forked from M-Labs/nalgebra
New code and modified tests for qz
This commit is contained in:
parent
ae35d1cf97
commit
162bb3218d
@ -42,11 +42,11 @@ where
|
|||||||
{
|
{
|
||||||
alphar: OVector<T, D>,
|
alphar: OVector<T, D>,
|
||||||
alphai: OVector<T, D>,
|
alphai: OVector<T, D>,
|
||||||
beta: OVector<T, D>,
|
beta: OVector<T, D>,
|
||||||
vsl: OMatrix<T, D, D>,
|
vsl: OMatrix<T, D, D>,
|
||||||
s: OMatrix<T, D, D>,
|
s: OMatrix<T, D, D>,
|
||||||
vsr: OMatrix<T, D, D>,
|
vsr: OMatrix<T, D, D>,
|
||||||
t: OMatrix<T, D, D>,
|
t: OMatrix<T, D, D>,
|
||||||
}
|
}
|
||||||
|
|
||||||
impl<T: Scalar + Copy, D: Dim> Copy for QZ<T, D>
|
impl<T: Scalar + Copy, D: Dim> Copy for QZ<T, D>
|
||||||
@ -176,36 +176,19 @@ where
|
|||||||
(self.vsl, self.s, self.t, self.vsr)
|
(self.vsl, self.s, self.t, self.vsr)
|
||||||
}
|
}
|
||||||
|
|
||||||
/// computes the generalized eigenvalues
|
/// outputs the unprocessed (almost) version of generalized eigenvalues ((alphar, alpai), beta)
|
||||||
|
/// straight from LAPACK
|
||||||
#[must_use]
|
#[must_use]
|
||||||
pub fn eigenvalues(&self) -> OVector<Complex<T>, D>
|
pub fn raw_eigenvalues(&self) -> OVector<(Complex<T>, T), D>
|
||||||
where
|
where
|
||||||
DefaultAllocator: Allocator<Complex<T>, D>,
|
DefaultAllocator: Allocator<(Complex<T>, T), D>,
|
||||||
{
|
{
|
||||||
let mut out = Matrix::zeros_generic(self.t.shape_generic().0, Const::<1>);
|
let mut out = Matrix::from_element_generic(self.vsl.shape_generic().0, Const::<1>, (Complex::zero(), T::RealField::zero()));
|
||||||
|
|
||||||
for i in 0..out.len() {
|
for i in 0..out.len() {
|
||||||
out[i] = if self.beta[i].clone().abs() < T::RealField::default_epsilon() {
|
out[i] = (Complex::new(self.alphar[i].clone(),
|
||||||
Complex::zero()
|
self.alphai[i].clone()),
|
||||||
} else {
|
self.beta[i].clone())
|
||||||
let mut cr = self.alphar[i].clone();
|
|
||||||
let mut ci = self.alphai[i].clone();
|
|
||||||
let b = self.beta[i].clone();
|
|
||||||
|
|
||||||
if cr.clone().abs() < T::RealField::default_epsilon() {
|
|
||||||
cr = T::RealField::zero()
|
|
||||||
} else {
|
|
||||||
cr = cr / b.clone()
|
|
||||||
};
|
|
||||||
|
|
||||||
if ci.clone().abs() < T::RealField::default_epsilon() {
|
|
||||||
ci = T::RealField::zero()
|
|
||||||
} else {
|
|
||||||
ci = ci / b
|
|
||||||
};
|
|
||||||
|
|
||||||
Complex::new(cr, ci)
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
out
|
out
|
||||||
|
@ -1,5 +1,7 @@
|
|||||||
use na::DMatrix;
|
use na::{DMatrix, EuclideanNorm, Norm};
|
||||||
use nl::{GE, QZ};
|
use nl::QZ;
|
||||||
|
use num_complex::Complex;
|
||||||
|
use simba::scalar::ComplexField;
|
||||||
use std::cmp;
|
use std::cmp;
|
||||||
|
|
||||||
use crate::proptest::*;
|
use crate::proptest::*;
|
||||||
@ -14,28 +16,59 @@ proptest! {
|
|||||||
|
|
||||||
let qz = QZ::new(a.clone(), b.clone());
|
let qz = QZ::new(a.clone(), b.clone());
|
||||||
let (vsl,s,t,vsr) = qz.clone().unpack();
|
let (vsl,s,t,vsr) = qz.clone().unpack();
|
||||||
let eigenvalues = qz.eigenvalues();
|
let eigenvalues = qz.raw_eigenvalues();
|
||||||
|
|
||||||
let ge = GE::new(a.clone(), b.clone());
|
|
||||||
let eigenvalues2 = ge.eigenvalues();
|
|
||||||
|
|
||||||
prop_assert!(relative_eq!(&vsl * s * vsr.transpose(), a.clone(), epsilon = 1.0e-7));
|
prop_assert!(relative_eq!(&vsl * s * vsr.transpose(), a.clone(), epsilon = 1.0e-7));
|
||||||
prop_assert!(relative_eq!(vsl * t * vsr.transpose(), b.clone(), epsilon = 1.0e-7));
|
prop_assert!(relative_eq!(vsl * t * vsr.transpose(), b.clone(), epsilon = 1.0e-7));
|
||||||
prop_assert!(eigenvalues == eigenvalues2);
|
|
||||||
|
let a_condition_no = a.clone().try_inverse().and_then(|x| Some(EuclideanNorm.norm(&x)* EuclideanNorm.norm(&a)));
|
||||||
|
let b_condition_no = b.clone().try_inverse().and_then(|x| Some(EuclideanNorm.norm(&x)* EuclideanNorm.norm(&b)));
|
||||||
|
|
||||||
|
if a_condition_no.unwrap_or(200000.0) < 5.0 && b_condition_no.unwrap_or(200000.0) < 5.0 {
|
||||||
|
let a_c = a.clone().map(|x| Complex::new(x, 0.0));
|
||||||
|
let b_c = b.clone().map(|x| Complex::new(x, 0.0));
|
||||||
|
|
||||||
|
|
||||||
|
for (alpha,beta) in eigenvalues.iter() {
|
||||||
|
let l_a = a_c.clone() * Complex::new(*beta, 0.0);
|
||||||
|
let l_b = b_c.clone() * *alpha;
|
||||||
|
|
||||||
|
prop_assert!(
|
||||||
|
relative_eq!(
|
||||||
|
(&l_a - &l_b).determinant().modulus(),
|
||||||
|
0.0,
|
||||||
|
epsilon = 1.0e-7));
|
||||||
|
|
||||||
|
};
|
||||||
|
};
|
||||||
}
|
}
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn qz_static(a in matrix4(), b in matrix4()) {
|
fn qz_static(a in matrix4(), b in matrix4()) {
|
||||||
let qz = QZ::new(a.clone(), b.clone());
|
let qz = QZ::new(a.clone(), b.clone());
|
||||||
let ge = GE::new(a.clone(), b.clone());
|
|
||||||
let (vsl,s,t,vsr) = qz.unpack();
|
let (vsl,s,t,vsr) = qz.unpack();
|
||||||
let eigenvalues = qz.eigenvalues();
|
let eigenvalues = qz.raw_eigenvalues();
|
||||||
let eigenvalues2 = ge.eigenvalues();
|
|
||||||
|
|
||||||
prop_assert!(relative_eq!(&vsl * s * vsr.transpose(), a, epsilon = 1.0e-7));
|
prop_assert!(relative_eq!(&vsl * s * vsr.transpose(), a, epsilon = 1.0e-7));
|
||||||
prop_assert!(relative_eq!(vsl * t * vsr.transpose(), b, epsilon = 1.0e-7));
|
prop_assert!(relative_eq!(vsl * t * vsr.transpose(), b, epsilon = 1.0e-7));
|
||||||
|
|
||||||
prop_assert!(eigenvalues == eigenvalues2);
|
let a_condition_no = a.clone().try_inverse().and_then(|x| Some(EuclideanNorm.norm(&x)* EuclideanNorm.norm(&a)));
|
||||||
|
let b_condition_no = b.clone().try_inverse().and_then(|x| Some(EuclideanNorm.norm(&x)* EuclideanNorm.norm(&b)));
|
||||||
|
|
||||||
|
if a_condition_no.unwrap_or(200000.0) < 5.0 && b_condition_no.unwrap_or(200000.0) < 5.0 {
|
||||||
|
let a_c =a.clone().map(|x| Complex::new(x, 0.0));
|
||||||
|
let b_c = b.clone().map(|x| Complex::new(x, 0.0));
|
||||||
|
|
||||||
|
for (alpha,beta) in eigenvalues.iter() {
|
||||||
|
let l_a = a_c.clone() * Complex::new(*beta, 0.0);
|
||||||
|
let l_b = b_c.clone() * *alpha;
|
||||||
|
|
||||||
|
prop_assert!(
|
||||||
|
relative_eq!(
|
||||||
|
(&l_a - &l_b).determinant().modulus(),
|
||||||
|
0.0,
|
||||||
|
epsilon = 1.0e-7));
|
||||||
|
}
|
||||||
|
};
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
Loading…
Reference in New Issue
Block a user