Typo fixes.

This commit is contained in:
Bruce Mitchener 2018-09-24 11:48:42 +07:00 committed by Sébastien Crozet
parent c6bc62c95f
commit 175c41ed3a
44 changed files with 95 additions and 95 deletions

View File

@ -130,7 +130,7 @@ This adds support for serialization using the
Pure Rust implementation of some Blas operations: Pure Rust implementation of some Blas operations:
* `.iamax()` retuns the index of the maximum value of a vector. * `.iamax()` returns the index of the maximum value of a vector.
* `.axpy(...)` computes `self = a * x + b * self`. * `.axpy(...)` computes `self = a * x + b * self`.
* `.gemv(...)` computes `self = alpha * a * x + beta * self` with a matrix and vector `a` and `x`. * `.gemv(...)` computes `self = alpha * a * x + beta * self` with a matrix and vector `a` and `x`.
* `.ger(...)` computes `self = alpha * x^t * y + beta * self` where `x` and `y` are vectors. * `.ger(...)` computes `self = alpha * x^t * y + beta * self` where `x` and `y` are vectors.
@ -367,7 +367,7 @@ crate for vectors, rotations and points. To enable them, activate the
## [0.7.0] ## [0.7.0]
### Added ### Added
* Added implementation of assignement operators (+=, -=, etc.) for * Added implementation of assignment operators (+=, -=, etc.) for
everything. everything.
### Modified ### Modified
* Points and vectors are now linked to each other with associated types * Points and vectors are now linked to each other with associated types

View File

@ -90,7 +90,7 @@ pub fn ortho<N: Real>(left: N, right: N, bottom: N, top: N, znear: N, zfar: N) -
// unimplemented!() // unimplemented!()
//} //}
/// Creates a matrix for a symetric perspective-view frustum based on the right handedness and OpenGL near and far clip planes definition. /// Creates a matrix for a symmetric perspective-view frustum based on the right handedness and OpenGL near and far clip planes definition.
pub fn perspective<N: Real>(fovy: N, aspect: N, near: N, far: N) -> TMat4<N> { pub fn perspective<N: Real>(fovy: N, aspect: N, near: N, far: N) -> TMat4<N> {
Perspective3::new(fovy, aspect, near, far).unwrap() Perspective3::new(fovy, aspect, near, far).unwrap()
} }

View File

@ -64,7 +64,7 @@ pub fn project_zo<N: Real>(obj: &TVec3<N>, model: &TMat4<N>, proj: &TMat4<N>, vi
) )
} }
/// Map the specified window coordinates (win.x, win.y, win.z) into object coordinates using OpengGL near and far clip planes definition. /// Map the specified window coordinates (win.x, win.y, win.z) into object coordinates using OpenGL near and far clip planes definition.
/// ///
/// # Parameters /// # Parameters
/// * `obj`: Specify the window coordinates to be mapped. /// * `obj`: Specify the window coordinates to be mapped.

View File

@ -56,7 +56,7 @@ pub fn rotate_z_vec4<N: Real>(v: &TVec4<N>, angle: N) -> TVec4<N> {
Rotation3::from_axis_angle(&TVec3::z_axis(), angle).to_homogeneous() * v Rotation3::from_axis_angle(&TVec3::z_axis(), angle).to_homogeneous() * v
} }
/// Computes a spehical linear interpolation between the vectors `x` and `y` assumed to be normalized. /// Computes a spherical linear interpolation between the vectors `x` and `y` assumed to be normalized.
pub fn slerp<N: Real>(x: &TVec3<N>, y: &TVec3<N>, a: N) -> TVec3<N> { pub fn slerp<N: Real>(x: &TVec3<N>, y: &TVec3<N>, a: N) -> TVec3<N> {
Unit::new_unchecked(*x).slerp(&Unit::new_unchecked(*y), a).unwrap() Unit::new_unchecked(*x).slerp(&Unit::new_unchecked(*y), a).unwrap()
} }

View File

@ -50,13 +50,13 @@
* Functions operating in 2d will usually end with the `2d` suffix, e.g., `glm::rotade2d` is for 2D while `glm::rotate` is for 3D. * Functions operating in 2d will usually end with the `2d` suffix, e.g., `glm::rotade2d` is for 2D while `glm::rotate` is for 3D.
* Functions operating on vector will often end with the `_vec` suffix, possibly followed by the dimension of vector, e.g., `glm::rotate_vec2`. * Functions operating on vector will often end with the `_vec` suffix, possibly followed by the dimension of vector, e.g., `glm::rotate_vec2`.
* Every function related to quaternions start with the `quat_` prefix, e.g., `glm::quat_dot(q1, q2)`. * Every function related to quaternions start with the `quat_` prefix, e.g., `glm::quat_dot(q1, q2)`.
* All the conversion functions have unique names as described [bellow](#conversions). * All the conversion functions have unique names as described [below](#conversions).
### Vector and matrix construction ### Vector and matrix construction
Vectors, matrices, and quaternions can be constructed using several approaches: Vectors, matrices, and quaternions can be constructed using several approaches:
* Using functions with the same name as their type in lower-case. For example `glm::vec3(x, y, z)` will create a 3D vector. * Using functions with the same name as their type in lower-case. For example `glm::vec3(x, y, z)` will create a 3D vector.
* Using the `::new` constructor. For example `Vec3::new(x, y, z)` will create a 3D vector. * Using the `::new` constructor. For example `Vec3::new(x, y, z)` will create a 3D vector.
* Using the functions prefixed by `make_` to build a vector a matrix from a slice. For example `glm::make_vec3(&[x, y, z])` will create a 3D vector. * Using the functions prefixed by `make_` to build a vector a matrix from a slice. For example `glm::make_vec3(&[x, y, z])` will create a 3D vector.
Keep in mind that constructing a matrix using this type of funcitons require its components to be arrange in column-major order on the slice. Keep in mind that constructing a matrix using this type of functions require its components to be arrange in column-major order on the slice.
* Using a geometric construction function. For example `glm::rotation(angle, axis)` will build a 4x4 homogeneous rotation matrix from an angle (in radians) and an axis. * Using a geometric construction function. For example `glm::rotation(angle, axis)` will build a 4x4 homogeneous rotation matrix from an angle (in radians) and an axis.
* Using swizzling and conversions as described in the next sections. * Using swizzling and conversions as described in the next sections.
### Swizzling ### Swizzling

View File

@ -11,7 +11,7 @@ use na::{DefaultAllocator, Matrix, MatrixMN, MatrixN, Scalar};
use lapack; use lapack;
/// The cholesky decomposion of a symmetric-definite-positive matrix. /// The cholesky decomposition of a symmetric-definite-positive matrix.
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))] #[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[cfg_attr( #[cfg_attr(
feature = "serde-serialize", feature = "serde-serialize",
@ -50,7 +50,7 @@ impl<N: CholeskyScalar + Zero, D: Dim> Cholesky<N, D>
where where
DefaultAllocator: Allocator<N, D, D>, DefaultAllocator: Allocator<N, D, D>,
{ {
/// Complutes the cholesky decomposition of the given symmetric-definite-positive square /// Computes the cholesky decomposition of the given symmetric-definite-positive square
/// matrix. /// matrix.
/// ///
/// Only the lower-triangular part of the input matrix is considered. /// Only the lower-triangular part of the input matrix is considered.
@ -183,7 +183,7 @@ where
* *
*/ */
/// Trait implemented by floats (`f32`, `f64`) and complex floats (`Complex<f32>`, `Complex<f64>`) /// Trait implemented by floats (`f32`, `f64`) and complex floats (`Complex<f32>`, `Complex<f64>`)
/// supported by the cholesky decompotition. /// supported by the cholesky decomposition.
pub trait CholeskyScalar: Scalar { pub trait CholeskyScalar: Scalar {
#[allow(missing_docs)] #[allow(missing_docs)]
fn xpotrf(uplo: u8, n: i32, a: &mut [Self], lda: i32, info: &mut i32); fn xpotrf(uplo: u8, n: i32, a: &mut [Self], lda: i32, info: &mut i32);

View File

@ -317,7 +317,7 @@ where
* Lapack functions dispatch. * Lapack functions dispatch.
* *
*/ */
/// Trait implemented by scalar type for which Lapack funtion exist to compute the /// Trait implemented by scalar type for which Lapack function exist to compute the
/// eigendecomposition. /// eigendecomposition.
pub trait EigenScalar: Scalar { pub trait EigenScalar: Scalar {
#[allow(missing_docs)] #[allow(missing_docs)]

View File

@ -244,7 +244,7 @@ where
/// Solves in-place the linear system `self * x = b`, where `x` is the unknown to be determined. /// Solves in-place the linear system `self * x = b`, where `x` is the unknown to be determined.
/// ///
/// Retuns `false` if no solution was found (the decomposed matrix is singular). /// Returns `false` if no solution was found (the decomposed matrix is singular).
pub fn solve_mut<R2: Dim, C2: Dim>(&self, b: &mut MatrixMN<N, R2, C2>) -> bool pub fn solve_mut<R2: Dim, C2: Dim>(&self, b: &mut MatrixMN<N, R2, C2>) -> bool
where where
DefaultAllocator: Allocator<N, R2, C2> + Allocator<i32, R2>, DefaultAllocator: Allocator<N, R2, C2> + Allocator<i32, R2>,
@ -255,7 +255,7 @@ where
/// Solves in-place the linear system `self.transpose() * x = b`, where `x` is the unknown to be /// Solves in-place the linear system `self.transpose() * x = b`, where `x` is the unknown to be
/// determined. /// determined.
/// ///
/// Retuns `false` if no solution was found (the decomposed matrix is singular). /// Returns `false` if no solution was found (the decomposed matrix is singular).
pub fn solve_transpose_mut<R2: Dim, C2: Dim>(&self, b: &mut MatrixMN<N, R2, C2>) -> bool pub fn solve_transpose_mut<R2: Dim, C2: Dim>(&self, b: &mut MatrixMN<N, R2, C2>) -> bool
where where
DefaultAllocator: Allocator<N, R2, C2> + Allocator<i32, R2>, DefaultAllocator: Allocator<N, R2, C2> + Allocator<i32, R2>,
@ -266,7 +266,7 @@ where
/// Solves in-place the linear system `self.conjugate_transpose() * x = b`, where `x` is the unknown to /// Solves in-place the linear system `self.conjugate_transpose() * x = b`, where `x` is the unknown to
/// be determined. /// be determined.
/// ///
/// Retuns `false` if no solution was found (the decomposed matrix is singular). /// Returns `false` if no solution was found (the decomposed matrix is singular).
pub fn solve_conjugate_transpose_mut<R2: Dim, C2: Dim>( pub fn solve_conjugate_transpose_mut<R2: Dim, C2: Dim>(
&self, &self,
b: &mut MatrixMN<N, R2, C2>, b: &mut MatrixMN<N, R2, C2>,

View File

@ -171,7 +171,7 @@ where
* Lapack functions dispatch. * Lapack functions dispatch.
* *
*/ */
/// Trait implemented by scalar types for which Lapack funtion exist to compute the /// Trait implemented by scalar types for which Lapack function exist to compute the
/// QR decomposition. /// QR decomposition.
pub trait QRScalar: Scalar { pub trait QRScalar: Scalar {
fn xgeqrf( fn xgeqrf(
@ -195,7 +195,7 @@ pub trait QRScalar: Scalar {
) -> i32; ) -> i32;
} }
/// Trait implemented by reals for which Lapack funtion exist to compute the /// Trait implemented by reals for which Lapack function exist to compute the
/// QR decomposition. /// QR decomposition.
pub trait QRReal: QRScalar { pub trait QRReal: QRScalar {
#[allow(missing_docs)] #[allow(missing_docs)]

View File

@ -59,14 +59,14 @@ impl<N: RealSchurScalar + Real, D: Dim> RealSchur<N, D>
where where
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>, DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>,
{ {
/// Computes the eigenvalues and real Schur foorm of the matrix `m`. /// Computes the eigenvalues and real Schur form of the matrix `m`.
/// ///
/// Panics if the method did not converge. /// Panics if the method did not converge.
pub fn new(m: MatrixN<N, D>) -> Self { pub fn new(m: MatrixN<N, D>) -> Self {
Self::try_new(m).expect("RealSchur decomposition: convergence failed.") Self::try_new(m).expect("RealSchur decomposition: convergence failed.")
} }
/// Computes the eigenvalues and real Schur foorm of the matrix `m`. /// Computes the eigenvalues and real Schur form of the matrix `m`.
/// ///
/// Returns `None` if the method did not converge. /// Returns `None` if the method did not converge.
pub fn try_new(mut m: MatrixN<N, D>) -> Option<Self> { pub fn try_new(mut m: MatrixN<N, D>) -> Option<Self> {

View File

@ -180,7 +180,7 @@ where
let mut res = N::zero(); let mut res = N::zero();
// We have to define them outside of the loop (and not inside at first assignment) // We have to define them outside of the loop (and not inside at first assignment)
// otherwize vectorization won't kick in for some reason. // otherwise vectorization won't kick in for some reason.
let mut acc0; let mut acc0;
let mut acc1; let mut acc1;
let mut acc2; let mut acc2;
@ -527,7 +527,7 @@ where
let is_dynamic = R1::is::<Dynamic>() || C1::is::<Dynamic>() || R2::is::<Dynamic>() let is_dynamic = R1::is::<Dynamic>() || C1::is::<Dynamic>() || R2::is::<Dynamic>()
|| C2::is::<Dynamic>() || R3::is::<Dynamic>() || C2::is::<Dynamic>() || R3::is::<Dynamic>()
|| C3::is::<Dynamic>(); || C3::is::<Dynamic>();
// Thershold determined ampirically. // Threshold determined empirically.
const SMALL_DIM: usize = 5; const SMALL_DIM: usize = 5;
if is_dynamic && nrows1 > SMALL_DIM && ncols1 > SMALL_DIM && nrows2 > SMALL_DIM if is_dynamic && nrows1 > SMALL_DIM && ncols1 > SMALL_DIM && nrows2 > SMALL_DIM

View File

@ -1,4 +1,4 @@
// Non-convensional componentwise operators. // Non-conventional componentwise operators.
use num::{Signed, Zero}; use num::{Signed, Zero};
use std::ops::{Add, Mul}; use std::ops::{Add, Mul};

View File

@ -58,7 +58,7 @@ pub type MatrixCross<N, R1, C1, R2, C2> =
/// components. /// components.
/// ///
/// The matrix dimensions parameters `R` and `C` can either be: /// The matrix dimensions parameters `R` and `C` can either be:
/// - type-level unsigned integer contants (e.g. `U1`, `U124`) from the `nalgebra::` root module. /// - type-level unsigned integer constants (e.g. `U1`, `U124`) from the `nalgebra::` root module.
/// All numbers from 0 to 127 are defined that way. /// All numbers from 0 to 127 are defined that way.
/// - type-level unsigned integer constants (e.g. `U1024`, `U10000`) from the `typenum::` crate. /// - type-level unsigned integer constants (e.g. `U1024`, `U10000`) from the `typenum::` crate.
/// Using those, you will not get error messages as nice as for numbers smaller than 128 defined on /// Using those, you will not get error messages as nice as for numbers smaller than 128 defined on
@ -1298,7 +1298,7 @@ impl<N: Real, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S> {
/// Normalizes this matrix in-place or does nothing if its norm is smaller or equal to `eps`. /// Normalizes this matrix in-place or does nothing if its norm is smaller or equal to `eps`.
/// ///
/// If the normalization succeded, returns the old normal of this matrix. /// If the normalization succeeded, returns the old normal of this matrix.
#[inline] #[inline]
pub fn try_normalize_mut(&mut self, min_norm: N) -> Option<N> { pub fn try_normalize_mut(&mut self, min_norm: N) -> Option<N> {
let n = self.norm(); let n = self.norm();

View File

@ -676,8 +676,8 @@ pub trait SliceRange<D: Dim> {
/// The start index of the range. /// The start index of the range.
fn begin(&self, shape: D) -> usize; fn begin(&self, shape: D) -> usize;
// NOTE: this is the index immediatly after the last index. // NOTE: this is the index immediately after the last index.
/// The index immediatly after the last index inside of the range. /// The index immediately after the last index inside of the range.
fn end(&self, shape: D) -> usize; fn end(&self, shape: D) -> usize;
/// The number of elements of the range, i.e., `self.end - self.begin`. /// The number of elements of the range, i.e., `self.end - self.begin`.
fn size(&self, shape: D) -> Self::Size; fn size(&self, shape: D) -> Self::Size;

View File

@ -58,10 +58,10 @@ impl<N, R: Dim, C: Dim> MatrixVec<N, R, C> {
&mut self.data &mut self.data
} }
/// Resizes the undelying mutable data storage and unrwaps it. /// Resizes the underlying mutable data storage and unwraps it.
/// ///
/// If `sz` is larger than the current size, additional elements are uninitialized. /// If `sz` is larger than the current size, additional elements are uninitialized.
/// If `sz` is smaller than the current size, additional elements are trucated. /// If `sz` is smaller than the current size, additional elements are truncated.
#[inline] #[inline]
pub unsafe fn resize(mut self, sz: usize) -> Vec<N> { pub unsafe fn resize(mut self, sz: usize) -> Vec<N> {
let len = self.len(); let len = self.len();

View File

@ -124,7 +124,7 @@ where
/* /*
* *
* Addition & Substraction * Addition & Subtraction
* *
*/ */
@ -415,7 +415,7 @@ macro_rules! componentwise_scalarop_impl(
// XXX: optimize our iterator! // XXX: optimize our iterator!
// //
// Using our own iterator prevents loop unrolling, wich breaks some optimization // Using our own iterator prevents loop unrolling, which breaks some optimization
// (like SIMD). On the other hand, using the slice iterator is 4x faster. // (like SIMD). On the other hand, using the slice iterator is 4x faster.
// for left in res.iter_mut() { // for left in res.iter_mut() {
@ -469,7 +469,7 @@ macro_rules! left_scalar_mul_impl(
// XXX: optimize our iterator! // XXX: optimize our iterator!
// //
// Using our own iterator prevents loop unrolling, wich breaks some optimization // Using our own iterator prevents loop unrolling, which breaks some optimization
// (like SIMD). On the other hand, using the slice iterator is 4x faster. // (like SIMD). On the other hand, using the slice iterator is 4x faster.
// for rhs in res.iter_mut() { // for rhs in res.iter_mut() {

View File

@ -7,7 +7,7 @@ use std::any::Any;
/// This does not make any assumption on the algebraic properties of `Self`. /// This does not make any assumption on the algebraic properties of `Self`.
pub trait Scalar: Copy + PartialEq + Debug + Any { pub trait Scalar: Copy + PartialEq + Debug + Any {
#[inline] #[inline]
/// Tests if `Self` the the same as the type `T` /// Tests if `Self` the same as the type `T`
/// ///
/// Typically used to test of `Self` is a f32 or a f64 with `N::is::<f32>()`. /// Typically used to test of `Self` is a f32 or a f64 with `N::is::<f32>()`.
fn is<T: Scalar>() -> bool { fn is<T: Scalar>() -> bool {

View File

@ -50,7 +50,7 @@ pub unsafe trait Storage<N: Scalar, R: Dim, C: Dim = U1>: Debug + Sized {
/// element of any dimension. Must be equal to `Self::dimension()` if it is not `None`. /// element of any dimension. Must be equal to `Self::dimension()` if it is not `None`.
fn shape(&self) -> (R, C); fn shape(&self) -> (R, C);
/// The spacing between concecutive row elements and consecutive column elements. /// The spacing between consecutive row elements and consecutive column elements.
/// ///
/// For example this returns `(1, 5)` for a row-major matrix with 5 columns. /// For example this returns `(1, 5)` for a row-major matrix with 5 columns.
fn strides(&self) -> (Self::RStride, Self::CStride); fn strides(&self) -> (Self::RStride, Self::CStride);

View File

@ -13,9 +13,9 @@ use abomonation::Abomonation;
use alga::general::SubsetOf; use alga::general::SubsetOf;
use alga::linear::NormedSpace; use alga::linear::NormedSpace;
/// A wrapper that ensures the undelying algebraic entity has a unit norm. /// A wrapper that ensures the underlying algebraic entity has a unit norm.
/// ///
/// Use `.as_ref()` or `.unwrap()` to obtain the undelying value by-reference or by-move. /// Use `.as_ref()` or `.unwrap()` to obtain the underlying value by-reference or by-move.
#[repr(C)] #[repr(C)]
#[derive(Eq, PartialEq, Clone, Hash, Debug, Copy)] #[derive(Eq, PartialEq, Clone, Hash, Debug, Copy)]
pub struct Unit<T> { pub struct Unit<T> {
@ -187,7 +187,7 @@ where
// } // }
// } // }
// FIXME:re-enable this impl when spacialization is possible. // FIXME:re-enable this impl when specialization is possible.
// Currently, it is disabled so that we can have a nice output for the `UnitQuaternion` display. // Currently, it is disabled so that we can have a nice output for the `UnitQuaternion` display.
/* /*
impl<T: fmt::Display> fmt::Display for Unit<T> { impl<T: fmt::Display> fmt::Display for Unit<T> {

View File

@ -378,7 +378,7 @@ isometry_from_composition_impl_all!(
(D, D), (D, U1) for D: DimName; (D, D), (D, U1) for D: DimName;
self: Rotation<N, D>, right: Isometry<N, D, Rotation<N, D>>, self: Rotation<N, D>, right: Isometry<N, D, Rotation<N, D>>,
Output = Isometry<N, D, Rotation<N, D>>; Output = Isometry<N, D, Rotation<N, D>>;
// FIXME: don't call iverse explicitly? // FIXME: don't call inverse explicitly?
[val val] => self * right.inverse(); [val val] => self * right.inverse();
[ref val] => self * right.inverse(); [ref val] => self * right.inverse();
[val ref] => self * right.inverse(); [val ref] => self * right.inverse();

View File

@ -5,7 +5,7 @@
/// Macro for the implementation of multiplication and division. /// Macro for the implementation of multiplication and division.
macro_rules! md_impl( macro_rules! md_impl(
( (
// Operator, operator method, and calar bounds. // Operator, operator method, and scalar bounds.
$Op: ident, $op: ident $(where N: $($ScalarBounds: ident),*)*; $Op: ident, $op: ident $(where N: $($ScalarBounds: ident),*)*;
// Storage dimensions, and dimension bounds. // Storage dimensions, and dimension bounds.
($R1: ty, $C1: ty),($R2: ty, $C2: ty) for $($Dims: ident: $DimsBound: ident $(<$($BoundParam: ty),*>)*),+ ($R1: ty, $C1: ty),($R2: ty, $C2: ty) for $($Dims: ident: $DimsBound: ident $(<$($BoundParam: ty),*>)*),+
@ -13,7 +13,7 @@ macro_rules! md_impl(
$(where $ConstraintType: ty: $ConstraintBound: ident<$($ConstraintBoundParams: ty $( = $EqBound: ty )*),*> )*; $(where $ConstraintType: ty: $ConstraintBound: ident<$($ConstraintBoundParams: ty $( = $EqBound: ty )*),*> )*;
// Argument identifiers and types + output. // Argument identifiers and types + output.
$lhs: ident: $Lhs: ty, $rhs: ident: $Rhs: ty, Output = $Result: ty; $lhs: ident: $Lhs: ty, $rhs: ident: $Rhs: ty, Output = $Result: ty;
// Operator actual mplementation. // Operator actual implementation.
$action: expr; $action: expr;
// Lifetime. // Lifetime.
$($lives: tt),*) => { $($lives: tt),*) => {
@ -38,7 +38,7 @@ macro_rules! md_impl(
/// Implements all the argument reference combinations. /// Implements all the argument reference combinations.
macro_rules! md_impl_all( macro_rules! md_impl_all(
( (
// Operator, operator method, and calar bounds. // Operator, operator method, and scalar bounds.
$Op: ident, $op: ident $(where N: $($ScalarBounds: ident),*)*; $Op: ident, $op: ident $(where N: $($ScalarBounds: ident),*)*;
// Storage dimensions, and dimension bounds. // Storage dimensions, and dimension bounds.
($R1: ty, $C1: ty),($R2: ty, $C2: ty) for $($Dims: ident: $DimsBound: ident $(<$($BoundParam: ty),*>)*),+ ($R1: ty, $C1: ty),($R2: ty, $C2: ty) for $($Dims: ident: $DimsBound: ident $(<$($BoundParam: ty),*>)*),+
@ -82,7 +82,7 @@ macro_rules! md_impl_all(
} }
); );
/// Macro for the implementation of assignement-multiplication and assignement-division. /// Macro for the implementation of assignment-multiplication and assignment-division.
macro_rules! md_assign_impl( macro_rules! md_assign_impl(
( (
// Operator, operator method, and scalar bounds. // Operator, operator method, and scalar bounds.
@ -109,7 +109,7 @@ macro_rules! md_assign_impl(
} }
); );
/// Macro for the implementation of assignement-multiplication and assignement-division with and /// Macro for the implementation of assignment-multiplication and assignment-division with and
/// without reference to the right-hand-side. /// without reference to the right-hand-side.
macro_rules! md_assign_impl_all( macro_rules! md_assign_impl_all(
( (
@ -165,7 +165,7 @@ macro_rules! add_sub_impl(
); );
// FIXME: merge with `md_assign_impl`. // FIXME: merge with `md_assign_impl`.
/// Macro for the implementation of assignement-addition and assignement-subtraction. /// Macro for the implementation of assignment-addition and assignment-subtraction.
macro_rules! add_sub_assign_impl( macro_rules! add_sub_assign_impl(
($Op: ident, $op: ident, $bound: ident; ($Op: ident, $op: ident, $bound: ident;
($R1: ty, $C1: ty),($R2: ty, $C2: ty) for $($Dims: ident: $DimsBound: ident),+; ($R1: ty, $C1: ty),($R2: ty, $C2: ty) for $($Dims: ident: $DimsBound: ident),+;

View File

@ -149,19 +149,19 @@ impl<N: Real> Perspective3<N> {
self.matrix self.matrix
} }
/// Gets the `width / height` aspect ratio of the view frustrum. /// Gets the `width / height` aspect ratio of the view frustum.
#[inline] #[inline]
pub fn aspect(&self) -> N { pub fn aspect(&self) -> N {
self.matrix[(1, 1)] / self.matrix[(0, 0)] self.matrix[(1, 1)] / self.matrix[(0, 0)]
} }
/// Gets the y field of view of the view frustrum. /// Gets the y field of view of the view frustum.
#[inline] #[inline]
pub fn fovy(&self) -> N { pub fn fovy(&self) -> N {
(N::one() / self.matrix[(1, 1)]).atan() * ::convert(2.0) (N::one() / self.matrix[(1, 1)]).atan() * ::convert(2.0)
} }
/// Gets the near plane offset of the view frustrum. /// Gets the near plane offset of the view frustum.
#[inline] #[inline]
pub fn znear(&self) -> N { pub fn znear(&self) -> N {
let ratio = (-self.matrix[(2, 2)] + N::one()) / (-self.matrix[(2, 2)] - N::one()); let ratio = (-self.matrix[(2, 2)] + N::one()) / (-self.matrix[(2, 2)] - N::one());
@ -169,7 +169,7 @@ impl<N: Real> Perspective3<N> {
self.matrix[(2, 3)] / (ratio * ::convert(2.0)) - self.matrix[(2, 3)] / ::convert(2.0) self.matrix[(2, 3)] / (ratio * ::convert(2.0)) - self.matrix[(2, 3)] / ::convert(2.0)
} }
/// Gets the far plane offset of the view frustrum. /// Gets the far plane offset of the view frustum.
#[inline] #[inline]
pub fn zfar(&self) -> N { pub fn zfar(&self) -> N {
let ratio = (-self.matrix[(2, 2)] + N::one()) / (-self.matrix[(2, 2)] - N::one()); let ratio = (-self.matrix[(2, 2)] + N::one()) / (-self.matrix[(2, 2)] - N::one());
@ -219,7 +219,7 @@ impl<N: Real> Perspective3<N> {
} }
/// Updates this perspective matrix with a new `width / height` aspect ratio of the view /// Updates this perspective matrix with a new `width / height` aspect ratio of the view
/// frustrum. /// frustum.
#[inline] #[inline]
pub fn set_aspect(&mut self, aspect: N) { pub fn set_aspect(&mut self, aspect: N) {
assert!( assert!(
@ -229,7 +229,7 @@ impl<N: Real> Perspective3<N> {
self.matrix[(0, 0)] = self.matrix[(1, 1)] / aspect; self.matrix[(0, 0)] = self.matrix[(1, 1)] / aspect;
} }
/// Updates this perspective with a new y field of view of the view frustrum. /// Updates this perspective with a new y field of view of the view frustum.
#[inline] #[inline]
pub fn set_fovy(&mut self, fovy: N) { pub fn set_fovy(&mut self, fovy: N) {
let old_m22 = self.matrix[(1, 1)]; let old_m22 = self.matrix[(1, 1)];
@ -237,21 +237,21 @@ impl<N: Real> Perspective3<N> {
self.matrix[(0, 0)] = self.matrix[(0, 0)] * (self.matrix[(1, 1)] / old_m22); self.matrix[(0, 0)] = self.matrix[(0, 0)] * (self.matrix[(1, 1)] / old_m22);
} }
/// Updates this perspective matrix with a new near plane offset of the view frustrum. /// Updates this perspective matrix with a new near plane offset of the view frustum.
#[inline] #[inline]
pub fn set_znear(&mut self, znear: N) { pub fn set_znear(&mut self, znear: N) {
let zfar = self.zfar(); let zfar = self.zfar();
self.set_znear_and_zfar(znear, zfar); self.set_znear_and_zfar(znear, zfar);
} }
/// Updates this perspective matrix with a new far plane offset of the view frustrum. /// Updates this perspective matrix with a new far plane offset of the view frustum.
#[inline] #[inline]
pub fn set_zfar(&mut self, zfar: N) { pub fn set_zfar(&mut self, zfar: N) {
let znear = self.znear(); let znear = self.znear();
self.set_znear_and_zfar(znear, zfar); self.set_znear_and_zfar(znear, zfar);
} }
/// Updates this perspective matrix with new near and far plane offsets of the view frustrum. /// Updates this perspective matrix with new near and far plane offsets of the view frustum.
#[inline] #[inline]
pub fn set_znear_and_zfar(&mut self, znear: N, zfar: N) { pub fn set_znear_and_zfar(&mut self, znear: N, zfar: N) {
self.matrix[(2, 2)] = (zfar + znear) / (znear - zfar); self.matrix[(2, 2)] = (zfar + znear) / (znear - zfar);

View File

@ -53,7 +53,7 @@ where
/* /*
* *
* Traits that buid points. * Traits that build points.
* *
*/ */
impl<N: Scalar + Bounded, D: DimName> Bounded for Point<N, D> impl<N: Scalar + Bounded, D: DimName> Bounded for Point<N, D>

View File

@ -391,7 +391,7 @@ impl<N: Real> UnitQuaternion<N> {
pub fn angle(&self) -> N { pub fn angle(&self) -> N {
let w = self.quaternion().scalar().abs(); let w = self.quaternion().scalar().abs();
// Handle innacuracies that make break `.acos`. // Handle inaccuracies that make break `.acos`.
if w >= N::one() { if w >= N::one() {
N::zero() N::zero()
} else { } else {
@ -507,7 +507,7 @@ impl<N: Real> UnitQuaternion<N> {
Unit::try_new(v, N::zero()) Unit::try_new(v, N::zero())
} }
/// The rotation axis of this unit quaternion multiplied by the rotation agle. /// The rotation axis of this unit quaternion multiplied by the rotation angle.
#[inline] #[inline]
pub fn scaled_axis(&self) -> Vector3<N> { pub fn scaled_axis(&self) -> Vector3<N> {
if let Some(axis) = self.axis() { if let Some(axis) = self.axis() {

View File

@ -278,7 +278,7 @@ impl<N: Real> UnitQuaternion<N> {
if let Some(axis) = Unit::try_new(c, N::default_epsilon()) { if let Some(axis) = Unit::try_new(c, N::default_epsilon()) {
let cos = na.dot(&nb); let cos = na.dot(&nb);
// The cosinus may be out of [-1, 1] because of innacuracies. // The cosinus may be out of [-1, 1] because of inaccuracies.
if cos <= -N::one() { if cos <= -N::one() {
return None; return None;
} else if cos >= N::one() { } else if cos >= N::one() {

View File

@ -44,7 +44,7 @@ impl<N: Real, D: Dim, S: Storage<N, D>> Reflection<N, D, S> {
&self.axis &self.axis
} }
// FIXME: naming convension: reflect_to, reflect_assign ? // FIXME: naming convention: reflect_to, reflect_assign ?
/// Applies the reflection to the columns of `rhs`. /// Applies the reflection to the columns of `rhs`.
pub fn reflect<R2: Dim, C2: Dim, S2>(&self, rhs: &mut Matrix<N, R2, C2, S2>) pub fn reflect<R2: Dim, C2: Dim, S2>(&self, rhs: &mut Matrix<N, R2, C2, S2>)
where where

View File

@ -53,7 +53,7 @@ md_impl_all!(
); );
// Rotation ÷ Rotation // Rotation ÷ Rotation
// FIXME: instead of calling inverse explicitely, could we just add a `mul_tr` or `mul_inv` method? // FIXME: instead of calling inverse explicitly, could we just add a `mul_tr` or `mul_inv` method?
md_impl_all!( md_impl_all!(
Div, div; Div, div;
(D, D), (D, D) for D: DimName; (D, D), (D, D) for D: DimName;

View File

@ -35,7 +35,7 @@ impl<N: Real> Rotation2<N> {
Self::new(axisangle[0]) Self::new(axisangle[0])
} }
/// The rotation matrix required to align `a` and `b` but with its angl. /// The rotation matrix required to align `a` and `b` but with its angle.
/// ///
/// This is the rotation `R` such that `(R * a).angle(b) == 0 && (R * a).dot(b).is_positive()`. /// This is the rotation `R` such that `(R * a).angle(b) == 0 && (R * a).dot(b).is_positive()`.
#[inline] #[inline]
@ -279,7 +279,7 @@ impl<N: Real> Rotation3<N> {
Self::new_observer_frame(dir, up).inverse() Self::new_observer_frame(dir, up).inverse()
} }
/// The rotation matrix required to align `a` and `b` but with its angl. /// The rotation matrix required to align `a` and `b` but with its angle.
/// ///
/// This is the rotation `R` such that `(R * a).angle(b) == 0 && (R * a).dot(b).is_positive()`. /// This is the rotation `R` such that `(R * a).angle(b) == 0 && (R * a).dot(b).is_positive()`.
#[inline] #[inline]

View File

@ -246,8 +246,8 @@ where
} }
} }
// NOTE: we don't require `R: Rotation<...>` here becaus this is not useful for the implementation // NOTE: we don't require `R: Rotation<...>` here because this is not useful for the implementation
// and makes it harde to use it, e.g., for Transform × Isometry implementation. // and makes it harder to use it, e.g., for Transform × Isometry implementation.
// This is OK since all constructors of the isometry enforce the Rotation bound already (and // This is OK since all constructors of the isometry enforce the Rotation bound already (and
// explicit struct construction is prevented by the private scaling factor). // explicit struct construction is prevented by the private scaling factor).
impl<N: Real, D: DimName, R> Similarity<N, D, R> impl<N: Real, D: DimName, R> Similarity<N, D, R>

View File

@ -65,7 +65,7 @@ where
R: AlgaRotation<Point<N, D>>, R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>, DefaultAllocator: Allocator<N, D>,
{ {
/// The similarity that applies tha scaling factor `scaling`, followed by the rotation `r` with /// The similarity that applies the scaling factor `scaling`, followed by the rotation `r` with
/// its axis passing through the point `p`. /// its axis passing through the point `p`.
#[inline] #[inline]
pub fn rotation_wrt_point(r: R, p: Point<N, D>, scaling: N) -> Self { pub fn rotation_wrt_point(r: R, p: Point<N, D>, scaling: N) -> Self {
@ -135,7 +135,7 @@ macro_rules! similarity_construction_impl(
Self::from_isometry(Isometry::<_, U3, $Rot>::new(translation, axisangle), scaling) Self::from_isometry(Isometry::<_, U3, $Rot>::new(translation, axisangle), scaling)
} }
/// Creates an similarity that corresponds to the a scaling factor and a local frame of /// Creates an similarity that corresponds to a scaling factor and a local frame of
/// an observer standing at the point `eye` and looking toward `target`. /// an observer standing at the point `eye` and looking toward `target`.
/// ///
/// It maps the view direction `target - eye` to the positive `z` axis and the origin to the /// It maps the view direction `target - eye` to the positive `z` axis and the origin to the

View File

@ -445,7 +445,7 @@ similarity_from_composition_impl_all!(
(D, D), (D, U1) for D: DimName; (D, D), (D, U1) for D: DimName;
self: Rotation<N, D>, right: Similarity<N, D, Rotation<N, D>>, self: Rotation<N, D>, right: Similarity<N, D, Rotation<N, D>>,
Output = Similarity<N, D, Rotation<N, D>>; Output = Similarity<N, D, Rotation<N, D>>;
// FIXME: don't call iverse explicitly? // FIXME: don't call inverse explicitly?
[val val] => self * right.inverse(); [val val] => self * right.inverse();
[ref val] => self * right.inverse(); [ref val] => self * right.inverse();
[val ref] => self * right.inverse(); [val ref] => self * right.inverse();

View File

@ -256,7 +256,7 @@ where
self.matrix self.matrix
} }
/// A reference to the underlynig matrix. /// A reference to the underlying matrix.
#[inline] #[inline]
pub fn matrix(&self) -> &MatrixN<N, DimNameSum<D, U1>> { pub fn matrix(&self) -> &MatrixN<N, DimNameSum<D, U1>> {
&self.matrix &self.matrix

View File

@ -31,7 +31,7 @@ add_sub_impl!(Mul, mul, ClosedAdd;
Translation::from_vector(self.vector + right.vector); ); Translation::from_vector(self.vector + right.vector); );
// Translation ÷ Translation // Translation ÷ Translation
// FIXME: instead of calling inverse explicitely, could we just add a `mul_tr` or `mul_inv` method? // FIXME: instead of calling inverse explicitly, could we just add a `mul_tr` or `mul_inv` method?
add_sub_impl!(Div, div, ClosedSub; add_sub_impl!(Div, div, ClosedSub;
(D, U1), (D, U1) -> (D) for D: DimName; (D, U1), (D, U1) -> (D) for D: DimName;
self: &'a Translation<N, D>, right: &'b Translation<N, D>, Output = Translation<N, D>; self: &'a Translation<N, D>, right: &'b Translation<N, D>, Output = Translation<N, D>;

View File

@ -35,7 +35,7 @@ impl<N: Real> UnitComplex<N> {
Self::new(angle) Self::new(angle)
} }
/// Builds the unit complex number frow the sinus and cosinus of the rotation angle. /// Builds the unit complex number from the sinus and cosinus of the rotation angle.
/// ///
/// The input values are not checked. /// The input values are not checked.
#[inline] #[inline]

View File

@ -233,8 +233,8 @@ where
/// ///
/// In particular: /// In particular:
/// * If `min < val < max`, this returns `val`. /// * If `min < val < max`, this returns `val`.
/// * If `val <= min`, this retuns `min`. /// * If `val <= min`, this returns `min`.
/// * If `val >= max`, this retuns `max`. /// * If `val >= max`, this returns `max`.
#[inline] #[inline]
pub fn clamp<T: PartialOrd>(val: T, min: T, max: T) -> T { pub fn clamp<T: PartialOrd>(val: T, min: T, max: T) -> T {
if val > min { if val > min {

View File

@ -9,7 +9,7 @@ use constraint::{SameNumberOfRows, ShapeConstraint};
use dimension::{Dim, DimSub, Dynamic}; use dimension::{Dim, DimSub, Dynamic};
use storage::{Storage, StorageMut}; use storage::{Storage, StorageMut};
/// The Cholesky decomposion of a symmetric-definite-positive matrix. /// The Cholesky decomposition of a symmetric-definite-positive matrix.
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))] #[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[cfg_attr( #[cfg_attr(
feature = "serde-serialize", feature = "serde-serialize",
@ -50,7 +50,7 @@ where
{ {
/// Attempts to compute the Cholesky decomposition of `matrix`. /// Attempts to compute the Cholesky decomposition of `matrix`.
/// ///
/// Returns `None` if the input matrix is not definite-positive. The intput matrix is assumed /// Returns `None` if the input matrix is not definite-positive. The input matrix is assumed
/// to be symmetric and only the lower-triangular part is read. /// to be symmetric and only the lower-triangular part is read.
pub fn new(mut matrix: MatrixN<N, D>) -> Option<Self> { pub fn new(mut matrix: MatrixN<N, D>) -> Option<Self> {
assert!(matrix.is_square(), "The input matrix must be square."); assert!(matrix.is_square(), "The input matrix must be square.");
@ -157,7 +157,7 @@ where
{ {
/// Attempts to compute the Cholesky decomposition of this matrix. /// Attempts to compute the Cholesky decomposition of this matrix.
/// ///
/// Returns `None` if the input matrix is not definite-positive. The intput matrix is assumed /// Returns `None` if the input matrix is not definite-positive. The input matrix is assumed
/// to be symmetric and only the lower-triangular part is read. /// to be symmetric and only the lower-triangular part is read.
pub fn cholesky(self) -> Option<Cholesky<N, D>> { pub fn cholesky(self) -> Option<Cholesky<N, D>> {
Cholesky::new(self.into_owned()) Cholesky::new(self.into_owned())

View File

@ -174,7 +174,7 @@ where
{ {
/// Solves the linear system `self * x = b`, where `x` is the unknown to be determined. /// Solves the linear system `self * x = b`, where `x` is the unknown to be determined.
/// ///
/// Retuns `None` if the decomposed matrix is not invertible. /// Returns `None` if the decomposed matrix is not invertible.
pub fn solve<R2: Dim, C2: Dim, S2>( pub fn solve<R2: Dim, C2: Dim, S2>(
&self, &self,
b: &Matrix<N, R2, C2, S2>, b: &Matrix<N, R2, C2, S2>,

View File

@ -112,7 +112,7 @@ where
let dim = m.data.shape().0; let dim = m.data.shape().0;
// NOTE: we could build the identity matrix and call p_mult on it. // NOTE: we could build the identity matrix and call p_mult on it.
// Instead we don't so that we take in accout the matrix sparcity. // Instead we don't so that we take in account the matrix sparseness.
let mut res = MatrixN::identity_generic(dim, dim); let mut res = MatrixN::identity_generic(dim, dim);
for i in (0..dim.value() - 1).rev() { for i in (0..dim.value() - 1).rev() {

View File

@ -118,7 +118,7 @@ impl<N: Real, D: Dim, S: StorageMut<N, D, D>> SquareMatrix<N, D, S> {
} }
} }
// NOTE: this is an extremely efficient, loop-unrolled matrix inverse from MESA (MIT licenced). // NOTE: this is an extremely efficient, loop-unrolled matrix inverse from MESA (MIT licensed).
fn do_inverse4<N: Real, D: Dim, S: StorageMut<N, D, D>>( fn do_inverse4<N: Real, D: Dim, S: StorageMut<N, D, D>>(
m: &MatrixN<N, D>, m: &MatrixN<N, D>,
out: &mut SquareMatrix<N, D, S>, out: &mut SquareMatrix<N, D, S>,

View File

@ -107,7 +107,7 @@ where
let (nrows, ncols) = self.qr.data.shape(); let (nrows, ncols) = self.qr.data.shape();
// NOTE: we could build the identity matrix and call q_mul on it. // NOTE: we could build the identity matrix and call q_mul on it.
// Instead we don't so that we take in accout the matrix sparcity. // Instead we don't so that we take in account the matrix sparseness.
let mut res = Matrix::identity_generic(nrows, nrows.min(ncols)); let mut res = Matrix::identity_generic(nrows, nrows.min(ncols));
let dim = self.diag.len(); let dim = self.diag.len();

View File

@ -72,7 +72,7 @@ where
/// ///
/// # Arguments /// # Arguments
/// ///
/// * `eps` tolerence used to determine when a value converged to 0. /// * `eps` tolerance used to determine when a value converged to 0.
/// * `max_niter` maximum total number of iterations performed by the algorithm. If this /// * `max_niter` maximum total number of iterations performed by the algorithm. If this
/// number of iteration is exceeded, `None` is returned. If `niter == 0`, then the algorithm /// number of iteration is exceeded, `None` is returned. If `niter == 0`, then the algorithm
/// continues indefinitely until convergence. /// continues indefinitely until convergence.
@ -519,7 +519,7 @@ where
/// ///
/// # Arguments /// # Arguments
/// ///
/// * `eps` tolerence used to determine when a value converged to 0. /// * `eps` tolerance used to determine when a value converged to 0.
/// * `max_niter` maximum total number of iterations performed by the algorithm. If this /// * `max_niter` maximum total number of iterations performed by the algorithm. If this
/// number of iteration is exceeded, `None` is returned. If `niter == 0`, then the algorithm /// number of iteration is exceeded, `None` is returned. If `niter == 0`, then the algorithm
/// continues indefinitely until convergence. /// continues indefinitely until convergence.
@ -536,7 +536,7 @@ where
let mut work = unsafe { VectorN::new_uninitialized_generic(self.data.shape().0, U1) }; let mut work = unsafe { VectorN::new_uninitialized_generic(self.data.shape().0, U1) };
// Special case for 2x2 natrices. // Special case for 2x2 matrices.
if self.nrows() == 2 { if self.nrows() == 2 {
// FIXME: can we avoid this slicing // FIXME: can we avoid this slicing
// (which is needed here just to transform D to U2)? // (which is needed here just to transform D to U2)?

View File

@ -8,7 +8,7 @@ use base::{DefaultAllocator, Matrix, MatrixMN, SquareMatrix, Vector};
impl<N: Real, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S> { impl<N: Real, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
/// Computes the solution of the linear system `self . x = b` where `x` is the unknown and only /// Computes the solution of the linear system `self . x = b` where `x` is the unknown and only
/// the lower-triangular part of `self` (including the diagonal) is concidered not-zero. /// the lower-triangular part of `self` (including the diagonal) is considered not-zero.
#[inline] #[inline]
pub fn solve_lower_triangular<R2: Dim, C2: Dim, S2>( pub fn solve_lower_triangular<R2: Dim, C2: Dim, S2>(
&self, &self,
@ -28,7 +28,7 @@ impl<N: Real, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
} }
/// Computes the solution of the linear system `self . x = b` where `x` is the unknown and only /// Computes the solution of the linear system `self . x = b` where `x` is the unknown and only
/// the upper-triangular part of `self` (including the diagonal) is concidered not-zero. /// the upper-triangular part of `self` (including the diagonal) is considered not-zero.
#[inline] #[inline]
pub fn solve_upper_triangular<R2: Dim, C2: Dim, S2>( pub fn solve_upper_triangular<R2: Dim, C2: Dim, S2>(
&self, &self,
@ -48,7 +48,7 @@ impl<N: Real, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
} }
/// Solves the linear system `self . x = b` where `x` is the unknown and only the /// Solves the linear system `self . x = b` where `x` is the unknown and only the
/// lower-triangular part of `self` (including the diagonal) is concidered not-zero. /// lower-triangular part of `self` (including the diagonal) is considered not-zero.
pub fn solve_lower_triangular_mut<R2: Dim, C2: Dim, S2>( pub fn solve_lower_triangular_mut<R2: Dim, C2: Dim, S2>(
&self, &self,
b: &mut Matrix<N, R2, C2, S2>, b: &mut Matrix<N, R2, C2, S2>,
@ -98,7 +98,7 @@ impl<N: Real, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
// FIXME: add the same but for solving upper-triangular. // FIXME: add the same but for solving upper-triangular.
/// Solves the linear system `self . x = b` where `x` is the unknown and only the /// Solves the linear system `self . x = b` where `x` is the unknown and only the
/// lower-triangular part of `self` is concidered not-zero. The diagonal is never read as it is /// lower-triangular part of `self` is considered not-zero. The diagonal is never read as it is
/// assumed to be equal to `diag`. Returns `false` and does not modify its inputs if `diag` is zero. /// assumed to be equal to `diag`. Returns `false` and does not modify its inputs if `diag` is zero.
pub fn solve_lower_triangular_with_diag_mut<R2: Dim, C2: Dim, S2>( pub fn solve_lower_triangular_with_diag_mut<R2: Dim, C2: Dim, S2>(
&self, &self,
@ -130,7 +130,7 @@ impl<N: Real, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
} }
/// Solves the linear system `self . x = b` where `x` is the unknown and only the /// Solves the linear system `self . x = b` where `x` is the unknown and only the
/// upper-triangular part of `self` (including the diagonal) is concidered not-zero. /// upper-triangular part of `self` (including the diagonal) is considered not-zero.
pub fn solve_upper_triangular_mut<R2: Dim, C2: Dim, S2>( pub fn solve_upper_triangular_mut<R2: Dim, C2: Dim, S2>(
&self, &self,
b: &mut Matrix<N, R2, C2, S2>, b: &mut Matrix<N, R2, C2, S2>,
@ -185,7 +185,7 @@ impl<N: Real, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
*/ */
/// Computes the solution of the linear system `self.transpose() . x = b` where `x` is the unknown and only /// Computes the solution of the linear system `self.transpose() . x = b` where `x` is the unknown and only
/// the lower-triangular part of `self` (including the diagonal) is concidered not-zero. /// the lower-triangular part of `self` (including the diagonal) is considered not-zero.
#[inline] #[inline]
pub fn tr_solve_lower_triangular<R2: Dim, C2: Dim, S2>( pub fn tr_solve_lower_triangular<R2: Dim, C2: Dim, S2>(
&self, &self,
@ -205,7 +205,7 @@ impl<N: Real, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
} }
/// Computes the solution of the linear system `self.transpose() . x = b` where `x` is the unknown and only /// Computes the solution of the linear system `self.transpose() . x = b` where `x` is the unknown and only
/// the upper-triangular part of `self` (including the diagonal) is concidered not-zero. /// the upper-triangular part of `self` (including the diagonal) is considered not-zero.
#[inline] #[inline]
pub fn tr_solve_upper_triangular<R2: Dim, C2: Dim, S2>( pub fn tr_solve_upper_triangular<R2: Dim, C2: Dim, S2>(
&self, &self,
@ -225,7 +225,7 @@ impl<N: Real, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
} }
/// Solves the linear system `self.transpose() . x = b` where `x` is the unknown and only the /// Solves the linear system `self.transpose() . x = b` where `x` is the unknown and only the
/// lower-triangular part of `self` (including the diagonal) is concidered not-zero. /// lower-triangular part of `self` (including the diagonal) is considered not-zero.
pub fn tr_solve_lower_triangular_mut<R2: Dim, C2: Dim, S2>( pub fn tr_solve_lower_triangular_mut<R2: Dim, C2: Dim, S2>(
&self, &self,
b: &mut Matrix<N, R2, C2, S2>, b: &mut Matrix<N, R2, C2, S2>,
@ -272,7 +272,7 @@ impl<N: Real, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
} }
/// Solves the linear system `self.transpose() . x = b` where `x` is the unknown and only the /// Solves the linear system `self.transpose() . x = b` where `x` is the unknown and only the
/// upper-triangular part of `self` (including the diagonal) is concidered not-zero. /// upper-triangular part of `self` (including the diagonal) is considered not-zero.
pub fn tr_solve_upper_triangular_mut<R2: Dim, C2: Dim, S2>( pub fn tr_solve_upper_triangular_mut<R2: Dim, C2: Dim, S2>(
&self, &self,
b: &mut Matrix<N, R2, C2, S2>, b: &mut Matrix<N, R2, C2, S2>,

View File

@ -94,7 +94,7 @@ where
/// ///
/// * `compute_u` set this to `true` to enable the computation of left-singular vectors. /// * `compute_u` set this to `true` to enable the computation of left-singular vectors.
/// * `compute_v` set this to `true` to enable the computation of left-singular vectors. /// * `compute_v` set this to `true` to enable the computation of left-singular vectors.
/// * `eps` tolerence used to determine when a value converged to 0. /// * `eps` tolerance used to determine when a value converged to 0.
/// * `max_niter` maximum total number of iterations performed by the algorithm. If this /// * `max_niter` maximum total number of iterations performed by the algorithm. If this
/// number of iteration is exceeded, `None` is returned. If `niter == 0`, then the algorithm /// number of iteration is exceeded, `None` is returned. If `niter == 0`, then the algorithm
/// continues indefinitely until convergence. /// continues indefinitely until convergence.
@ -251,7 +251,7 @@ where
end -= 1; end -= 1;
} }
// Re-delimit the suproblem in case some decoupling occured. // Re-delimit the subproblem in case some decoupling occurred.
let sub = Self::delimit_subproblem(&mut b, &mut u, &mut v_t, end, eps); let sub = Self::delimit_subproblem(&mut b, &mut u, &mut v_t, end, eps);
start = sub.0; start = sub.0;
end = sub.1; end = sub.1;
@ -593,7 +593,7 @@ where
/// ///
/// * `compute_u` set this to `true` to enable the computation of left-singular vectors. /// * `compute_u` set this to `true` to enable the computation of left-singular vectors.
/// * `compute_v` set this to `true` to enable the computation of left-singular vectors. /// * `compute_v` set this to `true` to enable the computation of left-singular vectors.
/// * `eps` tolerence used to determine when a value converged to 0. /// * `eps` tolerance used to determine when a value converged to 0.
/// * `max_niter` maximum total number of iterations performed by the algorithm. If this /// * `max_niter` maximum total number of iterations performed by the algorithm. If this
/// number of iteration is exceeded, `None` is returned. If `niter == 0`, then the algorithm /// number of iteration is exceeded, `None` is returned. If `niter == 0`, then the algorithm
/// continues indefinitely until convergence. /// continues indefinitely until convergence.

View File

@ -214,7 +214,7 @@ where
end -= 1; end -= 1;
} }
// Re-delimit the suproblem in case some decoupling occured. // Re-delimit the subproblem in case some decoupling occurred.
let sub = Self::delimit_subproblem(&diag, &mut off_diag, end, eps); let sub = Self::delimit_subproblem(&diag, &mut off_diag, end, eps);
start = sub.0; start = sub.0;
@ -297,7 +297,7 @@ where
pub fn wilkinson_shift<N: Real>(tmm: N, tnn: N, tmn: N) -> N { pub fn wilkinson_shift<N: Real>(tmm: N, tnn: N, tmn: N) -> N {
let sq_tmn = tmn * tmn; let sq_tmn = tmn * tmn;
if !sq_tmn.is_zero() { if !sq_tmn.is_zero() {
// We have the guarantee thet the denominator won't be zero. // We have the guarantee that the denominator won't be zero.
let d = (tmm - tnn) * ::convert(0.5); let d = (tmm - tnn) * ::convert(0.5);
tnn - sq_tmn / (d + d.signum() * (d * d + sq_tmn).sqrt()) tnn - sq_tmn / (d + d.signum() * (d * d + sq_tmn).sqrt())
} else { } else {