nalgebra/src/linalg/schur.rs

521 lines
18 KiB
Rust
Raw Normal View History

use std::cmp;
use num_complex::Complex;
use alga::general::Real;
use core::{DefaultAllocator, SquareMatrix, VectorN, MatrixN, Unit, Vector2, Vector3};
use core::dimension::{Dim, DimSub, DimDiff, Dynamic, U1, U2, U3};
use core::storage::Storage;
use constraint::{ShapeConstraint, DimEq};
use allocator::Allocator;
use linalg::householder;
use linalg::Hessenberg;
use geometry::{Reflection, UnitComplex};
/// Real RealSchur decomposition of a square matrix.
#[derive(Clone, Debug)]
pub struct RealSchur<N: Real, D: Dim>
where DefaultAllocator: Allocator<N, D, D> +
Allocator<N, D> {
q: MatrixN<N, D>,
t: MatrixN<N, D>
}
impl<N: Real, D: Dim> Copy for RealSchur<N, D>
where DefaultAllocator: Allocator<N, D, D> +
Allocator<N, D>,
MatrixN<N, D>: Copy { }
impl<N: Real, D: Dim> RealSchur<N, D>
where D: DimSub<U1>, // For Hessenberg.
ShapeConstraint: DimEq<Dynamic, DimDiff<D, U1>>, // For Hessenberg.
DefaultAllocator: Allocator<N, D, DimDiff<D, U1>> + // For Hessenberg.
Allocator<N, DimDiff<D, U1>> + // For Hessenberg.
Allocator<N, D, D> +
Allocator<N, D> {
/// Computes the schur decomposition of a square matrix.
pub fn new(m: MatrixN<N, D>) -> RealSchur<N, D> {
Self::try_new(m, N::default_epsilon(), 0).unwrap()
}
/// Attempts to compute the schur decomposition of a square matrix.
///
/// If only eigenvalues are needed, it is more efficient to call the matrix method
/// `.eigenvalues()` instead.
///
/// # Arguments
///
/// * `eps` tolerence used to determine when a value converged to 0.
/// * `max_niter` maximum total number of iterations performed by the algorithm. If this
/// number of iteration is exceeded, `None` is returned. If `niter == 0`, then the algorithm
/// continues indefinitely until convergence.
pub fn try_new(m: MatrixN<N, D>, eps: N, max_niter: usize) -> Option<RealSchur<N, D>> {
let mut work = unsafe { VectorN::new_uninitialized_generic(m.data.shape().0, U1) };
Self::do_decompose(m, &mut work, eps, max_niter, true).map(|(q, t)|
RealSchur { q: q.unwrap(), t: t })
}
fn do_decompose(mut m: MatrixN<N, D>, work: &mut VectorN<N, D>, eps: N, max_niter: usize, compute_q: bool)
-> Option<(Option<MatrixN<N, D>>, MatrixN<N, D>)> {
assert!(m.is_square(),
"Unable to compute the eigenvectors and eigenvalues of a non-square matrix.");
let dim = m.data.shape().0;
if dim.value() == 0 {
let vecs = Some(MatrixN::from_element_generic(dim, dim, N::zero()));
let vals = MatrixN::from_element_generic(dim, dim, N::zero());
return Some((vecs, vals));
}
else if dim.value() == 1 {
if compute_q {
let q = MatrixN::from_element_generic(dim, dim, N::one());
return Some((Some(q), m));
}
else {
return Some((None, m));
}
}
// Specialization would make this easier.
else if dim.value() == 2 {
return decompose_2x2(m, compute_q);
}
let amax_m = m.amax();
m /= amax_m;
let hess = Hessenberg::new_with_workspace(m, work);
let mut q;
let mut t;
if compute_q {
// FIXME: could we work without unpacking? Using only the internal representation of
// hessenberg decomposition.
let (vecs, vals) = hess.unpack();
q = Some(vecs);
t = vals;
}
else {
q = None;
t = hess.unpack_h()
}
// Implicit double-shift QR method.
let mut niter = 0;
let (mut start, mut end) = Self::delimit_subproblem(&mut t, eps, dim.value() - 1);
while end != start {
let subdim = end - start + 1;
if subdim > 2 {
let m = end - 1;
let n = end;
let h11 = t[(start + 0, start + 0)];
let h12 = t[(start + 0, start + 1)];
let h21 = t[(start + 1, start + 0)];
let h22 = t[(start + 1, start + 1)];
let h32 = t[(start + 2, start + 1)];
let hnn = t[(n, n)];
let hmm = t[(m, m)];
let hnm = t[(n, m)];
let hmn = t[(m, n)];
let tra = hnn + hmm;
let det = hnn * hmm - hnm * hmn;
let mut axis = Vector3::new(h11 * h11 + h12 * h21 - tra * h11 + det,
h21 * (h11 + h22 - tra),
h21 * h32);
for k in start .. n - 1 {
let (norm, not_zero) = householder::reflection_axis_mut(&mut axis);
if not_zero {
if k > start {
t[(k + 0, k - 1)] = norm;
t[(k + 1, k - 1)] = N::zero();
t[(k + 2, k - 1)] = N::zero();
}
let refl = Reflection::new(Unit::new_unchecked(axis), N::zero());
{
let krows = cmp::min(k + 4, end + 1);
let mut work = work.rows_mut(0, krows);
refl.reflect(&mut t.generic_slice_mut((k, k), (U3, Dynamic::new(dim.value() - k))));
refl.reflect_rows(&mut t.generic_slice_mut((0, k), (Dynamic::new(krows), U3)), &mut work);
}
if let Some(ref mut q) = q {
refl.reflect_rows(&mut q.generic_slice_mut((0, k), (dim, U3)), work);
}
}
axis.x = t[(k + 1, k)];
axis.y = t[(k + 2, k)];
if k < n - 2 {
axis.z = t[(k + 3, k)];
}
}
let mut axis = Vector2::new(axis.x, axis.y);
let (norm, not_zero) = householder::reflection_axis_mut(&mut axis);
if not_zero {
let refl = Reflection::new(Unit::new_unchecked(axis), N::zero());
t[(m, m - 1)] = norm;
t[(n, m - 1)] = N::zero();
{
let mut work = work.rows_mut(0, end + 1);
refl.reflect(&mut t.generic_slice_mut((m, m), (U2, Dynamic::new(dim.value() - m))));
refl.reflect_rows(&mut t.generic_slice_mut((0, m), (Dynamic::new(end + 1), U2)), &mut work);
}
if let Some(ref mut q) = q {
refl.reflect_rows(&mut q.generic_slice_mut((0, m), (dim, U2)), work);
}
}
}
else {
// Decouple the 2x2 block if it has real eigenvalues.
if let Some(rot) = compute_2x2_basis(&t.fixed_slice::<U2, U2>(start, start)) {
let inv_rot = rot.inverse();
inv_rot.rotate(&mut t.generic_slice_mut((start, start), (U2, Dynamic::new(dim.value() - start))));
rot.rotate_rows(&mut t.generic_slice_mut((0, start), (Dynamic::new(end + 1), U2)));
t[(end, start)] = N::zero();
if let Some(ref mut q) = q {
rot.rotate_rows(&mut q.generic_slice_mut((0, start), (dim, U2)));
}
}
// Check if we reached the beginning of the matrix.
if end > 2 {
end -= 2;
}
else {
break;
}
}
let sub = Self::delimit_subproblem(&mut t, eps, end);
start = sub.0;
end = sub.1;
niter += 1;
if niter == max_niter {
return None;
}
}
t *= amax_m;
Some((q, t))
}
/// Computes the eigenvalues of the decomposed matrix.
fn do_eigenvalues(t: &MatrixN<N, D>, out: &mut VectorN<N, D>) -> bool {
let dim = t.nrows();
let mut m = 0;
while m < dim - 1 {
let n = m + 1;
if t[(n, m)].is_zero() {
out[m] = t[(m, m)];
m += 1;
}
else {
// Complex eigenvalue.
return false;
}
}
if m == dim - 1 {
out[m] = t[(m, m)];
}
true
}
/// Computes the complex eigenvalues of the decomposed matrix.
fn do_complex_eigenvalues(t: &MatrixN<N, D>, out: &mut VectorN<Complex<N>, D>)
where DefaultAllocator: Allocator<Complex<N>, D> {
let dim = t.nrows();
let mut m = 0;
while m < dim - 1 {
let n = m + 1;
if t[(n, m)].is_zero() {
out[m] = Complex::new(t[(m, m)], N::zero());
m += 1;
}
else {
// Solve the 2x2 eigenvalue subproblem.
let hmm = t[(m, m)];
let hnm = t[(n, m)];
let hmn = t[(m, n)];
let hnn = t[(n, n)];
let tra = hnn + hmm;
let det = hnn * hmm - hnm * hmn;
let discr = tra * tra * ::convert(0.25) - det;
// All 2x2 blocks have negative discriminant because we already decoupled those
// with positive eigenvalues..
let sqrt_discr = Complex::new(N::zero(), (-discr).sqrt());
out[m] = Complex::new(tra * ::convert(0.5), N::zero()) + sqrt_discr;
out[m + 1] = Complex::new(tra * ::convert(0.5), N::zero()) - sqrt_discr;
m += 2;
}
}
if m == dim - 1 {
out[m] = Complex::new(t[(m, m)], N::zero());
}
}
fn delimit_subproblem(t: &mut MatrixN<N, D>, eps: N, end: usize) -> (usize, usize)
where D: DimSub<U1>,
DefaultAllocator: Allocator<N, DimDiff<D, U1>> {
let mut n = end;
while n > 0 {
let m = n - 1;
if t[(n, m)].abs() <= eps * (t[(n, n)].abs() + t[(m, m)].abs()) {
t[(n, m)] = N::zero();
}
else {
break;
}
n -= 1;
}
if n == 0 {
return (0, 0);
}
let mut new_start = n - 1;
while new_start > 0 {
let m = new_start - 1;
let off_diag = t[(new_start, m)];
if off_diag.is_zero() ||
off_diag.abs() <= eps * (t[(new_start, new_start)].abs() + t[(m, m)].abs()) {
t[(new_start, m)] = N::zero();
break;
}
new_start -= 1;
}
(new_start, n)
}
/// Retrieves the unitary matrix `Q` and the upper-quasitriangular matrix `T` such that the
/// decomposed matrix equals `Q * T * Q.transpose()`.
pub fn unpack(self) -> (MatrixN<N, D>, MatrixN<N, D>) {
(self.q, self.t)
}
/// Computes the real eigenvalues of the decomposed matrix.
///
/// Return `None` if some eigenvalues are complex.
pub fn eigenvalues(&self) -> Option<VectorN<N, D>> {
let mut out = unsafe { VectorN::new_uninitialized_generic(self.t.data.shape().0, U1) };
if Self::do_eigenvalues(&self.t, &mut out) {
Some(out)
}
else {
None
}
}
/// Computes the complex eigenvalues of the decomposed matrix.
pub fn complex_eigenvalues(&self) -> VectorN<Complex<N>, D>
where DefaultAllocator: Allocator<Complex<N>, D> {
let mut out = unsafe { VectorN::new_uninitialized_generic(self.t.data.shape().0, U1) };
Self::do_complex_eigenvalues(&self.t, &mut out);
out
}
}
fn decompose_2x2<N: Real, D: Dim>(mut m: MatrixN<N, D>, compute_q: bool)
-> Option<(Option<MatrixN<N, D>>, MatrixN<N, D>)>
where DefaultAllocator: Allocator<N, D, D> {
let dim = m.data.shape().0;
let mut q = None;
match compute_2x2_basis(&m.fixed_slice::<U2, U2>(0, 0)) {
Some(rot) => {
let mut m = m.fixed_slice_mut::<U2, U2>(0, 0);
let inv_rot = rot.inverse();
inv_rot.rotate(&mut m);
rot.rotate_rows(&mut m);
if compute_q {
let c = rot.unwrap();
// XXX: we have to build the matrix manually because
// rot.to_rotation_matrix().unwrap() causes an ICE.
q = Some(MatrixN::from_column_slice_generic(dim, dim, &[c.re, c.im,
-c.im, c.re]));
}
},
None => if compute_q { q = Some(MatrixN::identity_generic(dim, dim)); }
};
Some((q, m))
}
fn compute_2x2_eigvals<N: Real, S: Storage<N, U2, U2>>(m: &SquareMatrix<N, U2, S>)
-> Option<(N, N)> {
// Solve the 2x2 eigenvalue subproblem.
let h00 = m[(0, 0)];
let h10 = m[(1, 0)];
let h01 = m[(0, 1)];
let h11 = m[(1, 1)];
// NOTE: this discriminant computation is mor stable than the
// one based on the trace and determinant: 0.25 * tra * tra - det
// because et ensures positiveness for symmetric matrices.
let val = (h00 - h11) * ::convert(0.5);
let discr = h10 * h01 + val * val;
if discr >= N::zero() {
let sqrt_discr = discr.sqrt();
let half_tra = (h00 + h11) * ::convert(0.5);
Some((half_tra + sqrt_discr, half_tra - sqrt_discr))
}
else {
None
}
}
// Computes the 2x2 transformation that upper-triangulates a 2x2 matrix with real eigenvalues.
/// Computes the singular vectors for a 2x2 matrix.
///
/// Returns `None` if the matrix has complex eigenvalues, or is upper-triangular. In both case,
/// the basis is the identity.
fn compute_2x2_basis<N: Real, S: Storage<N, U2, U2>>(m: &SquareMatrix<N, U2, S>)
-> Option<UnitComplex<N>> {
let h10 = m[(1, 0)];
if h10.is_zero() {
return None;
}
if let Some((eigval1, eigval2)) = compute_2x2_eigvals(m) {
let x1 = m[(1, 1)] - eigval1;
let x2 = m[(1, 1)] - eigval2;
// NOTE: Choose the one that yields a larger x component.
// This is necessary for numerical stability of the normalization of the complex
// number.
let basis = if x1.abs() > x2.abs() {
Complex::new(x1, -h10)
}
else {
Complex::new(x2, -h10)
};
Some(UnitComplex::from_complex(basis))
}
else {
None
}
}
impl<N: Real, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S>
where D: DimSub<U1>, // For Hessenberg.
ShapeConstraint: DimEq<Dynamic, DimDiff<D, U1>>, // For Hessenberg.
DefaultAllocator: Allocator<N, D, DimDiff<D, U1>> + // For Hessenberg.
Allocator<N, DimDiff<D, U1>> + // For Hessenberg.
Allocator<N, D, D> +
Allocator<N, D> {
/// Computes the schur decomposition of a square matrix.
pub fn real_schur(self) -> RealSchur<N, D> {
RealSchur::new(self.into_owned())
}
/// Attempts to compute the schur decomposition of a square matrix.
///
/// If only eigenvalues are needed, it is more efficient to call the matrix method
/// `.eigenvalues()` instead.
///
/// # Arguments
///
/// * `eps` tolerence used to determine when a value converged to 0.
/// * `max_niter` maximum total number of iterations performed by the algorithm. If this
/// number of iteration is exceeded, `None` is returned. If `niter == 0`, then the algorithm
/// continues indefinitely until convergence.
pub fn try_real_schur(self, eps: N, max_niter: usize) -> Option<RealSchur<N, D>> {
RealSchur::try_new(self.into_owned(), eps, max_niter)
}
/// Computes the eigenvalues of this matrix.
pub fn eigenvalues(&self) -> Option<VectorN<N, D>> {
assert!(self.is_square(), "Unable to compute eigenvalues of a non-square matrix.");
let mut work = unsafe {
VectorN::new_uninitialized_generic(self.data.shape().0, U1)
};
// Special case for 2x2 natrices.
if self.nrows() == 2 {
// FIXME: can we avoid this slicing
// (which is needed here just to transform D to U2)?
let me = self.fixed_slice::<U2, U2>(0, 0);
return match compute_2x2_eigvals(&me) {
Some((a, b)) => {
work[0] = a;
work[1] = b;
Some(work)
},
None => None
}
}
// FIXME: add balancing?
let schur = RealSchur::do_decompose(self.clone_owned(), &mut work, N::default_epsilon(), 0, false).unwrap();
if RealSchur::do_eigenvalues(&schur.1, &mut work) {
Some(work)
}
else {
None
}
}
/// Computes the eigenvalues of this matrix.
pub fn complex_eigenvalues(&self) -> VectorN<Complex<N>, D>
// FIXME: add balancing?
where DefaultAllocator: Allocator<Complex<N>, D> {
let dim = self.data.shape().0;
let mut work = unsafe { VectorN::new_uninitialized_generic(dim, U1) };
let schur = RealSchur::do_decompose(self.clone_owned(), &mut work, N::default_epsilon(), 0, false).unwrap();
let mut eig = unsafe { VectorN::new_uninitialized_generic(dim, U1) };
RealSchur::do_complex_eigenvalues(&schur.1, &mut eig);
eig
}
}