) in res[..].iter_mut().enumerate() {
*e = unsafe { self.unsafe_at((row_id, col_id)) };
}
res
}
}
impl<N: Copy + Clone> ColSlice<DVec<N>> for $dmat<N> {
fn col_slice(&self, col_id :usize, row_start: usize, row_end: usize) -> DVec<N> {
assert!(col_id < self.ncols);
assert!(row_start < row_end);
assert!(row_end <= self.nrows);
// We can init from slice thanks to the matrix being column-major.
let start= self.offset(row_start, col_id);
let stop = self.offset(row_end, col_id);
let slice = DVec::from_slice(row_end - row_start, &self.mij[start .. stop]);
slice
}
}
impl<N: Copy + Zero> Row<DVec<N>> for $dmat<N> {
#[inline]
fn nrows(&self) -> usize {
self.nrows
}
#[inline]
fn set_row(&mut self, row_id: usize, v: DVec<N>) {
assert!(row_id < self.nrows);
assert!(self.ncols == v.len());
for (i, e) in v[..].iter().enumerate() {
unsafe {
self.unsafe_set((row_id, i), *e);
}
}
}
#[inline]
fn row(&self, row_id: usize) -> DVec<N> {
let mut res: DVec<N> = unsafe {
DVec::new_uninitialized(self.ncols)
};
for (col_id, e) in res[..].iter_mut().enumerate() {
*e = unsafe { self.unsafe_at((row_id, col_id)) };
}
res
}
}
impl<N: Copy> RowSlice<DVec<N>> for $dmat<N> {
fn row_slice(&self, row_id :usize, col_start: usize, col_end: usize) -> DVec<N> {
assert!(row_id < self.nrows);
assert!(col_start < col_end);
assert!(col_end <= self.ncols);
let mut slice : DVec<N> = unsafe {
DVec::new_uninitialized(col_end - col_start)
};
let mut slice_idx = 0;
for col_id in col_start..col_end {
unsafe {
slice.unsafe_set(slice_idx, self.unsafe_at((row_id, col_id)));
}
slice_idx += 1;
}
slice
}
}
impl<N: Copy + Clone + Zero> Diag<DVec<N>> for $dmat<N> {
#[inline]
fn from_diag(diag: &DVec<N>) -> $dmat<N> {
let mut res = $dmat::new_zeros(diag.len(), diag.len());
res.set_diag(diag);
res
}
#[inline]
fn diag(&self) -> DVec<N> {
let smallest_dim = cmp::min(self.nrows, self.ncols);
let mut diag: DVec<N> = DVec::new_zeros(smallest_dim);
for i in 0..smallest_dim {
unsafe { diag.unsafe_set(i, self.unsafe_at((i, i))) }
}
diag
}
}
impl<N: Copy + Clone + Zero> DiagMut<DVec<N>> for $dmat<N> {
#[inline]
fn set_diag(&mut self, diag: &DVec<N>) {
let smallest_dim = cmp::min(self.nrows, self.ncols);
assert!(diag.len() == smallest_dim);
for i in 0..smallest_dim {
unsafe { self.unsafe_set((i, i), diag.unsafe_at(i)) }
}
}
}
impl<N: ApproxEq<N>> ApproxEq<N> for $dmat<N> {
#[inline]
fn approx_epsilon(_: Option<$dmat<N>>) -> N {
ApproxEq::approx_epsilon(None::<N>)
}
#[inline]
fn approx_ulps(_: Option<$dmat<N>>) -> u32 {
ApproxEq::approx_ulps(None::<N>)
}
#[inline]
fn approx_eq_eps(&self, other: &$dmat<N>, epsilon: &N) -> bool {
let mut zip = self.mij.iter().zip(other.mij.iter());
zip.all(|(a, b)| ApproxEq::approx_eq_eps(a, b, epsilon))
}
#[inline]
fn approx_eq_ulps(&self, other: &$dmat<N>, ulps: u32) -> bool {
let mut zip = self.mij.iter().zip(other.mij.iter());
zip.all(|(a, b)| ApproxEq::approx_eq_ulps(a, b, ulps))
}
}
impl<N: Debug + Copy> Debug for $dmat<N> {
fn fmt(&self, form:&mut Formatter) -> Result {
for i in 0..self.nrows() {
for j in 0..self.ncols() {
let _ = write!(form, "{:?} ", self[(i, j)]);
}
let _ = write!(form, "\n");
}
write!(form, "\n")
}
}
impl<N: Copy + Mul<N, Output = N>> Mul<N> for $dmat<N> {
type Output = $dmat<N>;
#[inline]
fn mul(self, right: N) -> $dmat<N> {
let mut res = self;
for mij in res.mij.iter_mut() {
*mij = *mij * right;
}
res
}
}
impl<N: Copy + Div<N, Output = N>> Div<N> for $dmat<N> {
type Output = $dmat<N>;
#[inline]
fn div(self, right: N) -> $dmat<N> {
let mut res = self;
for mij in res.mij.iter_mut() {
*mij = *mij / right;
}
res
}
}
impl<N: Copy + Add<N, Output = N>> Add<N> for $dmat<N> {
type Output = $dmat<N>;
#[inline]
fn add(self, right: N) -> $dmat<N> {
let mut res = self;
for mij in res.mij.iter_mut() {
*mij = *mij + right;
}
res
}
}
impl<N: Copy + Add<N, Output = N>> Add<$dmat<N>> for $dmat<N> {
type Output = $dmat<N>;
#[inline]
fn add(self, right: $dmat<N>) -> $dmat<N> {
self + (&right)
}
}
impl<'a, N: Copy + Add<N, Output = N>> Add<$dmat<N>> for &'a $dmat<N> {
type Output = $dmat<N>;
#[inline]
fn add(self, right: $dmat<N>) -> $dmat<N> {
right + self
}
}
impl<'a, N: Copy + Add<N, Output = N>> Add<&'a $dmat<N>> for $dmat<N> {
type Output = $dmat<N>;
#[inline]
fn add(self, right: &'a $dmat<N>) -> $dmat<N> {
assert!(self.nrows == right.nrows && self.ncols == right.ncols,
"Unable to add matrices with different dimensions.");
let mut res = self;
for (mij, right_ij) in res.mij.iter_mut().zip(right.mij.iter()) {
*mij = *mij + *right_ij;
}
res
}
}
impl<N: Copy + Sub<N, Output = N>> Sub<N> for $dmat<N> {
type Output = $dmat<N>;
#[inline]
fn sub(self, right: N) -> $dmat<N> {
let mut res = self;
for mij in res.mij.iter_mut() {
*mij = *mij - right;
}
res
}
}
impl<N: Copy + Sub<N, Output = N>> Sub<$dmat<N>> for $dmat<N> {
type Output = $dmat<N>;
#[inline]
fn sub(self, right: $dmat<N>) -> $dmat<N> {
self - (&right)
}
}
impl<'a, N: Copy + Sub<N, Output = N>> Sub<$dmat<N>> for &'a $dmat<N> {
type Output = $dmat<N>;
#[inline]
fn sub(self, right: $dmat<N>) -> $dmat<N> {
right - self
}
}
impl<'a, N: Copy + Sub<N, Output = N>> Sub<&'a $dmat<N>> for $dmat<N> {
type Output = $dmat<N>;
#[inline]
fn sub(self, right: &'a $dmat<N>) -> $dmat<N> {
assert!(self.nrows == right.nrows && self.ncols == right.ncols,
"Unable to subtract matrices with different dimensions.");
let mut res = self;
for (mij, right_ij) in res.mij.iter_mut().zip(right.mij.iter()) {
*mij = *mij - *right_ij;
}
res
}
}
#[cfg(feature="arbitrary")]
impl<N: Arbitrary> Arbitrary for $dmat<N> {
fn arbitrary<G: Gen>(g: &mut G) -> $dmat<N> {
$dmat::from_fn(
Arbitrary::arbitrary(g), Arbitrary::arbitrary(g),
|_, _| Arbitrary::arbitrary(g)
)
}
}
)
);
macro_rules! small_dmat_impl (
($dmat: ident, $dim: expr, $($idx: expr),*) => (
impl<N: PartialEq> PartialEq for $dmat<N> {
#[inline]
fn eq(&self, other: &$dmat<N>) -> bool {
if self.nrows() != other.nrows() || self.ncols() != other.ncols() {
return false; // FIXME: fail instead?
}
for (a, b) in self.mij[0 .. self.nrows() * self.ncols()].iter().zip(
other.mij[0 .. self.nrows() * self.ncols()].iter()) {
if *a != *b {
return false;
}
}
true
}
}
impl<N: Clone> Clone for $dmat<N> {
fn clone(&self) -> $dmat<N> {
let mij: [N; $dim * $dim] = [ $( self.mij[$idx].clone(), )* ];
$dmat {
nrows: self.nrows,
ncols: self.ncols,
mij: mij,
}
}
}
dmat_impl!($dmat);
)
);
macro_rules! small_dmat_from_impl(
($dmat: ident, $dim: expr, $($zeros: expr),*) => (
impl<N: Zero + Clone + Copy> $dmat<N> {
/// Builds a matrix filled with a given constant.
#[inline]
pub fn from_elem(nrows: usize, ncols: usize, elem: N) -> $dmat<N> {
assert!(nrows <= $dim);
assert!(ncols <= $dim);
let mut mij: [N; $dim * $dim] = [ $( $zeros, )* ];
for n in &mut mij[.. nrows * ncols] {
*n = elem;
}
$dmat {
nrows: nrows,
ncols: ncols,
mij: mij
}
}
/// Builds a matrix filled with the components provided by a vector.
/// The vector contains the matrix data in row-major order.
/// Note that `from_col_vec` is a lot faster than `from_row_vec` since a `$dmat` stores its data
/// in column-major order.
///
/// The vector must have at least `nrows * ncols` elements.
#[inline]
pub fn from_row_vec(nrows: usize, ncols: usize, vec: &[N]) -> $dmat<N> {
let mut res = $dmat::from_col_vec(ncols, nrows, vec);
// we transpose because the buffer is row_major
res.transpose_mut();
res
}
/// Builds a matrix filled with the components provided by a vector.
/// The vector contains the matrix data in column-major order.
/// Note that `from_col_vec` is a lot faster than `from_row_vec` since a `$dmat` stores its data
/// in column-major order.
///
/// The vector must have at least `nrows * ncols` elements.
#[inline]
pub fn from_col_vec(nrows: usize, ncols: usize, vec: &[N]) -> $dmat<N> {
assert!(nrows * ncols == vec.len());
let mut mij: [N; $dim * $dim] = [ $( $zeros, )* ];
for (n, val) in mij[.. nrows * ncols].iter_mut().zip(vec.iter()) {
*n = *val;
}
$dmat {
nrows: nrows,
ncols: ncols,
mij: mij
}
}
/// Builds a matrix using an initialization function.
#[inline(always)]
pub fn from_fn<F: FnMut(usize, usize) -> N>(nrows: usize, ncols: usize, mut f: F) -> $dmat<N> {
assert!(nrows <= $dim);
assert!(ncols <= $dim);
let mut mij: [N; $dim * $dim] = [ $( $zeros, )* ];
for i in 0 .. nrows {
for j in 0 .. ncols {
mij[i + j * nrows] = f(i, j)
}
}
$dmat {
nrows: nrows,
ncols: ncols,
mij: mij
}
}
}
impl<N> $dmat<N> {
#[inline]
pub unsafe fn new_uninitialized(nrows: usize, ncols: usize) -> $dmat<N> {
assert!(nrows <= $dim);
assert!(ncols <= $dim);
$dmat {
nrows: nrows,
ncols: ncols,
mij: mem::uninitialized()
}
}
}
)
);

View File

@ -1,6 +1,6 @@
//! Data structures and implementations.
pub use self::dmat::DMat;
pub use self::dmat::{DMat, DMat1, DMat2, DMat3, DMat4, DMat5, DMat6};
pub use self::dvec::{DVec, DVec1, DVec2, DVec3, DVec4, DVec5, DVec6};
pub use self::vec::{Vec0, Vec1, Vec2, Vec3, Vec4, Vec5, Vec6};
pub use self::pnt::{Pnt0, Pnt1, Pnt2, Pnt3, Pnt4, Pnt5, Pnt6};
@ -11,6 +11,7 @@ pub use self::persp::{Persp3, PerspMat3};
pub use self::ortho::{Ortho3, OrthoMat3};
pub use self::quat::{Quat, UnitQuat};
mod dmat_macros;
mod dmat;
mod dvec_macros;
mod dvec;