nalgebra/src/geometry/quaternion.rs
Bruce Mitchener 175c41ed3a Typo fixes.
2018-09-24 21:15:07 +02:00

679 lines
20 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

use approx::{AbsDiffEq, RelativeEq, UlpsEq};
use num::Zero;
use std::fmt;
use std::hash;
#[cfg(feature = "abomonation-serialize")]
use std::io::{Result as IOResult, Write};
#[cfg(feature = "serde-serialize")]
use base::storage::Owned;
#[cfg(feature = "serde-serialize")]
use serde::{Serialize, Deserialize, Serializer, Deserializer};
#[cfg(feature = "abomonation-serialize")]
use abomonation::Abomonation;
use alga::general::Real;
use base::dimension::{U1, U3, U4};
use base::storage::{CStride, RStride};
use base::{Matrix3, MatrixN, MatrixSlice, MatrixSliceMut, Unit, Vector3, Vector4};
use geometry::Rotation;
/// A quaternion. See the type alias `UnitQuaternion = Unit<Quaternion>` for a quaternion
/// that may be used as a rotation.
#[repr(C)]
#[derive(Debug)]
pub struct Quaternion<N: Real> {
/// This quaternion as a 4D vector of coordinates in the `[ x, y, z, w ]` storage order.
pub coords: Vector4<N>,
}
#[cfg(feature = "abomonation-serialize")]
impl<N: Real> Abomonation for Quaternion<N>
where
Vector4<N>: Abomonation,
{
unsafe fn entomb<W: Write>(&self, writer: &mut W) -> IOResult<()> {
self.coords.entomb(writer)
}
fn extent(&self) -> usize {
self.coords.extent()
}
unsafe fn exhume<'a, 'b>(&'a mut self, bytes: &'b mut [u8]) -> Option<&'b mut [u8]> {
self.coords.exhume(bytes)
}
}
impl<N: Real + Eq> Eq for Quaternion<N> {}
impl<N: Real> PartialEq for Quaternion<N> {
fn eq(&self, rhs: &Self) -> bool {
self.coords == rhs.coords ||
// Account for the double-covering of S², i.e. q = -q
self.as_vector().iter().zip(rhs.as_vector().iter()).all(|(a, b)| *a == -*b)
}
}
impl<N: Real + hash::Hash> hash::Hash for Quaternion<N> {
fn hash<H: hash::Hasher>(&self, state: &mut H) {
self.coords.hash(state)
}
}
impl<N: Real> Copy for Quaternion<N> {}
impl<N: Real> Clone for Quaternion<N> {
#[inline]
fn clone(&self) -> Self {
Quaternion::from_vector(self.coords.clone())
}
}
#[cfg(feature = "serde-serialize")]
impl<N: Real> Serialize for Quaternion<N>
where
Owned<N, U4>: Serialize,
{
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
self.coords.serialize(serializer)
}
}
#[cfg(feature = "serde-serialize")]
impl<'a, N: Real> Deserialize<'a> for Quaternion<N>
where
Owned<N, U4>: Deserialize<'a>,
{
fn deserialize<Des>(deserializer: Des) -> Result<Self, Des::Error>
where
Des: Deserializer<'a>,
{
let coords = Vector4::<N>::deserialize(deserializer)?;
Ok(Quaternion::from_vector(coords))
}
}
impl<N: Real> Quaternion<N> {
/// Moves this unit quaternion into one that owns its data.
#[inline]
#[deprecated(note = "This method is a no-op and will be removed in a future release.")]
pub fn into_owned(self) -> Quaternion<N> {
self
}
/// Clones this unit quaternion into one that owns its data.
#[inline]
#[deprecated(note = "This method is a no-op and will be removed in a future release.")]
pub fn clone_owned(&self) -> Quaternion<N> {
Quaternion::from_vector(self.coords.clone_owned())
}
/// Normalizes this quaternion.
#[inline]
pub fn normalize(&self) -> Quaternion<N> {
Quaternion::from_vector(self.coords.normalize())
}
/// Compute the conjugate of this quaternion.
#[inline]
pub fn conjugate(&self) -> Quaternion<N> {
let v = Vector4::new(
-self.coords[0],
-self.coords[1],
-self.coords[2],
self.coords[3],
);
Quaternion::from_vector(v)
}
/// Inverts this quaternion if it is not zero.
#[inline]
pub fn try_inverse(&self) -> Option<Quaternion<N>> {
let mut res = Quaternion::from_vector(self.coords.clone_owned());
if res.try_inverse_mut() {
Some(res)
} else {
None
}
}
/// Linear interpolation between two quaternion.
#[inline]
pub fn lerp(&self, other: &Quaternion<N>, t: N) -> Quaternion<N> {
self * (N::one() - t) + other * t
}
/// The vector part `(i, j, k)` of this quaternion.
#[inline]
pub fn vector(&self) -> MatrixSlice<N, U3, U1, RStride<N, U4, U1>, CStride<N, U4, U1>> {
self.coords.fixed_rows::<U3>(0)
}
/// The scalar part `w` of this quaternion.
#[inline]
pub fn scalar(&self) -> N {
self.coords[3]
}
/// Reinterprets this quaternion as a 4D vector.
#[inline]
pub fn as_vector(&self) -> &Vector4<N> {
&self.coords
}
/// The norm of this quaternion.
#[inline]
pub fn norm(&self) -> N {
self.coords.norm()
}
/// A synonym for the norm of this quaternion.
///
/// Aka the length.
///
/// This function is simply implemented as a call to `norm()`
#[inline]
pub fn magnitude(&self) -> N {
self.norm()
}
/// A synonym for the squared norm of this quaternion.
///
/// Aka the squared length.
///
/// This function is simply implemented as a call to `norm_squared()`
#[inline]
pub fn magnitude_squared(&self) -> N {
self.norm_squared()
}
/// The squared norm of this quaternion.
#[inline]
pub fn norm_squared(&self) -> N {
self.coords.norm_squared()
}
/// The dot product of two quaternions.
#[inline]
pub fn dot(&self, rhs: &Self) -> N {
self.coords.dot(&rhs.coords)
}
/// The polar decomposition of this quaternion.
///
/// Returns, from left to right: the quaternion norm, the half rotation angle, the rotation
/// axis. If the rotation angle is zero, the rotation axis is set to `None`.
pub fn polar_decomposition(&self) -> (N, N, Option<Unit<Vector3<N>>>) {
if let Some((q, n)) = Unit::try_new_and_get(*self, N::zero()) {
if let Some(axis) = Unit::try_new(self.vector().clone_owned(), N::zero()) {
let angle = q.angle() / ::convert(2.0f64);
(n, angle, Some(axis))
} else {
(n, N::zero(), None)
}
} else {
(N::zero(), N::zero(), None)
}
}
/// Compute the exponential of a quaternion.
#[inline]
pub fn exp(&self) -> Quaternion<N> {
self.exp_eps(N::default_epsilon())
}
/// Compute the exponential of a quaternion.
#[inline]
pub fn exp_eps(&self, eps: N) -> Quaternion<N> {
let v = self.vector();
let nn = v.norm_squared();
if nn <= eps * eps {
Quaternion::identity()
} else {
let w_exp = self.scalar().exp();
let n = nn.sqrt();
let nv = v * (w_exp * n.sin() / n);
Quaternion::from_parts(n.cos(), nv)
}
}
/// Compute the natural logarithm of a quaternion.
#[inline]
pub fn ln(&self) -> Quaternion<N> {
let n = self.norm();
let v = self.vector();
let s = self.scalar();
Quaternion::from_parts(n.ln(), v.normalize() * (s / n).acos())
}
/// Raise the quaternion to a given floating power.
#[inline]
pub fn powf(&self, n: N) -> Quaternion<N> {
(self.ln() * n).exp()
}
/// Transforms this quaternion into its 4D vector form (Vector part, Scalar part).
#[inline]
pub fn as_vector_mut(&mut self) -> &mut Vector4<N> {
&mut self.coords
}
/// The mutable vector part `(i, j, k)` of this quaternion.
#[inline]
pub fn vector_mut(
&mut self,
) -> MatrixSliceMut<N, U3, U1, RStride<N, U4, U1>, CStride<N, U4, U1>> {
self.coords.fixed_rows_mut::<U3>(0)
}
/// Replaces this quaternion by its conjugate.
#[inline]
pub fn conjugate_mut(&mut self) {
self.coords[0] = -self.coords[0];
self.coords[1] = -self.coords[1];
self.coords[2] = -self.coords[2];
}
/// Inverts this quaternion in-place if it is not zero.
#[inline]
pub fn try_inverse_mut(&mut self) -> bool {
let norm_squared = self.norm_squared();
if relative_eq!(&norm_squared, &N::zero()) {
false
} else {
self.conjugate_mut();
self.coords /= norm_squared;
true
}
}
/// Normalizes this quaternion.
#[inline]
pub fn normalize_mut(&mut self) -> N {
self.coords.normalize_mut()
}
}
impl<N: Real + AbsDiffEq<Epsilon = N>> AbsDiffEq for Quaternion<N> {
type Epsilon = N;
#[inline]
fn default_epsilon() -> Self::Epsilon {
N::default_epsilon()
}
#[inline]
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
self.as_vector().abs_diff_eq(other.as_vector(), epsilon) ||
// Account for the double-covering of S², i.e. q = -q
self.as_vector().iter().zip(other.as_vector().iter()).all(|(a, b)| a.abs_diff_eq(&-*b, epsilon))
}
}
impl<N: Real + RelativeEq<Epsilon = N>> RelativeEq for Quaternion<N> {
#[inline]
fn default_max_relative() -> Self::Epsilon {
N::default_max_relative()
}
#[inline]
fn relative_eq(
&self,
other: &Self,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon,
) -> bool {
self.as_vector().relative_eq(other.as_vector(), epsilon, max_relative) ||
// Account for the double-covering of S², i.e. q = -q
self.as_vector().iter().zip(other.as_vector().iter()).all(|(a, b)| a.relative_eq(&-*b, epsilon, max_relative))
}
}
impl<N: Real + UlpsEq<Epsilon = N>> UlpsEq for Quaternion<N> {
#[inline]
fn default_max_ulps() -> u32 {
N::default_max_ulps()
}
#[inline]
fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
self.as_vector().ulps_eq(other.as_vector(), epsilon, max_ulps) ||
// Account for the double-covering of S², i.e. q = -q.
self.as_vector().iter().zip(other.as_vector().iter()).all(|(a, b)| a.ulps_eq(&-*b, epsilon, max_ulps))
}
}
impl<N: Real + fmt::Display> fmt::Display for Quaternion<N> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(
f,
"Quaternion {} ({}, {}, {})",
self[3], self[0], self[1], self[2]
)
}
}
/// A unit quaternions. May be used to represent a rotation.
pub type UnitQuaternion<N> = Unit<Quaternion<N>>;
impl<N: Real> UnitQuaternion<N> {
/// Moves this unit quaternion into one that owns its data.
#[inline]
#[deprecated(note = "This method is a no-op and will be removed in a future release.")]
pub fn into_owned(self) -> UnitQuaternion<N> {
self
}
/// Clones this unit quaternion into one that owns its data.
#[inline]
#[deprecated(note = "This method is a no-op and will be removed in a future release.")]
pub fn clone_owned(&self) -> UnitQuaternion<N> {
*self
}
/// The rotation angle in [0; pi] of this unit quaternion.
#[inline]
pub fn angle(&self) -> N {
let w = self.quaternion().scalar().abs();
// Handle inaccuracies that make break `.acos`.
if w >= N::one() {
N::zero()
} else {
w.acos() * ::convert(2.0f64)
}
}
/// The underlying quaternion.
///
/// Same as `self.as_ref()`.
#[inline]
pub fn quaternion(&self) -> &Quaternion<N> {
self.as_ref()
}
/// Compute the conjugate of this unit quaternion.
#[inline]
pub fn conjugate(&self) -> UnitQuaternion<N> {
UnitQuaternion::new_unchecked(self.as_ref().conjugate())
}
/// Inverts this quaternion if it is not zero.
#[inline]
pub fn inverse(&self) -> UnitQuaternion<N> {
self.conjugate()
}
/// The rotation angle needed to make `self` and `other` coincide.
#[inline]
pub fn angle_to(&self, other: &UnitQuaternion<N>) -> N {
let delta = self.rotation_to(other);
delta.angle()
}
/// The unit quaternion needed to make `self` and `other` coincide.
///
/// The result is such that: `self.rotation_to(other) * self == other`.
#[inline]
pub fn rotation_to(&self, other: &UnitQuaternion<N>) -> UnitQuaternion<N> {
other / self
}
/// Linear interpolation between two unit quaternions.
///
/// The result is not normalized.
#[inline]
pub fn lerp(&self, other: &UnitQuaternion<N>, t: N) -> Quaternion<N> {
self.as_ref().lerp(other.as_ref(), t)
}
/// Normalized linear interpolation between two unit quaternions.
#[inline]
pub fn nlerp(&self, other: &UnitQuaternion<N>, t: N) -> UnitQuaternion<N> {
let mut res = self.lerp(other, t);
let _ = res.normalize_mut();
UnitQuaternion::new_unchecked(res)
}
/// Spherical linear interpolation between two unit quaternions.
///
/// Panics if the angle between both quaternion is 180 degrees (in which case the interpolation
/// is not well-defined).
#[inline]
pub fn slerp(&self, other: &UnitQuaternion<N>, t: N) -> UnitQuaternion<N> {
Unit::new_unchecked(
Quaternion::from_vector(Unit::new_unchecked(self.coords).slerp(&Unit::new_unchecked(other.coords), t).unwrap())
)
}
/// Computes the spherical linear interpolation between two unit quaternions or returns `None`
/// if both quaternions are approximately 180 degrees apart (in which case the interpolation is
/// not well-defined).
///
/// # Arguments
/// * `self`: the first quaternion to interpolate from.
/// * `other`: the second quaternion to interpolate toward.
/// * `t`: the interpolation parameter. Should be between 0 and 1.
/// * `epsilon`: the value below which the sinus of the angle separating both quaternion
/// must be to return `None`.
#[inline]
pub fn try_slerp(
&self,
other: &UnitQuaternion<N>,
t: N,
epsilon: N,
) -> Option<UnitQuaternion<N>> {
Unit::new_unchecked(self.coords).try_slerp(&Unit::new_unchecked(other.coords), t, epsilon)
.map(|q| Unit::new_unchecked(Quaternion::from_vector(q.unwrap())))
}
/// Compute the conjugate of this unit quaternion in-place.
#[inline]
pub fn conjugate_mut(&mut self) {
self.as_mut_unchecked().conjugate_mut()
}
/// Inverts this quaternion if it is not zero.
#[inline]
pub fn inverse_mut(&mut self) {
self.as_mut_unchecked().conjugate_mut()
}
/// The rotation axis of this unit quaternion or `None` if the rotation is zero.
#[inline]
pub fn axis(&self) -> Option<Unit<Vector3<N>>> {
let v = if self.quaternion().scalar() >= N::zero() {
self.as_ref().vector().clone_owned()
} else {
-self.as_ref().vector()
};
Unit::try_new(v, N::zero())
}
/// The rotation axis of this unit quaternion multiplied by the rotation angle.
#[inline]
pub fn scaled_axis(&self) -> Vector3<N> {
if let Some(axis) = self.axis() {
axis.unwrap() * self.angle()
} else {
Vector3::zero()
}
}
/// The rotation axis and angle in ]0, pi] of this unit quaternion.
///
/// Returns `None` if the angle is zero.
#[inline]
pub fn axis_angle(&self) -> Option<(Unit<Vector3<N>>, N)> {
if let Some(axis) = self.axis() {
Some((axis, self.angle()))
} else {
None
}
}
/// Compute the exponential of a quaternion.
///
/// Note that this function yields a `Quaternion<N>` because it looses the unit property.
#[inline]
pub fn exp(&self) -> Quaternion<N> {
self.as_ref().exp()
}
/// Compute the natural logarithm of a quaternion.
///
/// Note that this function yields a `Quaternion<N>` because it looses the unit property.
/// The vector part of the return value corresponds to the axis-angle representation (divided
/// by 2.0) of this unit quaternion.
#[inline]
pub fn ln(&self) -> Quaternion<N> {
if let Some(v) = self.axis() {
Quaternion::from_parts(N::zero(), v.unwrap() * self.angle())
} else {
Quaternion::zero()
}
}
/// Raise the quaternion to a given floating power.
///
/// This returns the unit quaternion that identifies a rotation with axis `self.axis()` and
/// angle `self.angle() × n`.
#[inline]
pub fn powf(&self, n: N) -> UnitQuaternion<N> {
if let Some(v) = self.axis() {
UnitQuaternion::from_axis_angle(&v, self.angle() * n)
} else {
UnitQuaternion::identity()
}
}
/// Builds a rotation matrix from this unit quaternion.
#[inline]
pub fn to_rotation_matrix(&self) -> Rotation<N, U3> {
let i = self.as_ref()[0];
let j = self.as_ref()[1];
let k = self.as_ref()[2];
let w = self.as_ref()[3];
let ww = w * w;
let ii = i * i;
let jj = j * j;
let kk = k * k;
let ij = i * j * ::convert(2.0f64);
let wk = w * k * ::convert(2.0f64);
let wj = w * j * ::convert(2.0f64);
let ik = i * k * ::convert(2.0f64);
let jk = j * k * ::convert(2.0f64);
let wi = w * i * ::convert(2.0f64);
Rotation::from_matrix_unchecked(Matrix3::new(
ww + ii - jj - kk,
ij - wk,
wj + ik,
wk + ij,
ww - ii + jj - kk,
jk - wi,
ik - wj,
wi + jk,
ww - ii - jj + kk,
))
}
/// Converts this unit quaternion into its equivalent Euler angles.
///
/// The angles are produced in the form (roll, yaw, pitch).
#[inline]
pub fn to_euler_angles(&self) -> (N, N, N) {
self.to_rotation_matrix().to_euler_angles()
}
/// Converts this unit quaternion into its equivalent homogeneous transformation matrix.
#[inline]
pub fn to_homogeneous(&self) -> MatrixN<N, U4> {
self.to_rotation_matrix().to_homogeneous()
}
}
impl<N: Real + fmt::Display> fmt::Display for UnitQuaternion<N> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
if let Some(axis) = self.axis() {
let axis = axis.unwrap();
write!(
f,
"UnitQuaternion angle: {} axis: ({}, {}, {})",
self.angle(),
axis[0],
axis[1],
axis[2]
)
} else {
write!(
f,
"UnitQuaternion angle: {} axis: (undefined)",
self.angle()
)
}
}
}
impl<N: Real + AbsDiffEq<Epsilon = N>> AbsDiffEq for UnitQuaternion<N> {
type Epsilon = N;
#[inline]
fn default_epsilon() -> Self::Epsilon {
N::default_epsilon()
}
#[inline]
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
self.as_ref().abs_diff_eq(other.as_ref(), epsilon)
}
}
impl<N: Real + RelativeEq<Epsilon = N>> RelativeEq for UnitQuaternion<N> {
#[inline]
fn default_max_relative() -> Self::Epsilon {
N::default_max_relative()
}
#[inline]
fn relative_eq(
&self,
other: &Self,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon,
) -> bool {
self.as_ref()
.relative_eq(other.as_ref(), epsilon, max_relative)
}
}
impl<N: Real + UlpsEq<Epsilon = N>> UlpsEq for UnitQuaternion<N> {
#[inline]
fn default_max_ulps() -> u32 {
N::default_max_ulps()
}
#[inline]
fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
self.as_ref().ulps_eq(other.as_ref(), epsilon, max_ulps)
}
}