nalgebra/tests/mat.rs

846 lines
17 KiB
Rust
Raw Permalink Normal View History

extern crate nalgebra as na;
extern crate rand;
use rand::random;
use na::{Rot2, Rot3, Iso2, Iso3, Sim2, Sim3, Vec3, Mat1, Mat2, Mat3, Mat4, Mat5, Mat6, DMat, DVec,
Row, Col, Diag, Transpose, RowSlice, ColSlice, Shape};
2013-05-19 01:04:03 +08:00
2013-05-22 07:15:03 +08:00
macro_rules! test_inv_mat_impl(
2013-06-09 22:04:54 +08:00
($t: ty) => (
for _ in 0usize .. 10000 {
2013-05-22 07:15:03 +08:00
let randmat : $t = random();
match na::inv(&randmat) {
None => { },
Some(i) => {
assert!(na::approx_eq(&(i * randmat), &na::one()))
}
}
}
2013-05-22 07:15:03 +08:00
);
);
2013-05-19 01:04:03 +08:00
2013-07-23 17:15:20 +08:00
macro_rules! test_transpose_mat_impl(
($t: ty) => (
for _ in 0usize .. 10000 {
2013-07-23 17:15:20 +08:00
let randmat : $t = random();
Api change: deal with inplace/out of place methods. Before, it was too easy to use an out of place method instead of the inplace one since they name were pretty mutch the same. This kind of confusion may lead to silly bugs very hard to understand. Thus the following changes have been made when a method is available both inplace and out-of-place: * inplace version keep a short name. * out-of-place version are suffixed by `_cpy` (meaning `copy`), and are static methods. Methods applying transformations (rotation, translation or general transform) are now prefixed by `append`, and a `prepend` version is available too. Also, free functions doing in-place modifications dont really make sense. They have been removed. Here are the naming changes: * `invert` -> `inv` * `inverted` -> `Inv::inv_cpy` * `transpose` -> `transpose` * `transposed` -> `Transpose::transpose_cpy` * `transform_by` -> `append_transformation` * `transformed` -> `Transform::append_transformation_cpy` * `rotate_by` -> `apppend_rotation` * `rotated` -> `Rotation::append_rotation_cpy` * `translate_by` -> `apppend_translation` * `translate` -> `Translation::append_translation_cpy` * `normalized` -> `Norm::normalize_cpy` * `rotated_wrt_point` -> `RotationWithTranslation::append_rotation_wrt_point_cpy` * `rotated_wrt_center` -> `RotationWithTranslation::append_rotation_wrt_center_cpy` Note that using those static methods is very verbose, and using in-place methods require an explicit import of the related trait. This is a way to convince the user to use free functions most of the time.
2013-10-14 16:22:32 +08:00
assert!(na::transpose(&na::transpose(&randmat)) == randmat);
}
2013-07-23 17:15:20 +08:00
);
);
2013-07-23 17:15:20 +08:00
macro_rules! test_qr_impl(
($t: ty) => (
for _ in 0usize .. 10000 {
let randmat : $t = random();
let (q, r) = na::qr(&randmat);
let recomp = q * r;
assert!(na::approx_eq(&randmat, &recomp));
}
);
);
macro_rules! test_cholesky_impl(
($t: ty) => (
for _ in 0usize .. 10000 {
// construct symmetric positive definite matrix
let mut randmat : $t = random();
let mut diagmat : $t = Diag::from_diag(&na::diag(&randmat));
diagmat = na::abs(&diagmat) + 1.0;
randmat = randmat * diagmat * na::transpose(&randmat);
let result = na::cholesky(&randmat);
assert!(result.is_ok());
let v = result.unwrap();
let recomp = v * na::transpose(&v);
assert!(na::approx_eq(&randmat, &recomp));
}
);
);
macro_rules! test_hessenberg_impl(
($t: ty) => (
for _ in 0usize .. 10000 {
let randmat : $t = random();
let (q, h) = na::hessenberg(&randmat);
let recomp = q * h * na::transpose(&q);
let (rows, cols) = h.shape();
// Check if `h` has zero entries below the first subdiagonal
if cols > 2 {
for j in 0..(cols-2) {
for i in (j+2)..rows {
assert!(na::approx_eq(&h[(i,j)], &0.0f64));
}
}
}
assert!(na::approx_eq(&randmat, &recomp));
}
);
);
macro_rules! test_eigen_qr_impl(
($t: ty) => {
for _ in 0usize .. 10000 {
let randmat : $t = random();
// Make it symetric so that we can recompose the matrix to test at the end.
let randmat = na::transpose(&randmat) * randmat;
let (eigenvectors, eigenvalues) = na::eigen_qr(&randmat, &1e-13, 100);
let diag: $t = Diag::from_diag(&eigenvalues);
let recomp = eigenvectors * diag * na::transpose(&eigenvectors);
println!("eigenvalues: {:?}", eigenvalues);
println!(" mat: {:?}", randmat);
println!("recomp: {:?}", recomp);
assert!(na::approx_eq_eps(&randmat, &recomp, &1.0e-2));
}
for _ in 0usize .. 10000 {
let randmat : $t = random();
// Take only diagonal part
let randmat: $t = Diag::from_diag(&randmat.diag());
let (eigenvectors, eigenvalues) = na::eigen_qr(&randmat, &1e-13, 100);
let diag: $t = Diag::from_diag(&eigenvalues);
let recomp = eigenvectors * diag * na::transpose(&eigenvectors);
println!("eigenvalues: {:?}", eigenvalues);
println!(" mat: {:?}", randmat);
println!("recomp: {:?}", recomp);
assert!(na::approx_eq_eps(&randmat, &recomp, &1.0e-2));
}
}
);
2013-07-23 17:15:20 +08:00
#[test]
2013-08-05 16:13:44 +08:00
fn test_transpose_mat1() {
test_transpose_mat_impl!(Mat1<f64>);
2013-08-05 16:13:44 +08:00
}
2013-07-23 17:15:20 +08:00
#[test]
2013-08-05 16:13:44 +08:00
fn test_transpose_mat2() {
test_transpose_mat_impl!(Mat2<f64>);
2013-08-05 16:13:44 +08:00
}
2013-07-23 17:15:20 +08:00
#[test]
2013-08-05 16:13:44 +08:00
fn test_transpose_mat3() {
test_transpose_mat_impl!(Mat3<f64>);
2013-08-05 16:13:44 +08:00
}
2013-07-23 17:15:20 +08:00
#[test]
2013-08-05 16:13:44 +08:00
fn test_transpose_mat4() {
test_transpose_mat_impl!(Mat4<f64>);
2013-08-05 16:13:44 +08:00
}
2013-07-23 17:15:20 +08:00
#[test]
2013-08-05 16:13:44 +08:00
fn test_transpose_mat5() {
test_transpose_mat_impl!(Mat5<f64>);
2013-08-05 16:13:44 +08:00
}
2013-07-23 17:15:20 +08:00
#[test]
2013-08-05 16:13:44 +08:00
fn test_transpose_mat6() {
test_transpose_mat_impl!(Mat6<f64>);
2013-08-05 16:13:44 +08:00
}
2013-07-23 17:15:20 +08:00
2013-05-19 01:04:03 +08:00
#[test]
2013-08-05 16:13:44 +08:00
fn test_inv_mat1() {
test_inv_mat_impl!(Mat1<f64>);
2013-08-05 16:13:44 +08:00
}
2013-05-19 01:04:03 +08:00
#[test]
2013-08-05 16:13:44 +08:00
fn test_inv_mat2() {
test_inv_mat_impl!(Mat2<f64>);
2013-08-05 16:13:44 +08:00
}
2013-05-19 01:04:03 +08:00
#[test]
2013-08-05 16:13:44 +08:00
fn test_inv_mat3() {
test_inv_mat_impl!(Mat3<f64>);
2013-08-05 16:13:44 +08:00
}
2013-05-19 01:04:03 +08:00
#[test]
2013-08-05 16:13:44 +08:00
fn test_inv_mat4() {
test_inv_mat_impl!(Mat4<f64>);
2013-08-05 16:13:44 +08:00
}
#[test]
2013-08-05 16:13:44 +08:00
fn test_inv_mat5() {
test_inv_mat_impl!(Mat5<f64>);
2013-08-05 16:13:44 +08:00
}
#[test]
2013-08-05 16:13:44 +08:00
fn test_inv_mat6() {
test_inv_mat_impl!(Mat6<f64>);
2013-08-05 16:13:44 +08:00
}
2013-05-19 01:04:03 +08:00
#[test]
fn test_inv_rot2() {
test_inv_mat_impl!(Rot2<f64>);
2013-05-19 01:04:03 +08:00
}
#[test]
fn test_inv_rot3() {
test_inv_mat_impl!(Rot3<f64>);
}
2013-07-23 17:15:20 +08:00
#[test]
fn test_inv_iso2() {
test_inv_mat_impl!(Iso2<f64>);
}
#[test]
fn test_inv_iso3() {
test_inv_mat_impl!(Iso3<f64>);
}
#[test]
fn test_inv_sim2() {
test_inv_mat_impl!(Sim2<f64>);
}
#[test]
fn test_inv_sim3() {
test_inv_mat_impl!(Sim3<f64>);
}
#[test]
fn test_index_mat2() {
let mat: Mat2<f64> = random();
assert!(mat[(0, 1)] == na::transpose(&mat)[(1, 0)]);
}
#[test]
fn test_mean_dmat() {
let mat = DMat::from_row_vec(
3,
3,
&[
1.0f64, 2.0, 3.0,
4.0f64, 5.0, 6.0,
7.0f64, 8.0, 9.0,
]
);
assert!(na::approx_eq(&na::mean(&mat), &DVec::from_slice(3, &[4.0f64, 5.0, 6.0])));
}
#[test]
fn test_cov_dmat() {
let mat = DMat::from_row_vec(
5,
3,
&[
4.0f64, 2.0, 0.60,
4.2f64, 2.1, 0.59,
3.9f64, 2.0, 0.58,
4.3f64, 2.1, 0.62,
4.1f64, 2.2, 0.63
]
);
let expected = DMat::from_row_vec(
3,
3,
&[
0.025f64, 0.0075, 0.00175,
0.0075f64, 0.007, 0.00135,
0.00175f64, 0.00135, 0.00043
]
);
assert!(na::approx_eq(&na::cov(&mat), &expected));
2013-07-23 17:15:20 +08:00
}
#[test]
fn test_transpose_dmat() {
let mat = DMat::from_row_vec(
8,
4,
&[
2015-01-10 05:52:44 +08:00
1u32,2, 3, 4,
5, 6, 7, 8,
9, 10, 11, 12,
13, 14, 15, 16,
17, 18, 19, 20,
21, 22, 23, 24,
25, 26, 27, 28,
29, 30, 31, 32
]
);
assert!(na::transpose(&na::transpose(&mat)) == mat);
}
#[test]
fn test_row_dmat() {
let mat = DMat::from_row_vec(
8,
4,
&[
1u32,2, 3, 4,
5, 6, 7, 8,
9, 10, 11, 12,
13, 14, 15, 16,
17, 18, 19, 20,
21, 22, 23, 24,
25, 26, 27, 28,
29, 30, 31, 32
]
);
assert_eq!(&DVec::from_slice(4, &[1u32, 2, 3, 4]), &mat.row(0));
assert_eq!(&DVec::from_slice(4, &[5u32, 6, 7, 8]), &mat.row(1));
assert_eq!(&DVec::from_slice(4, &[9u32, 10, 11, 12]), &mat.row(2));
assert_eq!(&DVec::from_slice(4, &[13u32, 14, 15, 16]), &mat.row(3));
assert_eq!(&DVec::from_slice(4, &[17u32, 18, 19, 20]), &mat.row(4));
assert_eq!(&DVec::from_slice(4, &[21u32, 22, 23, 24]), &mat.row(5));
assert_eq!(&DVec::from_slice(4, &[25u32, 26, 27, 28]), &mat.row(6));
assert_eq!(&DVec::from_slice(4, &[29u32, 30, 31, 32]), &mat.row(7));
}
#[test]
fn test_row_slice_dmat() {
let mat = DMat::from_row_vec(
5,
4,
&[
1u32,2, 3, 4,
5, 6, 7, 8,
9, 10, 11, 12,
13, 14, 15, 16,
17, 18, 19, 20,
]
);
assert_eq!(&DVec::from_slice(4, &[1u32, 2, 3, 4]), &mat.row_slice(0, 0, 4));
assert_eq!(&DVec::from_slice(2, &[1u32, 2]), &mat.row_slice(0, 0, 2));
assert_eq!(&DVec::from_slice(2, &[10u32, 11]), &mat.row_slice(2, 1, 3));
assert_eq!(&DVec::from_slice(2, &[19u32, 20]), &mat.row_slice(4, 2, 4));
}
#[test]
fn test_col_dmat() {
let mat = DMat::from_row_vec(
8,
4,
&[
1u32,2, 3, 4,
5, 6, 7, 8,
9, 10, 11, 12,
13, 14, 15, 16,
17, 18, 19, 20,
21, 22, 23, 24,
25, 26, 27, 28,
29, 30, 31, 32
]
);
assert_eq!(&DVec::from_slice(8, &[1u32, 5, 9, 13, 17, 21, 25, 29]), &mat.col(0));
assert_eq!(&DVec::from_slice(8, &[2u32, 6, 10, 14, 18, 22, 26, 30]), &mat.col(1));
assert_eq!(&DVec::from_slice(8, &[3u32, 7, 11, 15, 19, 23, 27, 31]), &mat.col(2));
assert_eq!(&DVec::from_slice(8, &[4u32, 8, 12, 16, 20, 24, 28, 32]), &mat.col(3));
}
#[test]
fn test_col_slice_dmat() {
let mat = DMat::from_row_vec(
8,
4,
&[
1u32,2, 3, 4,
5, 6, 7, 8,
9, 10, 11, 12,
13, 14, 15, 16,
17, 18, 19, 20,
21, 22, 23, 24,
25, 26, 27, 28,
29, 30, 31, 32
]
);
assert_eq!(&DVec::from_slice(8, &[1u32, 5, 9, 13, 17, 21, 25, 29]), &mat.col_slice(0, 0, 8));
assert_eq!(&DVec::from_slice(3, &[1u32, 5, 9]), &mat.col_slice(0, 0, 3));
assert_eq!(&DVec::from_slice(5, &[11u32, 15, 19, 23, 27]), &mat.col_slice(2, 2, 7));
assert_eq!(&DVec::from_slice(2, &[28u32, 32]), &mat.col_slice(3, 6, 8));
}
#[test]
fn test_dmat_from_vec() {
let mat1 = DMat::from_row_vec(
8,
4,
&[
1i32, 2, 3, 4,
5, 6, 7, 8,
9, 10, 11, 12,
13, 14, 15, 16,
17, 18, 19, 20,
21, 22, 23, 24,
25, 26, 27, 28,
29, 30, 31, 32
]
);
let mat2 = DMat::from_col_vec(
8,
4,
&[
1i32, 5, 9, 13, 17, 21, 25, 29,
2i32, 6, 10, 14, 18, 22, 26, 30,
3i32, 7, 11, 15, 19, 23, 27, 31,
4i32, 8, 12, 16, 20, 24, 28, 32
]
);
2015-01-10 05:52:44 +08:00
println!("mat1: {:?}, mat2: {:?}", mat1, mat2);
assert!(mat1 == mat2);
}
#[test]
fn test_dmat_addition() {
let mat1 = DMat::from_row_vec(
2,
2,
&[
1.0, 2.0,
3.0, 4.0
]
);
let mat2 = DMat::from_row_vec(
2,
2,
&[
10.0, 20.0,
30.0, 40.0
]
);
let res = DMat::from_row_vec(
2,
2,
&[
11.0, 22.0,
33.0, 44.0
]
);
assert!((mat1 + mat2) == res);
}
#[test]
fn test_dmat_multiplication() {
let mat1 = DMat::from_row_vec(
2,
2,
&[
1.0, 2.0,
3.0, 4.0
]
);
let mat2 = DMat::from_row_vec(
2,
2,
&[
10.0, 20.0,
30.0, 40.0
]
);
let res = DMat::from_row_vec(
2,
2,
&[
70.0, 100.0,
150.0, 220.0
]
);
assert!((mat1 * mat2) == res);
}
// Tests multiplication of rectangular (non-square) matrices.
#[test]
fn test_dmat_multiplication_rect() {
let mat1 = DMat::from_row_vec(
1,
2,
&[
1.0, 2.0,
]
);
let mat2 = DMat::from_row_vec(
2,
3,
&[
3.0, 4.0, 5.0,
6.0, 7.0, 8.0,
]
);
let res = DMat::from_row_vec(
1,
3,
&[
15.0, 18.0, 21.0,
]
);
assert!((mat1.clone() * mat2.clone()) == res);
assert!((&mat1 * mat2.clone()) == res);
assert!((mat1.clone() * &mat2) == res);
assert!((&mat1 * &mat2) == res);
}
#[test]
fn test_dmat_subtraction() {
let mat1 = DMat::from_row_vec(
2,
2,
&[
1.0, 2.0,
3.0, 4.0
]
);
let mat2 = DMat::from_row_vec(
2,
2,
&[
10.0, 20.0,
30.0, 40.0
]
);
let res = DMat::from_row_vec(
2,
2,
&[
-09.0, -18.0,
-27.0, -36.0
]
);
assert!((mat1 - mat2) == res);
}
2016-01-10 21:03:04 +08:00
#[test]
fn test_dmat_col() {
let mat = DMat::from_row_vec(
3,
3,
&[
1.0, 2.0, 3.0,
4.0, 5.0, 6.0,
7.0, 8.0, 9.0,
]
);
assert!(mat.col(1) == DVec::from_slice(3, &[2.0, 5.0, 8.0]));
}
#[test]
fn test_dmat_set_col() {
let mut mat = DMat::from_row_vec(
3,
3,
&[
1.0, 2.0, 3.0,
4.0, 5.0, 6.0,
7.0, 8.0, 9.0,
]
);
mat.set_col(1, DVec::from_slice(3, &[12.0, 15.0, 18.0]));
let expected = DMat::from_row_vec(
3,
3,
&[
1.0, 12.0, 3.0,
4.0, 15.0, 6.0,
7.0, 18.0, 9.0,
]
);
assert!(mat == expected);
}
#[test]
fn test_dmat_row() {
let mat = DMat::from_row_vec(
3,
3,
&[
1.0, 2.0, 3.0,
4.0, 5.0, 6.0,
7.0, 8.0, 9.0,
]
);
assert!(mat.row(1) == DVec::from_slice(3, &[4.0, 5.0, 6.0]));
}
#[test]
fn test_dmat_set_row() {
let mut mat = DMat::from_row_vec(
3,
3,
&[
1.0, 2.0, 3.0,
4.0, 5.0, 6.0,
7.0, 8.0, 9.0,
]
);
mat.set_row(1, DVec::from_slice(3, &[14.0, 15.0, 16.0]));
let expected = DMat::from_row_vec(
3,
3,
&[
1.0, 2.0, 3.0,
14.0, 15.0, 16.0,
7.0, 8.0, 9.0,
]
);
assert!(mat == expected);
}
/* FIXME: review qr decomposition to make it work with DMat.
#[test]
fn test_qr() {
for _ in 0usize .. 10 {
let dim1: usize = random();
let dim2: usize = random();
let rows = min(40, max(dim1, dim2));
let cols = min(40, min(dim1, dim2));
let randmat: DMat<f64> = DMat::new_random(rows, cols);
let (q, r) = na::qr(&randmat);
let recomp = q * r;
assert!(na::approx_eq(&randmat, &recomp));
}
}
*/
#[test]
fn test_qr_mat1() {
test_qr_impl!(Mat1<f64>);
}
#[test]
fn test_qr_mat2() {
test_qr_impl!(Mat2<f64>);
}
#[test]
fn test_qr_mat3() {
test_qr_impl!(Mat3<f64>);
}
#[test]
fn test_qr_mat4() {
test_qr_impl!(Mat4<f64>);
}
#[test]
fn test_qr_mat5() {
test_qr_impl!(Mat5<f64>);
}
#[test]
fn test_qr_mat6() {
test_qr_impl!(Mat6<f64>);
}
#[test]
fn test_eigen_qr_mat1() {
test_eigen_qr_impl!(Mat1<f64>);
}
#[test]
fn test_eigen_qr_mat2() {
test_eigen_qr_impl!(Mat2<f64>);
}
#[test]
fn test_eigen_qr_mat3() {
test_eigen_qr_impl!(Mat3<f64>);
}
#[test]
fn test_eigen_qr_mat4() {
test_eigen_qr_impl!(Mat4<f64>);
}
#[test]
fn test_eigen_qr_mat5() {
test_eigen_qr_impl!(Mat5<f64>);
}
#[test]
fn test_eigen_qr_mat6() {
test_eigen_qr_impl!(Mat6<f64>);
}
#[test]
fn test_from_fn() {
let actual: DMat<usize> = DMat::from_fn(3, 4, |i, j| 10 * i + j);
let expected: DMat<usize> = DMat::from_row_vec(3, 4,
&[ 0_0, 0_1, 0_2, 0_3,
1_0, 1_1, 1_2, 1_3,
2_0, 2_1, 2_2, 2_3 ]);
assert_eq!(actual, expected);
}
#[test]
fn test_row_3() {
let mat = Mat3::new(0.0f32, 1.0, 2.0,
3.0, 4.0, 5.0,
6.0, 7.0, 8.0);
let second_row = mat.row(1);
let second_col = mat.col(1);
assert!(second_row == Vec3::new(3.0, 4.0, 5.0));
assert!(second_col == Vec3::new(1.0, 4.0, 7.0));
}
#[test]
fn test_cholesky_const() {
let a : Mat3<f64> = Mat3::<f64>::new(1.0, 1.0, 1.0, 1.0, 2.0, 2.0, 1.0, 2.0, 3.0);
let g : Mat3<f64> = Mat3::<f64>::new(1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0);
let result = na::cholesky(&a);
2015-08-08 20:52:57 +08:00
assert!(result.is_ok());
2015-08-08 20:52:57 +08:00
let v = result.unwrap();
assert!(na::approx_eq(&v, &g));
2015-08-08 20:52:57 +08:00
let recomp = v * na::transpose(&v);
assert!(na::approx_eq(&recomp, &a));
}
#[test]
fn test_cholesky_not_spd() {
let a : Mat3<f64> = Mat3::<f64>::new(1.0, 2.0, 3.0, 3.0, 2.0, 1.0, 1.0, 1.0, 1.0);
let result = na::cholesky(&a);
2015-08-08 20:52:57 +08:00
assert!(result.is_err());
}
#[test]
fn test_cholesky_not_symmetric() {
let a : Mat2<f64> = Mat2::<f64>::new(1.0, 1.0, -1.0, 1.0);
let result = na::cholesky(&a);
2015-08-08 20:52:57 +08:00
assert!(result.is_err());
}
#[test]
fn test_cholesky_mat1() {
test_cholesky_impl!(Mat1<f64>);
}
#[test]
fn test_cholesky_mat2() {
test_cholesky_impl!(Mat2<f64>);
}
#[test]
fn test_cholesky_mat3() {
test_cholesky_impl!(Mat3<f64>);
}
#[test]
fn test_cholesky_mat4() {
test_cholesky_impl!(Mat4<f64>);
}
#[test]
fn test_cholesky_mat5() {
test_cholesky_impl!(Mat5<f64>);
}
#[test]
fn test_cholesky_mat6() {
test_cholesky_impl!(Mat6<f64>);
}
#[test]
fn test_hessenberg_mat1() {
test_hessenberg_impl!(Mat1<f64>);
}
#[test]
fn test_hessenberg_mat2() {
test_hessenberg_impl!(Mat2<f64>);
}
#[test]
fn test_hessenberg_mat3() {
test_hessenberg_impl!(Mat3<f64>);
}
#[test]
fn test_hessenberg_mat4() {
test_hessenberg_impl!(Mat4<f64>);
}
#[test]
fn test_hessenberg_mat5() {
test_hessenberg_impl!(Mat5<f64>);
}
#[test]
fn test_hessenberg_mat6() {
test_hessenberg_impl!(Mat6<f64>);
}
#[test]
fn test_transpose_square_mat() {
let col_major_mat = &[0, 1, 2, 3,
0, 1, 2, 3,
0, 1, 2, 3,
0, 1, 2, 3];
let num_rows = 4;
let num_cols = 4;
let mut mat = DMat::from_col_vec(num_rows, num_cols, col_major_mat);
mat.transpose_mut();
for i in 0..num_rows {
assert_eq!(&[0, 1, 2, 3], &mat.row_slice(i, 0, num_cols)[..]);
}
}
#[test]
fn test_outer_dvec() {
let vec = DVec::from_slice(5, &[ 1.0, 2.0, 3.0, 4.0, 5.0 ]);
let row = DMat::from_row_vec(1, 5, &vec[..]);
assert_eq!(row.transpose() * row, na::outer(&vec, &vec))
}