nalgebra/src/linalg/udu.rs

79 lines
2.2 KiB
Rust
Raw Normal View History

#[cfg(feature = "serde-serialize")]
use serde::{Deserialize, Serialize};
use crate::allocator::Allocator;
use crate::base::{DefaultAllocator, MatrixN, VectorN, U1};
use crate::dimension::Dim;
use simba::scalar::ComplexField;
/// UDU factorization
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[derive(Clone, Debug)]
pub struct UDU<N: ComplexField, D: Dim>
where
DefaultAllocator: Allocator<N, D> + Allocator<N, D, D>,
{
/// The upper triangular matrix resulting from the factorization
pub u: MatrixN<N, D>,
/// The diagonal matrix resulting from the factorization
pub d: VectorN<N, D>,
}
impl<N: ComplexField, D: Dim> Copy for UDU<N, D>
where
DefaultAllocator: Allocator<N, D> + Allocator<N, D, D>,
VectorN<N, D>: Copy,
MatrixN<N, D>: Copy,
{
}
impl<N: ComplexField, D: Dim> UDU<N, D>
where
DefaultAllocator: Allocator<N, D> + Allocator<N, D, D>,
{
/// Computes the UDU^T factorization
/// The input matrix `p` is assumed to be symmetric and this decomposition will only read the upper-triangular part of `p`.
/// Ref.: "Optimal control and estimation-Dover Publications", Robert F. Stengel, (1994) page 360
pub fn new(p: MatrixN<N, D>) -> Self {
let n = p.ncols();
let n_as_dim = D::from_usize(n);
let mut d = VectorN::<N, D>::zeros_generic(n_as_dim, U1);
let mut u = MatrixN::<N, D>::zeros_generic(n_as_dim, n_as_dim);
d[n - 1] = p[(n - 1, n - 1)];
u[(n - 1, n - 1)] = N::one();
for j in (0..n - 1).rev() {
u[(j, n - 1)] = p[(j, n - 1)] / d[n - 1];
}
for j in (0..n - 1).rev() {
for k in j + 1..n {
d[j] = d[j] + d[k] * u[(j, k)].powi(2);
}
d[j] = p[(j, j)] - d[j];
for i in (0..=j).rev() {
for k in j + 1..n {
u[(i, j)] = u[(i, j)] + d[k] * u[(j, k)] * u[(i, k)];
}
u[(i, j)] = p[(i, j)] - u[(i, j)];
u[(i, j)] /= d[j];
}
u[(j, j)] = N::one();
}
Self { u, d }
}
/// Returns the diagonal elements as a matrix
pub fn d_matrix(&self) -> MatrixN<N, D> {
MatrixN::from_diagonal(&self.d)
}
}