nalgebra/nalgebra-lapack/tests/linalg/qz.rs
2022-02-03 06:36:41 -05:00

75 lines
2.8 KiB
Rust

use na::{DMatrix, EuclideanNorm, Norm};
use nl::QZ;
use num_complex::Complex;
use simba::scalar::ComplexField;
use std::cmp;
use crate::proptest::*;
use proptest::{prop_assert, proptest};
proptest! {
#[test]
fn qz(n in PROPTEST_MATRIX_DIM) {
let n = cmp::max(1, cmp::min(n, 10));
let a = DMatrix::<f64>::new_random(n, n);
let b = DMatrix::<f64>::new_random(n, n);
let qz = QZ::new(a.clone(), b.clone());
let (vsl,s,t,vsr) = qz.clone().unpack();
let eigenvalues = qz.raw_eigenvalues();
prop_assert!(relative_eq!(&vsl * s * vsr.transpose(), a.clone(), epsilon = 1.0e-7));
prop_assert!(relative_eq!(vsl * t * vsr.transpose(), b.clone(), epsilon = 1.0e-7));
let a_condition_no = a.clone().try_inverse().and_then(|x| Some(EuclideanNorm.norm(&x)* EuclideanNorm.norm(&a)));
let b_condition_no = b.clone().try_inverse().and_then(|x| Some(EuclideanNorm.norm(&x)* EuclideanNorm.norm(&b)));
if a_condition_no.unwrap_or(200000.0) < 5.0 && b_condition_no.unwrap_or(200000.0) < 5.0 {
let a_c = a.clone().map(|x| Complex::new(x, 0.0));
let b_c = b.clone().map(|x| Complex::new(x, 0.0));
for (alpha,beta) in eigenvalues.iter() {
let l_a = a_c.clone() * Complex::new(*beta, 0.0);
let l_b = b_c.clone() * *alpha;
prop_assert!(
relative_eq!(
(&l_a - &l_b).determinant().modulus(),
0.0,
epsilon = 1.0e-7));
};
};
}
#[test]
fn qz_static(a in matrix4(), b in matrix4()) {
let qz = QZ::new(a.clone(), b.clone());
let (vsl,s,t,vsr) = qz.unpack();
let eigenvalues = qz.raw_eigenvalues();
prop_assert!(relative_eq!(&vsl * s * vsr.transpose(), a, epsilon = 1.0e-7));
prop_assert!(relative_eq!(vsl * t * vsr.transpose(), b, epsilon = 1.0e-7));
let a_condition_no = a.clone().try_inverse().and_then(|x| Some(EuclideanNorm.norm(&x)* EuclideanNorm.norm(&a)));
let b_condition_no = b.clone().try_inverse().and_then(|x| Some(EuclideanNorm.norm(&x)* EuclideanNorm.norm(&b)));
if a_condition_no.unwrap_or(200000.0) < 5.0 && b_condition_no.unwrap_or(200000.0) < 5.0 {
let a_c =a.clone().map(|x| Complex::new(x, 0.0));
let b_c = b.clone().map(|x| Complex::new(x, 0.0));
for (alpha,beta) in eigenvalues.iter() {
let l_a = a_c.clone() * Complex::new(*beta, 0.0);
let l_b = b_c.clone() * *alpha;
prop_assert!(
relative_eq!(
(&l_a - &l_b).determinant().modulus(),
0.0,
epsilon = 1.0e-7));
}
};
}
}