nalgebra/src/linalg/udu.rs

99 lines
2.7 KiB
Rust
Raw Normal View History

#[cfg(feature = "serde-serialize")]
use serde::{Deserialize, Serialize};
use crate::allocator::Allocator;
2021-04-11 17:00:38 +08:00
use crate::base::{Const, DefaultAllocator, OMatrix, OVector};
use crate::dimension::Dim;
use crate::storage::Storage;
use simba::scalar::RealField;
2021-02-25 20:16:04 +08:00
/// UDU factorization.
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[cfg_attr(
feature = "serde-serialize",
2021-04-11 17:00:38 +08:00
serde(bound(serialize = "OVector<T, D>: Serialize, OMatrix<T, D, D>: Serialize"))
)]
#[cfg_attr(
feature = "serde-serialize",
serde(bound(
2021-04-11 17:00:38 +08:00
deserialize = "OVector<T, D>: Deserialize<'de>, OMatrix<T, D, D>: Deserialize<'de>"
))
)]
#[derive(Clone, Debug)]
2021-04-11 17:00:38 +08:00
pub struct UDU<T: RealField, D: Dim>
where
2021-04-11 17:00:38 +08:00
DefaultAllocator: Allocator<T, D> + Allocator<T, D, D>,
{
/// The upper triangular matrix resulting from the factorization
2021-04-11 17:00:38 +08:00
pub u: OMatrix<T, D, D>,
/// The diagonal matrix resulting from the factorization
2021-04-11 17:00:38 +08:00
pub d: OVector<T, D>,
}
2021-04-11 17:00:38 +08:00
impl<T: RealField, D: Dim> Copy for UDU<T, D>
where
2021-04-11 17:00:38 +08:00
DefaultAllocator: Allocator<T, D> + Allocator<T, D, D>,
OVector<T, D>: Copy,
OMatrix<T, D, D>: Copy,
{
}
2021-04-11 17:00:38 +08:00
impl<T: RealField, D: Dim> UDU<T, D>
where
2021-04-11 17:00:38 +08:00
DefaultAllocator: Allocator<T, D> + Allocator<T, D, D>,
{
2021-02-25 20:16:04 +08:00
/// Computes the UDU^T factorization.
///
/// The input matrix `p` is assumed to be symmetric and this decomposition will only read
/// the upper-triangular part of `p`.
///
/// Ref.: "Optimal control and estimation-Dover Publications", Robert F. Stengel, (1994) page 360
2021-04-11 17:00:38 +08:00
pub fn new(p: OMatrix<T, D, D>) -> Option<Self> {
let n = p.ncols();
let n_dim = p.data.shape().1;
2021-04-11 17:00:38 +08:00
let mut d = OVector::zeros_generic(n_dim, Const::<1>);
let mut u = OMatrix::zeros_generic(n_dim, n_dim);
d[n - 1] = p[(n - 1, n - 1)];
2021-03-01 00:52:14 +08:00
if d[n - 1].is_zero() {
return None;
}
u.column_mut(n - 1)
2021-04-11 17:00:38 +08:00
.axpy(T::one() / d[n - 1], &p.column(n - 1), T::zero());
for j in (0..n - 1).rev() {
let mut d_j = d[j];
for k in j + 1..n {
d_j += d[k] * u[(j, k)].powi(2);
}
d[j] = p[(j, j)] - d_j;
2021-03-01 00:52:14 +08:00
if d[j].is_zero() {
return None;
}
for i in (0..=j).rev() {
let mut u_ij = u[(i, j)];
for k in j + 1..n {
u_ij += d[k] * u[(j, k)] * u[(i, k)];
}
u[(i, j)] = (p[(i, j)] - u_ij) / d[j];
}
2021-04-11 17:00:38 +08:00
u[(j, j)] = T::one();
}
2021-03-01 00:52:14 +08:00
Some(Self { u, d })
}
/// Returns the diagonal elements as a matrix
2021-04-11 17:00:38 +08:00
pub fn d_matrix(&self) -> OMatrix<T, D, D> {
OMatrix::from_diagonal(&self.d)
}
}