diff --git a/src/lib.rs b/src/lib.rs index e28a4650..b20c3689 100644 --- a/src/lib.rs +++ b/src/lib.rs @@ -135,7 +135,7 @@ pub use traits::{ pub use structs::{ Identity, - DMat, + DMat, DMat1, DMat2, DMat3, DMat4, DMat5, DMat6, DVec, DVec1, DVec2, DVec3, DVec4, DVec5, DVec6, Iso2, Iso3, Iso4, Mat1, Mat2, Mat3, Mat4, diff --git a/src/structs/dmat.rs b/src/structs/dmat.rs index 9dec5a3b..090c7789 100644 --- a/src/structs/dmat.rs +++ b/src/structs/dmat.rs @@ -3,6 +3,7 @@ #![allow(missing_docs)] // we hide doc to not have to document the $trhs double dispatch trait. use std::cmp; +use std::mem; use std::iter::repeat; use std::ops::{Add, Sub, Mul, Div, Index, IndexMut}; use std::fmt::{Debug, Formatter, Result}; @@ -38,47 +39,6 @@ impl DMat { } } -impl DMat { - /// Builds a matrix filled with zeros. - /// - /// # Arguments - /// * `dim` - The dimension of the matrix. A `dim`-dimensional matrix contains `dim * dim` - /// components. - #[inline] - pub fn new_zeros(nrows: usize, ncols: usize) -> DMat { - DMat::from_elem(nrows, ncols, ::zero()) - } - - /// Tests if all components of the matrix are zeroes. - #[inline] - pub fn is_zero(&self) -> bool { - self.mij.iter().all(|e| e.is_zero()) - } - - #[inline] - pub fn reset(&mut self) { - for mij in self.mij.iter_mut() { - *mij = ::zero(); - } - } -} - -impl DMat { - /// Builds a matrix filled with random values. - #[inline] - pub fn new_random(nrows: usize, ncols: usize) -> DMat { - DMat::from_fn(nrows, ncols, |_, _| rand::random()) - } -} - -impl DMat { - /// Builds a matrix filled with a given constant. - #[inline] - pub fn new_ones(nrows: usize, ncols: usize) -> DMat { - DMat::from_elem(nrows, ncols, ::one()) - } -} - impl DMat { /// Builds a matrix filled with a given constant. #[inline] @@ -92,7 +52,7 @@ impl DMat { /// Builds a matrix filled with the components provided by a vector. /// The vector contains the matrix data in row-major order. - /// Note that `from_col_vec` is a lot faster than `from_row_vec` since a `DMat` stores its data + /// Note that `from_col_vec` is much faster than `from_row_vec` since a `DMat` stores its data /// in column-major order. /// /// The vector must have at least `nrows * ncols` elements. @@ -108,7 +68,7 @@ impl DMat { /// Builds a matrix filled with the components provided by a vector. /// The vector contains the matrix data in column-major order. - /// Note that `from_col_vec` is a lot faster than `from_row_vec` since a `DMat` stores its data + /// Note that `from_col_vec` is much faster than `from_row_vec` since a `DMat` stores its data /// in column-major order. /// /// The vector must have at least `nrows * ncols` elements. @@ -125,733 +85,112 @@ impl DMat { } impl DMat { - /// Builds a matrix filled with a given constant. + /// Builds a matrix using an initialization function. #[inline(always)] pub fn from_fn N>(nrows: usize, ncols: usize, mut f: F) -> DMat { DMat { nrows: nrows, ncols: ncols, - mij: (0..nrows * ncols).map(|i| { let m = i / nrows; f(i - m * nrows, m) }).collect() + mij: (0 .. nrows * ncols).map(|i| { let m = i / nrows; f(i - m * nrows, m) }).collect() } } - /// The number of row on the matrix. - #[inline] - pub fn nrows(&self) -> usize { - self.nrows - } - - /// The number of columns on the matrix. - #[inline] - pub fn ncols(&self) -> usize { - self.ncols - } - - /// Transforms this matrix isizeo an array. This consumes the matrix and is O(1). + /// Transforms this matrix into an array. This consumes the matrix and is O(1). /// The returned vector contains the matrix data in column-major order. #[inline] - pub fn to_vec(self) -> Vec { + pub fn into_vec(self) -> Vec { self.mij } - - /// Gets a reference to this matrix data. - /// The returned vector contains the matrix data in column-major order. - #[inline] - pub fn as_vec(&self) -> &[N] { - &self.mij - } - - /// Gets a mutable reference to this matrix data. - /// The returned vector contains the matrix data in column-major order. - #[inline] - pub fn as_mut_vec(&mut self) -> &mut [N] { - &mut self.mij[..] - } } -// FIXME: add a function to modify the dimension (to avoid useless allocations)? +dmat_impl!(DMat); -impl Eye for DMat { - /// Builds an identity matrix. - /// - /// # Arguments - /// * `dim` - The dimension of the matrix. A `dim`-dimensional matrix contains `dim * dim` - /// components. - #[inline] - fn new_identity(dim: usize) -> DMat { - let mut res = DMat::new_zeros(dim, dim); - for i in 0..dim { - let _1: N = ::one(); - res[(i, i)] = _1; - } - - res - } +pub struct DMat1 { + nrows: usize, + ncols: usize, + mij: [N; 1 * 1], } -impl DMat { - #[inline(always)] - fn offset(&self, i: usize, j: usize) -> usize { - i + j * self.nrows - } +small_dmat_impl!(DMat1, 1, 0); +small_dmat_from_impl!(DMat1, 1, ::zero()); + +pub struct DMat2 { + nrows: usize, + ncols: usize, + mij: [N; 2 * 2], } -impl Indexable<(usize, usize), N> for DMat { - /// Just like `set` without bounds checking. - #[inline] - unsafe fn unsafe_set(&mut self, rowcol: (usize, usize), val: N) { - let (row, col) = rowcol; - let offset = self.offset(row, col); - *self.mij[..].get_unchecked_mut(offset) = val - } +small_dmat_impl!(DMat2, 2, 0, 1, + 2, 3); +small_dmat_from_impl!(DMat2, 2, ::zero(), ::zero(), + ::zero(), ::zero()); - /// Just like `at` without bounds checking. - #[inline] - unsafe fn unsafe_at(&self, rowcol: (usize, usize)) -> N { - let (row, col) = rowcol; - - *self.mij.get_unchecked(self.offset(row, col)) - } - - #[inline] - fn swap(&mut self, rowcol1: (usize, usize), rowcol2: (usize, usize)) { - let (row1, col1) = rowcol1; - let (row2, col2) = rowcol2; - let offset1 = self.offset(row1, col1); - let offset2 = self.offset(row2, col2); - let count = self.mij.len(); - assert!(offset1 < count); - assert!(offset2 < count); - self.mij[..].swap(offset1, offset2); - } +pub struct DMat3 { + nrows: usize, + ncols: usize, + mij: [N; 3 * 3], } -impl Shape<(usize, usize)> for DMat { - #[inline] - fn shape(&self) -> (usize, usize) { - (self.nrows, self.ncols) - } +small_dmat_impl!(DMat3, 3, 0, 1, 2, + 3, 4, 5, + 6, 7, 8); +small_dmat_from_impl!(DMat3, 3, ::zero(), ::zero(), ::zero(), + ::zero(), ::zero(), ::zero(), + ::zero(), ::zero(), ::zero()); + + +pub struct DMat4 { + nrows: usize, + ncols: usize, + mij: [N; 4 * 4], } -impl Index<(usize, usize)> for DMat { - type Output = N; +small_dmat_impl!(DMat4, 4, 0, 1, 2, 3, + 4, 5, 6, 7, + 8, 9, 10, 11, + 12, 13, 14, 15); +small_dmat_from_impl!(DMat4, 4, ::zero(), ::zero(), ::zero(), ::zero(), + ::zero(), ::zero(), ::zero(), ::zero(), + ::zero(), ::zero(), ::zero(), ::zero(), + ::zero(), ::zero(), ::zero(), ::zero()); - fn index(&self, (i, j): (usize, usize)) -> &N { - assert!(i < self.nrows); - assert!(j < self.ncols); - unsafe { - self.mij.get_unchecked(self.offset(i, j)) - } - } +pub struct DMat5 { + nrows: usize, + ncols: usize, + mij: [N; 5 * 5], } -impl IndexMut<(usize, usize)> for DMat { - fn index_mut(&mut self, (i, j): (usize, usize)) -> &mut N { - assert!(i < self.nrows); - assert!(j < self.ncols); +small_dmat_impl!(DMat5, 5, 0, 1, 2, 3, 4, + 5, 6, 7, 8, 9, + 10, 11, 12, 13, 14, + 15, 16, 17, 18, 19, + 20, 21, 22, 23, 24); +small_dmat_from_impl!(DMat5, 5, ::zero(), ::zero(), ::zero(), ::zero(), ::zero(), + ::zero(), ::zero(), ::zero(), ::zero(), ::zero(), + ::zero(), ::zero(), ::zero(), ::zero(), ::zero(), + ::zero(), ::zero(), ::zero(), ::zero(), ::zero(), + ::zero(), ::zero(), ::zero(), ::zero(), ::zero()); - let offset = self.offset(i, j); - unsafe { - self.mij[..].get_unchecked_mut(offset) - } - } +pub struct DMat6 { + nrows: usize, + ncols: usize, + mij: [N; 6 * 6], } -impl + Add + Zero> Mul> for DMat { - type Output = DMat; - - #[inline] - fn mul(self, right: DMat) -> DMat { - (&self) * (&right) - } -} - -impl<'a, N: Copy + Mul + Add + Zero> Mul<&'a DMat> for DMat { - type Output = DMat; - - #[inline] - fn mul(self, right: &'a DMat) -> DMat { - (&self) * right - } -} - -impl<'a, N: Copy + Mul + Add + Zero> Mul> for &'a DMat { - type Output = DMat; - - #[inline] - fn mul(self, right: DMat) -> DMat { - self * (&right) - } -} - -impl<'a, 'b, N: Copy + Mul + Add + Zero> Mul<&'b DMat> for &'a DMat { - type Output = DMat; - - #[inline] - fn mul(self, right: &DMat) -> DMat { - assert!(self.ncols == right.nrows); - - let mut res = unsafe { DMat::new_uninitialized(self.nrows, right.ncols) }; - - for i in 0..self.nrows { - for j in 0..right.ncols { - let mut acc: N = ::zero(); - - unsafe { - for k in 0..self.ncols { - acc = acc - + self.unsafe_at((i, k)) * right.unsafe_at((k, j)); - } - - res.unsafe_set((i, j), acc); - } - } - } - - res - } -} - -impl + Mul + Zero> Mul> for DMat { - type Output = DVec; - - fn mul(self, right: DVec) -> DVec { - assert!(self.ncols == right.at.len()); - - let mut res : DVec = unsafe { DVec::new_uninitialized(self.nrows) }; - - for i in 0..self.nrows { - let mut acc: N = ::zero(); - - for j in 0..self.ncols { - unsafe { - acc = acc + self.unsafe_at((i, j)) * right.unsafe_at(j); - } - } - - res.at[i] = acc; - } - - res - } -} - - -impl + Mul + Zero> Mul> for DVec { - type Output = DVec; - - fn mul(self, right: DMat) -> DVec { - assert!(right.nrows == self.at.len()); - - let mut res : DVec = unsafe { DVec::new_uninitialized(right.ncols) }; - - for i in 0..right.ncols { - let mut acc: N = ::zero(); - - for j in 0..right.nrows { - unsafe { - acc = acc + self.unsafe_at(j) * right.unsafe_at((j, i)); - } - } - - res.at[i] = acc; - } - - res - } -} - -impl Inv for DMat { - #[inline] - fn inv(&self) -> Option> { - let mut res: DMat = self.clone(); - if res.inv_mut() { - Some(res) - } - else { - None - } - } - - fn inv_mut(&mut self) -> bool { - assert!(self.nrows == self.ncols); - - let dim = self.nrows; - let mut res: DMat = Eye::new_identity(dim); - - // inversion using Gauss-Jordan elimination - for k in 0..dim { - // search a non-zero value on the k-th column - // FIXME: would it be worth it to spend some more time searching for the - // max instead? - - let mut n0 = k; // index of a non-zero entry - - while n0 != dim { - if unsafe { self.unsafe_at((n0, k)) } != ::zero() { - break; - } - - n0 = n0 + 1; - } - - if n0 == dim { - return false - } - - // swap pivot line - if n0 != k { - for j in 0..dim { - let off_n0_j = self.offset(n0, j); - let off_k_j = self.offset(k, j); - - self.mij[..].swap(off_n0_j, off_k_j); - res.mij[..].swap(off_n0_j, off_k_j); - } - } - - unsafe { - let pivot = self.unsafe_at((k, k)); - - for j in k..dim { - let selfval = self.unsafe_at((k, j)) / pivot; - self.unsafe_set((k, j), selfval); - } - - for j in 0..dim { - let resval = res.unsafe_at((k, j)) / pivot; - res.unsafe_set((k, j), resval); - } - - for l in 0..dim { - if l != k { - let normalizer = self.unsafe_at((l, k)); - - for j in k..dim { - let selfval = self.unsafe_at((l, j)) - self.unsafe_at((k, j)) * normalizer; - self.unsafe_set((l, j), selfval); - } - - for j in 0..dim { - let resval = res.unsafe_at((l, j)) - res.unsafe_at((k, j)) * normalizer; - res.unsafe_set((l, j), resval); - } - } - } - } - } - - *self = res; - - true - } -} - -impl Transpose for DMat { - #[inline] - fn transpose(&self) -> DMat { - if self.nrows == self.ncols { - let mut res = self.clone(); - - res.transpose_mut(); - - res - } - else { - let mut res = unsafe { DMat::new_uninitialized(self.ncols, self.nrows) }; - - for i in 0..self.nrows { - for j in 0..self.ncols { - unsafe { - res.unsafe_set((j, i), self.unsafe_at((i, j))) - } - } - } - - res - } - } - - #[inline] - fn transpose_mut(&mut self) { - if self.nrows == self.ncols { - let n = self.nrows; - for i in 0..n - 1 { - for j in i + 1..n { - let off_i_j = self.offset(i, j); - let off_j_i = self.offset(j, i); - - self.mij[..].swap(off_i_j, off_j_i); - } - } - } - else { - // FIXME: implement a better algorithm which does that in-place. - *self = Transpose::transpose(self); - } - } -} - -impl + Clone> Mean> for DMat { - fn mean(&self) -> DVec { - let mut res: DVec = DVec::new_zeros(self.ncols); - let normalizer: N = Cast::from(1.0f64 / self.nrows as f64); - - for i in 0 .. self.nrows { - for j in 0 .. self.ncols { - unsafe { - let acc = res.unsafe_at(j) + self.unsafe_at((i, j)) * normalizer; - res.unsafe_set(j, acc); - } - } - } - - res - } -} - -impl + Clone> Cov> for DMat { - // FIXME: this could be heavily optimized, removing all temporaries by merging loops. - fn cov(&self) -> DMat { - assert!(self.nrows > 1); - - let mut centered = unsafe { DMat::new_uninitialized(self.nrows, self.ncols) }; - let mean = self.mean(); - - // FIXME: use the rows iterator when available - for i in 0 .. self.nrows { - for j in 0 .. self.ncols { - unsafe { - centered.unsafe_set((i, j), self.unsafe_at((i, j)) - mean.unsafe_at(j)); - } - } - } - - // FIXME: return a triangular matrix? - let fnormalizer: f64 = Cast::from(self.nrows() - 1); - let normalizer: N = Cast::from(fnormalizer); - - // FIXME: this will do 2 allocations for temporaries! - (Transpose::transpose(¢ered) * centered) / normalizer - } -} - -impl Col> for DMat { - #[inline] - fn ncols(&self) -> usize { - self.ncols - } - - #[inline] - fn set_col(&mut self, col_id: usize, v: DVec) { - assert!(col_id < self.ncols); - assert!(self.nrows == v.len()); - - for (i, e) in v[..].iter().enumerate() { - unsafe { - self.unsafe_set((i, col_id), *e); - } - } - } - - #[inline] - fn col(&self, col_id: usize) -> DVec { - let mut res: DVec = unsafe { - DVec::new_uninitialized(self.nrows) - }; - - for (row_id, e) in res[..].iter_mut().enumerate() { - *e = unsafe { self.unsafe_at((row_id, col_id)) }; - } - - res - } -} - -impl ColSlice> for DMat { - fn col_slice(&self, col_id :usize, row_start: usize, row_end: usize) -> DVec { - assert!(col_id < self.ncols); - assert!(row_start < row_end); - assert!(row_end <= self.nrows); - - // We can init from slice thanks to the matrix being column-major. - let start= self.offset(row_start, col_id); - let stop = self.offset(row_end, col_id); - let slice = DVec::from_slice(row_end - row_start, &self.mij[start .. stop]); - - slice - } -} - -impl Row> for DMat { - #[inline] - fn nrows(&self) -> usize { - self.nrows - } - - #[inline] - fn set_row(&mut self, row_id: usize, v: DVec) { - assert!(row_id < self.nrows); - assert!(self.ncols == v.len()); - - for (i, e) in v[..].iter().enumerate() { - unsafe { - self.unsafe_set((row_id, i), *e); - } - } - } - - #[inline] - fn row(&self, row_id: usize) -> DVec { - let mut res: DVec = unsafe { - DVec::new_uninitialized(self.ncols) - }; - - for (col_id, e) in res[..].iter_mut().enumerate() { - *e = unsafe { self.unsafe_at((row_id, col_id)) }; - } - - res - } -} - -impl RowSlice> for DMat { - fn row_slice(&self, row_id :usize, col_start: usize, col_end: usize) -> DVec { - assert!(row_id < self.nrows); - assert!(col_start < col_end); - assert!(col_end <= self.ncols); - - let mut slice : DVec = unsafe { - DVec::new_uninitialized(col_end - col_start) - }; - let mut slice_idx = 0; - for col_id in col_start..col_end { - unsafe { - slice.unsafe_set(slice_idx, self.unsafe_at((row_id, col_id))); - } - slice_idx += 1; - } - - slice - } -} - -impl Diag> for DMat { - #[inline] - fn from_diag(diag: &DVec) -> DMat { - let mut res = DMat::new_zeros(diag.len(), diag.len()); - - res.set_diag(diag); - - res - } - - #[inline] - fn diag(&self) -> DVec { - let smallest_dim = cmp::min(self.nrows, self.ncols); - - let mut diag: DVec = DVec::new_zeros(smallest_dim); - - for i in 0..smallest_dim { - unsafe { diag.unsafe_set(i, self.unsafe_at((i, i))) } - } - - diag - } -} - -impl DiagMut> for DMat { - #[inline] - fn set_diag(&mut self, diag: &DVec) { - let smallest_dim = cmp::min(self.nrows, self.ncols); - - assert!(diag.len() == smallest_dim); - - for i in 0..smallest_dim { - unsafe { self.unsafe_set((i, i), diag.unsafe_at(i)) } - } - } -} - -impl> ApproxEq for DMat { - #[inline] - fn approx_epsilon(_: Option>) -> N { - ApproxEq::approx_epsilon(None::) - } - - #[inline] - fn approx_ulps(_: Option>) -> u32 { - ApproxEq::approx_ulps(None::) - } - - #[inline] - fn approx_eq_eps(&self, other: &DMat, epsilon: &N) -> bool { - let mut zip = self.mij.iter().zip(other.mij.iter()); - zip.all(|(a, b)| ApproxEq::approx_eq_eps(a, b, epsilon)) - } - - #[inline] - fn approx_eq_ulps(&self, other: &DMat, ulps: u32) -> bool { - let mut zip = self.mij.iter().zip(other.mij.iter()); - zip.all(|(a, b)| ApproxEq::approx_eq_ulps(a, b, ulps)) - } -} - -impl Debug for DMat { - fn fmt(&self, form:&mut Formatter) -> Result { - for i in 0..self.nrows() { - for j in 0..self.ncols() { - let _ = write!(form, "{:?} ", self[(i, j)]); - } - let _ = write!(form, "\n"); - } - write!(form, "\n") - } -} - -impl> Mul for DMat { - type Output = DMat; - - #[inline] - fn mul(self, right: N) -> DMat { - let mut res = self; - - for mij in res.mij.iter_mut() { - *mij = *mij * right; - } - - res - } -} - -impl> Div for DMat { - type Output = DMat; - - #[inline] - fn div(self, right: N) -> DMat { - let mut res = self; - - for mij in res.mij.iter_mut() { - *mij = *mij / right; - } - - res - } -} - -impl> Add for DMat { - type Output = DMat; - - #[inline] - fn add(self, right: N) -> DMat { - let mut res = self; - - for mij in res.mij.iter_mut() { - *mij = *mij + right; - } - - res - } -} - -impl> Add> for DMat { - type Output = DMat; - - #[inline] - fn add(self, right: DMat) -> DMat { - self + (&right) - } -} - -impl<'a, N: Copy + Add> Add> for &'a DMat { - type Output = DMat; - - #[inline] - fn add(self, right: DMat) -> DMat { - right + self - } -} - -impl<'a, N: Copy + Add> Add<&'a DMat> for DMat { - type Output = DMat; - - #[inline] - fn add(self, right: &'a DMat) -> DMat { - assert!(self.nrows == right.nrows && self.ncols == right.ncols, - "Unable to add matrices with different dimensions."); - - let mut res = self; - - for (mij, right_ij) in res.mij.iter_mut().zip(right.mij.iter()) { - *mij = *mij + *right_ij; - } - - res - } -} - -impl> Sub for DMat { - type Output = DMat; - - #[inline] - fn sub(self, right: N) -> DMat { - let mut res = self; - - for mij in res.mij.iter_mut() { - *mij = *mij - right; - } - - res - } -} - -impl> Sub> for DMat { - type Output = DMat; - - #[inline] - fn sub(self, right: DMat) -> DMat { - self - (&right) - } -} - -impl<'a, N: Copy + Sub> Sub> for &'a DMat { - type Output = DMat; - - #[inline] - fn sub(self, right: DMat) -> DMat { - right - self - } -} - -impl<'a, N: Copy + Sub> Sub<&'a DMat> for DMat { - type Output = DMat; - - #[inline] - fn sub(self, right: &'a DMat) -> DMat { - assert!(self.nrows == right.nrows && self.ncols == right.ncols, - "Unable to subtract matrices with different dimensions."); - - let mut res = self; - - for (mij, right_ij) in res.mij.iter_mut().zip(right.mij.iter()) { - *mij = *mij - *right_ij; - } - - res - } -} - -#[cfg(feature="arbitrary")] -impl Arbitrary for DMat { - fn arbitrary(g: &mut G) -> DMat { - DMat::from_fn( - Arbitrary::arbitrary(g), Arbitrary::arbitrary(g), - |_, _| Arbitrary::arbitrary(g) - ) - } -} +small_dmat_impl!(DMat6, 6, 0, 1, 2, 3, 4, 5, + 6, 7, 8, 9, 10, 11, + 12, 13, 14, 15, 16, 17, + 18, 19, 20, 21, 22, 23, + 24, 25, 26, 27, 28, 29, + 30, 31, 32, 33, 34, 35); +small_dmat_from_impl!(DMat6, 6, ::zero(), ::zero(), ::zero(), ::zero(), ::zero(), ::zero(), + ::zero(), ::zero(), ::zero(), ::zero(), ::zero(), ::zero(), + ::zero(), ::zero(), ::zero(), ::zero(), ::zero(), ::zero(), + ::zero(), ::zero(), ::zero(), ::zero(), ::zero(), ::zero(), + ::zero(), ::zero(), ::zero(), ::zero(), ::zero(), ::zero(), + ::zero(), ::zero(), ::zero(), ::zero(), ::zero(), ::zero()); diff --git a/src/structs/dmat_macros.rs b/src/structs/dmat_macros.rs new file mode 100644 index 00000000..efef4bf2 --- /dev/null +++ b/src/structs/dmat_macros.rs @@ -0,0 +1,896 @@ +#![macro_use] + +macro_rules! dmat_impl( + ($dmat: ident) => ( + impl $dmat { + /// Builds a matrix filled with zeros. + /// + /// # Arguments + /// * `dim` - The dimension of the matrix. A `dim`-dimensional matrix contains `dim * dim` + /// components. + #[inline] + pub fn new_zeros(nrows: usize, ncols: usize) -> $dmat { + $dmat::from_elem(nrows, ncols, ::zero()) + } + + /// Tests if all components of the matrix are zeroes. + #[inline] + pub fn is_zero(&self) -> bool { + self.mij.iter().all(|e| e.is_zero()) + } + + #[inline] + pub fn reset(&mut self) { + for mij in self.mij.iter_mut() { + *mij = ::zero(); + } + } + } + + impl $dmat { + /// Builds a matrix filled with random values. + #[inline] + pub fn new_random(nrows: usize, ncols: usize) -> $dmat { + $dmat::from_fn(nrows, ncols, |_, _| rand::random()) + } + } + + impl $dmat { + /// Builds a matrix filled with a given constant. + #[inline] + pub fn new_ones(nrows: usize, ncols: usize) -> $dmat { + $dmat::from_elem(nrows, ncols, ::one()) + } + } + + impl $dmat { + /// The number of row on the matrix. + #[inline] + pub fn nrows(&self) -> usize { + self.nrows + } + + /// The number of columns on the matrix. + #[inline] + pub fn ncols(&self) -> usize { + self.ncols + } + + /// Gets a reference to this matrix data. + /// The returned vector contains the matrix data in column-major order. + #[inline] + pub fn as_vec(&self) -> &[N] { + &self.mij + } + + /// Gets a mutable reference to this matrix data. + /// The returned vector contains the matrix data in column-major order. + #[inline] + pub fn as_mut_vec(&mut self) -> &mut [N] { + &mut self.mij[..] + } + } + + // FIXME: add a function to modify the dimension (to avoid useless allocations)? + + impl Eye for $dmat { + /// Builds an identity matrix. + /// + /// # Arguments + /// * `dim` - The dimension of the matrix. A `dim`-dimensional matrix contains `dim * dim` + /// components. + #[inline] + fn new_identity(dim: usize) -> $dmat { + let mut res = $dmat::new_zeros(dim, dim); + + for i in 0..dim { + let _1: N = ::one(); + res[(i, i)] = _1; + } + + res + } + } + + impl $dmat { + #[inline(always)] + fn offset(&self, i: usize, j: usize) -> usize { + i + j * self.nrows + } + + } + + impl Indexable<(usize, usize), N> for $dmat { + /// Just like `set` without bounds checking. + #[inline] + unsafe fn unsafe_set(&mut self, rowcol: (usize, usize), val: N) { + let (row, col) = rowcol; + let offset = self.offset(row, col); + *self.mij[..].get_unchecked_mut(offset) = val + } + + /// Just like `at` without bounds checking. + #[inline] + unsafe fn unsafe_at(&self, rowcol: (usize, usize)) -> N { + let (row, col) = rowcol; + + *self.mij.get_unchecked(self.offset(row, col)) + } + + #[inline] + fn swap(&mut self, rowcol1: (usize, usize), rowcol2: (usize, usize)) { + let (row1, col1) = rowcol1; + let (row2, col2) = rowcol2; + let offset1 = self.offset(row1, col1); + let offset2 = self.offset(row2, col2); + let count = self.mij.len(); + assert!(offset1 < count); + assert!(offset2 < count); + self.mij[..].swap(offset1, offset2); + } + + } + + impl Shape<(usize, usize)> for $dmat { + #[inline] + fn shape(&self) -> (usize, usize) { + (self.nrows, self.ncols) + } + } + + impl Index<(usize, usize)> for $dmat { + type Output = N; + + fn index(&self, (i, j): (usize, usize)) -> &N { + assert!(i < self.nrows); + assert!(j < self.ncols); + + unsafe { + self.mij.get_unchecked(self.offset(i, j)) + } + } + } + + impl IndexMut<(usize, usize)> for $dmat { + fn index_mut(&mut self, (i, j): (usize, usize)) -> &mut N { + assert!(i < self.nrows); + assert!(j < self.ncols); + + let offset = self.offset(i, j); + + unsafe { + self.mij[..].get_unchecked_mut(offset) + } + } + } + + impl + Add + Zero> Mul<$dmat> for $dmat { + type Output = $dmat; + + #[inline] + fn mul(self, right: $dmat) -> $dmat { + (&self) * (&right) + } + } + + impl<'a, N: Copy + Mul + Add + Zero> Mul<&'a $dmat> for $dmat { + type Output = $dmat; + + #[inline] + fn mul(self, right: &'a $dmat) -> $dmat { + (&self) * right + } + } + + impl<'a, N: Copy + Mul + Add + Zero> Mul<$dmat> for &'a $dmat { + type Output = $dmat; + + #[inline] + fn mul(self, right: $dmat) -> $dmat { + self * (&right) + } + } + + impl<'a, 'b, N: Copy + Mul + Add + Zero> Mul<&'b $dmat> for &'a $dmat { + type Output = $dmat; + + #[inline] + fn mul(self, right: &$dmat) -> $dmat { + assert!(self.ncols == right.nrows); + + let mut res = unsafe { $dmat::new_uninitialized(self.nrows, right.ncols) }; + + for i in 0..self.nrows { + for j in 0..right.ncols { + let mut acc: N = ::zero(); + + unsafe { + for k in 0..self.ncols { + acc = acc + + self.unsafe_at((i, k)) * right.unsafe_at((k, j)); + } + + res.unsafe_set((i, j), acc); + } + } + } + + res + } + } + + impl + Mul + Zero> Mul> for $dmat { + type Output = DVec; + + fn mul(self, right: DVec) -> DVec { + assert!(self.ncols == right.at.len()); + + let mut res : DVec = unsafe { DVec::new_uninitialized(self.nrows) }; + + for i in 0..self.nrows { + let mut acc: N = ::zero(); + + for j in 0..self.ncols { + unsafe { + acc = acc + self.unsafe_at((i, j)) * right.unsafe_at(j); + } + } + + res.at[i] = acc; + } + + res + } + } + + + impl + Mul + Zero> Mul<$dmat> for DVec { + type Output = DVec; + + fn mul(self, right: $dmat) -> DVec { + assert!(right.nrows == self.at.len()); + + let mut res : DVec = unsafe { DVec::new_uninitialized(right.ncols) }; + + for i in 0..right.ncols { + let mut acc: N = ::zero(); + + for j in 0..right.nrows { + unsafe { + acc = acc + self.unsafe_at(j) * right.unsafe_at((j, i)); + } + } + + res.at[i] = acc; + } + + res + } + } + + impl Inv for $dmat { + #[inline] + fn inv(&self) -> Option<$dmat> { + let mut res: $dmat = self.clone(); + if res.inv_mut() { + Some(res) + } + else { + None + } + } + + fn inv_mut(&mut self) -> bool { + assert!(self.nrows == self.ncols); + + let dim = self.nrows; + let mut res: $dmat = Eye::new_identity(dim); + + // inversion using Gauss-Jordan elimination + for k in 0..dim { + // search a non-zero value on the k-th column + // FIXME: would it be worth it to spend some more time searching for the + // max instead? + + let mut n0 = k; // index of a non-zero entry + + while n0 != dim { + if unsafe { self.unsafe_at((n0, k)) } != ::zero() { + break; + } + + n0 = n0 + 1; + } + + if n0 == dim { + return false + } + + // swap pivot line + if n0 != k { + for j in 0..dim { + let off_n0_j = self.offset(n0, j); + let off_k_j = self.offset(k, j); + + self.mij[..].swap(off_n0_j, off_k_j); + res.mij[..].swap(off_n0_j, off_k_j); + } + } + + unsafe { + let pivot = self.unsafe_at((k, k)); + + for j in k..dim { + let selfval = self.unsafe_at((k, j)) / pivot; + self.unsafe_set((k, j), selfval); + } + + for j in 0..dim { + let resval = res.unsafe_at((k, j)) / pivot; + res.unsafe_set((k, j), resval); + } + + for l in 0..dim { + if l != k { + let normalizer = self.unsafe_at((l, k)); + + for j in k..dim { + let selfval = self.unsafe_at((l, j)) - self.unsafe_at((k, j)) * normalizer; + self.unsafe_set((l, j), selfval); + } + + for j in 0..dim { + let resval = res.unsafe_at((l, j)) - res.unsafe_at((k, j)) * normalizer; + res.unsafe_set((l, j), resval); + } + } + } + } + } + + *self = res; + + true + } + } + + impl Transpose for $dmat { + #[inline] + fn transpose(&self) -> $dmat { + if self.nrows == self.ncols { + let mut res = self.clone(); + + res.transpose_mut(); + + res + } + else { + let mut res = unsafe { $dmat::new_uninitialized(self.ncols, self.nrows) }; + + for i in 0..self.nrows { + for j in 0..self.ncols { + unsafe { + res.unsafe_set((j, i), self.unsafe_at((i, j))) + } + } + } + + res + } + } + + #[inline] + fn transpose_mut(&mut self) { + if self.nrows == self.ncols { + let n = self.nrows; + for i in 0..n - 1 { + for j in i + 1..n { + let off_i_j = self.offset(i, j); + let off_j_i = self.offset(j, i); + + self.mij[..].swap(off_i_j, off_j_i); + } + } + } + else { + // FIXME: implement a better algorithm which does that in-place. + *self = Transpose::transpose(self); + } + } + } + + impl + Clone> Mean> for $dmat { + fn mean(&self) -> DVec { + let mut res: DVec = DVec::new_zeros(self.ncols); + let normalizer: N = Cast::from(1.0f64 / self.nrows as f64); + + for i in 0 .. self.nrows { + for j in 0 .. self.ncols { + unsafe { + let acc = res.unsafe_at(j) + self.unsafe_at((i, j)) * normalizer; + res.unsafe_set(j, acc); + } + } + } + + res + } + } + + impl + Clone> Cov<$dmat> for $dmat { + // FIXME: this could be heavily optimized, removing all temporaries by merging loops. + fn cov(&self) -> $dmat { + assert!(self.nrows > 1); + + let mut centered = unsafe { $dmat::new_uninitialized(self.nrows, self.ncols) }; + let mean = self.mean(); + + // FIXME: use the rows iterator when available + for i in 0 .. self.nrows { + for j in 0 .. self.ncols { + unsafe { + centered.unsafe_set((i, j), self.unsafe_at((i, j)) - mean.unsafe_at(j)); + } + } + } + + // FIXME: return a triangular matrix? + let fnormalizer: f64 = Cast::from(self.nrows() - 1); + let normalizer: N = Cast::from(fnormalizer); + + // FIXME: this will do 2 allocations for temporaries! + (Transpose::transpose(¢ered) * centered) / normalizer + } + } + + impl Col> for $dmat { + #[inline] + fn ncols(&self) -> usize { + self.ncols + } + + #[inline] + fn set_col(&mut self, col_id: usize, v: DVec) { + assert!(col_id < self.ncols); + assert!(self.nrows == v.len()); + + for (i, e) in v[..].iter().enumerate() { + unsafe { + self.unsafe_set((i, col_id), *e); + } + } + } + + #[inline] + fn col(&self, col_id: usize) -> DVec { + let mut res: DVec = unsafe { + DVec::new_uninitialized(self.nrows) + }; + + for (row_id, e) in res[..].iter_mut().enumerate() { + *e = unsafe { self.unsafe_at((row_id, col_id)) }; + } + + res + } + } + + impl ColSlice> for $dmat { + fn col_slice(&self, col_id :usize, row_start: usize, row_end: usize) -> DVec { + assert!(col_id < self.ncols); + assert!(row_start < row_end); + assert!(row_end <= self.nrows); + + // We can init from slice thanks to the matrix being column-major. + let start= self.offset(row_start, col_id); + let stop = self.offset(row_end, col_id); + let slice = DVec::from_slice(row_end - row_start, &self.mij[start .. stop]); + + slice + } + } + + impl Row> for $dmat { + #[inline] + fn nrows(&self) -> usize { + self.nrows + } + + #[inline] + fn set_row(&mut self, row_id: usize, v: DVec) { + assert!(row_id < self.nrows); + assert!(self.ncols == v.len()); + + for (i, e) in v[..].iter().enumerate() { + unsafe { + self.unsafe_set((row_id, i), *e); + } + } + } + + #[inline] + fn row(&self, row_id: usize) -> DVec { + let mut res: DVec = unsafe { + DVec::new_uninitialized(self.ncols) + }; + + for (col_id, e) in res[..].iter_mut().enumerate() { + *e = unsafe { self.unsafe_at((row_id, col_id)) }; + } + + res + } + } + + impl RowSlice> for $dmat { + fn row_slice(&self, row_id :usize, col_start: usize, col_end: usize) -> DVec { + assert!(row_id < self.nrows); + assert!(col_start < col_end); + assert!(col_end <= self.ncols); + + let mut slice : DVec = unsafe { + DVec::new_uninitialized(col_end - col_start) + }; + let mut slice_idx = 0; + for col_id in col_start..col_end { + unsafe { + slice.unsafe_set(slice_idx, self.unsafe_at((row_id, col_id))); + } + slice_idx += 1; + } + + slice + } + } + + impl Diag> for $dmat { + #[inline] + fn from_diag(diag: &DVec) -> $dmat { + let mut res = $dmat::new_zeros(diag.len(), diag.len()); + + res.set_diag(diag); + + res + } + + #[inline] + fn diag(&self) -> DVec { + let smallest_dim = cmp::min(self.nrows, self.ncols); + + let mut diag: DVec = DVec::new_zeros(smallest_dim); + + for i in 0..smallest_dim { + unsafe { diag.unsafe_set(i, self.unsafe_at((i, i))) } + } + + diag + } + } + + impl DiagMut> for $dmat { + #[inline] + fn set_diag(&mut self, diag: &DVec) { + let smallest_dim = cmp::min(self.nrows, self.ncols); + + assert!(diag.len() == smallest_dim); + + for i in 0..smallest_dim { + unsafe { self.unsafe_set((i, i), diag.unsafe_at(i)) } + } + } + } + + impl> ApproxEq for $dmat { + #[inline] + fn approx_epsilon(_: Option<$dmat>) -> N { + ApproxEq::approx_epsilon(None::) + } + + #[inline] + fn approx_ulps(_: Option<$dmat>) -> u32 { + ApproxEq::approx_ulps(None::) + } + + #[inline] + fn approx_eq_eps(&self, other: &$dmat, epsilon: &N) -> bool { + let mut zip = self.mij.iter().zip(other.mij.iter()); + zip.all(|(a, b)| ApproxEq::approx_eq_eps(a, b, epsilon)) + } + + #[inline] + fn approx_eq_ulps(&self, other: &$dmat, ulps: u32) -> bool { + let mut zip = self.mij.iter().zip(other.mij.iter()); + zip.all(|(a, b)| ApproxEq::approx_eq_ulps(a, b, ulps)) + } + } + + impl Debug for $dmat { + fn fmt(&self, form:&mut Formatter) -> Result { + for i in 0..self.nrows() { + for j in 0..self.ncols() { + let _ = write!(form, "{:?} ", self[(i, j)]); + } + let _ = write!(form, "\n"); + } + write!(form, "\n") + } + } + + impl> Mul for $dmat { + type Output = $dmat; + + #[inline] + fn mul(self, right: N) -> $dmat { + let mut res = self; + + for mij in res.mij.iter_mut() { + *mij = *mij * right; + } + + res + } + } + + impl> Div for $dmat { + type Output = $dmat; + + #[inline] + fn div(self, right: N) -> $dmat { + let mut res = self; + + for mij in res.mij.iter_mut() { + *mij = *mij / right; + } + + res + } + } + + impl> Add for $dmat { + type Output = $dmat; + + #[inline] + fn add(self, right: N) -> $dmat { + let mut res = self; + + for mij in res.mij.iter_mut() { + *mij = *mij + right; + } + + res + } + } + + impl> Add<$dmat> for $dmat { + type Output = $dmat; + + #[inline] + fn add(self, right: $dmat) -> $dmat { + self + (&right) + } + } + + impl<'a, N: Copy + Add> Add<$dmat> for &'a $dmat { + type Output = $dmat; + + #[inline] + fn add(self, right: $dmat) -> $dmat { + right + self + } + } + + impl<'a, N: Copy + Add> Add<&'a $dmat> for $dmat { + type Output = $dmat; + + #[inline] + fn add(self, right: &'a $dmat) -> $dmat { + assert!(self.nrows == right.nrows && self.ncols == right.ncols, + "Unable to add matrices with different dimensions."); + + let mut res = self; + + for (mij, right_ij) in res.mij.iter_mut().zip(right.mij.iter()) { + *mij = *mij + *right_ij; + } + + res + } + } + + impl> Sub for $dmat { + type Output = $dmat; + + #[inline] + fn sub(self, right: N) -> $dmat { + let mut res = self; + + for mij in res.mij.iter_mut() { + *mij = *mij - right; + } + + res + } + } + + impl> Sub<$dmat> for $dmat { + type Output = $dmat; + + #[inline] + fn sub(self, right: $dmat) -> $dmat { + self - (&right) + } + } + + impl<'a, N: Copy + Sub> Sub<$dmat> for &'a $dmat { + type Output = $dmat; + + #[inline] + fn sub(self, right: $dmat) -> $dmat { + right - self + } + } + + impl<'a, N: Copy + Sub> Sub<&'a $dmat> for $dmat { + type Output = $dmat; + + #[inline] + fn sub(self, right: &'a $dmat) -> $dmat { + assert!(self.nrows == right.nrows && self.ncols == right.ncols, + "Unable to subtract matrices with different dimensions."); + + let mut res = self; + + for (mij, right_ij) in res.mij.iter_mut().zip(right.mij.iter()) { + *mij = *mij - *right_ij; + } + + res + } + } + + #[cfg(feature="arbitrary")] + impl Arbitrary for $dmat { + fn arbitrary(g: &mut G) -> $dmat { + $dmat::from_fn( + Arbitrary::arbitrary(g), Arbitrary::arbitrary(g), + |_, _| Arbitrary::arbitrary(g) + ) + } + } + ) +); + +macro_rules! small_dmat_impl ( + ($dmat: ident, $dim: expr, $($idx: expr),*) => ( + impl PartialEq for $dmat { + #[inline] + fn eq(&self, other: &$dmat) -> bool { + if self.nrows() != other.nrows() || self.ncols() != other.ncols() { + return false; // FIXME: fail instead? + } + + for (a, b) in self.mij[0 .. self.nrows() * self.ncols()].iter().zip( + other.mij[0 .. self.nrows() * self.ncols()].iter()) { + if *a != *b { + return false; + } + } + + true + } + } + + impl Clone for $dmat { + fn clone(&self) -> $dmat { + let mij: [N; $dim * $dim] = [ $( self.mij[$idx].clone(), )* ]; + + $dmat { + nrows: self.nrows, + ncols: self.ncols, + mij: mij, + } + } + } + + dmat_impl!($dmat); + ) +); + +macro_rules! small_dmat_from_impl( + ($dmat: ident, $dim: expr, $($zeros: expr),*) => ( + impl $dmat { + /// Builds a matrix filled with a given constant. + #[inline] + pub fn from_elem(nrows: usize, ncols: usize, elem: N) -> $dmat { + assert!(nrows <= $dim); + assert!(ncols <= $dim); + + let mut mij: [N; $dim * $dim] = [ $( $zeros, )* ]; + + for n in &mut mij[.. nrows * ncols] { + *n = elem; + } + + $dmat { + nrows: nrows, + ncols: ncols, + mij: mij + } + } + + /// Builds a matrix filled with the components provided by a vector. + /// The vector contains the matrix data in row-major order. + /// Note that `from_col_vec` is a lot faster than `from_row_vec` since a `$dmat` stores its data + /// in column-major order. + /// + /// The vector must have at least `nrows * ncols` elements. + #[inline] + pub fn from_row_vec(nrows: usize, ncols: usize, vec: &[N]) -> $dmat { + let mut res = $dmat::from_col_vec(ncols, nrows, vec); + + // we transpose because the buffer is row_major + res.transpose_mut(); + + res + } + + /// Builds a matrix filled with the components provided by a vector. + /// The vector contains the matrix data in column-major order. + /// Note that `from_col_vec` is a lot faster than `from_row_vec` since a `$dmat` stores its data + /// in column-major order. + /// + /// The vector must have at least `nrows * ncols` elements. + #[inline] + pub fn from_col_vec(nrows: usize, ncols: usize, vec: &[N]) -> $dmat { + assert!(nrows * ncols == vec.len()); + + let mut mij: [N; $dim * $dim] = [ $( $zeros, )* ]; + + for (n, val) in mij[.. nrows * ncols].iter_mut().zip(vec.iter()) { + *n = *val; + } + + $dmat { + nrows: nrows, + ncols: ncols, + mij: mij + } + } + + /// Builds a matrix using an initialization function. + #[inline(always)] + pub fn from_fn N>(nrows: usize, ncols: usize, mut f: F) -> $dmat { + assert!(nrows <= $dim); + assert!(ncols <= $dim); + + let mut mij: [N; $dim * $dim] = [ $( $zeros, )* ]; + + for i in 0 .. nrows { + for j in 0 .. ncols { + mij[i + j * nrows] = f(i, j) + } + } + + $dmat { + nrows: nrows, + ncols: ncols, + mij: mij + } + } + } + + impl $dmat { + #[inline] + pub unsafe fn new_uninitialized(nrows: usize, ncols: usize) -> $dmat { + assert!(nrows <= $dim); + assert!(ncols <= $dim); + + $dmat { + nrows: nrows, + ncols: ncols, + mij: mem::uninitialized() + } + } + } + ) +); diff --git a/src/structs/mod.rs b/src/structs/mod.rs index c9409a8f..a8ee812f 100644 --- a/src/structs/mod.rs +++ b/src/structs/mod.rs @@ -1,6 +1,6 @@ //! Data structures and implementations. -pub use self::dmat::DMat; +pub use self::dmat::{DMat, DMat1, DMat2, DMat3, DMat4, DMat5, DMat6}; pub use self::dvec::{DVec, DVec1, DVec2, DVec3, DVec4, DVec5, DVec6}; pub use self::vec::{Vec0, Vec1, Vec2, Vec3, Vec4, Vec5, Vec6}; pub use self::pnt::{Pnt0, Pnt1, Pnt2, Pnt3, Pnt4, Pnt5, Pnt6}; @@ -11,6 +11,7 @@ pub use self::persp::{Persp3, PerspMat3}; pub use self::ortho::{Ortho3, OrthoMat3}; pub use self::quat::{Quat, UnitQuat}; +mod dmat_macros; mod dmat; mod dvec_macros; mod dvec;