forked from M-Labs/nalgebra
494 lines
17 KiB
Rust
494 lines
17 KiB
Rust
|
use std::cmp;
|
|||
|
use num_complex::Complex;
|
|||
|
use alga::general::Real;
|
|||
|
|
|||
|
use core::{DefaultAllocator, SquareMatrix, VectorN, MatrixN, Unit, Vector2, Vector3};
|
|||
|
use core::dimension::{Dim, DimSub, DimDiff, Dynamic, U1, U2, U3};
|
|||
|
use core::storage::Storage;
|
|||
|
use constraint::{ShapeConstraint, DimEq};
|
|||
|
use allocator::Allocator;
|
|||
|
|
|||
|
use linalg::householder;
|
|||
|
use linalg::Hessenberg;
|
|||
|
use geometry::{Reflection, UnitComplex};
|
|||
|
|
|||
|
|
|||
|
|
|||
|
/// Real RealSchur decomposition of a square matrix.
|
|||
|
pub struct RealSchur<N: Real, D: Dim>
|
|||
|
where DefaultAllocator: Allocator<N, D, D> +
|
|||
|
Allocator<N, D> {
|
|||
|
q: MatrixN<N, D>,
|
|||
|
t: MatrixN<N, D>
|
|||
|
}
|
|||
|
|
|||
|
impl<N: Real, D: Dim> RealSchur<N, D>
|
|||
|
where D: DimSub<U1>, // For Hessenberg.
|
|||
|
ShapeConstraint: DimEq<Dynamic, DimDiff<D, U1>>, // For Hessenberg.
|
|||
|
DefaultAllocator: Allocator<N, D, DimDiff<D, U1>> + // For Hessenberg.
|
|||
|
Allocator<N, DimDiff<D, U1>> + // For Hessenberg.
|
|||
|
Allocator<N, D, D> +
|
|||
|
Allocator<N, D> {
|
|||
|
|
|||
|
/// Computes the schur decomposition of a square matrix.
|
|||
|
pub fn new(m: MatrixN<N, D>) -> RealSchur<N, D> {
|
|||
|
Self::try_new(m, N::default_epsilon(), 0).unwrap()
|
|||
|
}
|
|||
|
|
|||
|
/// Computes the schur decomposition of a square matrix.
|
|||
|
///
|
|||
|
/// If only eigenvalues are needed, it is more efficient to call the matrix method
|
|||
|
/// `.eigenvalues()` instead.
|
|||
|
///
|
|||
|
/// # Arguments
|
|||
|
///
|
|||
|
/// * `eps` − tolerence used to determine when a value converged to 0.
|
|||
|
/// * `max_niter` − maximum total number of iterations performed by the algorithm. If this
|
|||
|
/// number of iteration is exceeded, `None` is returned. If `niter == 0`, then the algorithm
|
|||
|
/// continues indefinitely until convergence.
|
|||
|
pub fn try_new(m: MatrixN<N, D>, eps: N, max_niter: usize) -> Option<RealSchur<N, D>> {
|
|||
|
let mut work = unsafe { VectorN::new_uninitialized_generic(m.data.shape().0, U1) };
|
|||
|
|
|||
|
Self::do_decompose(m, &mut work, eps, max_niter, true).map(|(q, t)|
|
|||
|
RealSchur { q: q.unwrap(), t: t })
|
|||
|
}
|
|||
|
|
|||
|
fn do_decompose(mut m: MatrixN<N, D>, work: &mut VectorN<N, D>, eps: N, max_niter: usize, compute_q: bool)
|
|||
|
-> Option<(Option<MatrixN<N, D>>, MatrixN<N, D>)> {
|
|||
|
|
|||
|
assert!(m.is_square(),
|
|||
|
"Unable to compute the eigenvectors and eigenvalues of a non-square matrix.");
|
|||
|
|
|||
|
let dim = m.data.shape().0;
|
|||
|
|
|||
|
if dim.value() == 0 {
|
|||
|
let vecs = Some(MatrixN::from_element_generic(dim, dim, N::zero()));
|
|||
|
let vals = MatrixN::from_element_generic(dim, dim, N::zero());
|
|||
|
return Some((vecs, vals));
|
|||
|
}
|
|||
|
else if dim.value() == 1 {
|
|||
|
if compute_q {
|
|||
|
let q = MatrixN::from_element_generic(dim, dim, N::one());
|
|||
|
return Some((Some(q), m));
|
|||
|
}
|
|||
|
else {
|
|||
|
return Some((None, m));
|
|||
|
}
|
|||
|
}
|
|||
|
// Specialization would make this easier.
|
|||
|
else if dim.value() == 2 {
|
|||
|
return decompose_2x2(m, compute_q);
|
|||
|
}
|
|||
|
|
|||
|
let amax_m = m.amax();
|
|||
|
m /= amax_m;
|
|||
|
|
|||
|
let hess = Hessenberg::new_with_workspace(m, work);
|
|||
|
let mut q;
|
|||
|
let mut t;
|
|||
|
|
|||
|
if compute_q {
|
|||
|
// FIXME: could we work without unpacking? Using only the internal representation of
|
|||
|
// hessenberg decomposition.
|
|||
|
let (vecs, vals) = hess.unpack();
|
|||
|
q = Some(vecs);
|
|||
|
t = vals;
|
|||
|
}
|
|||
|
else {
|
|||
|
q = None;
|
|||
|
t = hess.unpack_h()
|
|||
|
}
|
|||
|
|
|||
|
// Implicit double-shift QR method.
|
|||
|
let mut niter = 0;
|
|||
|
let (mut start, mut end) = Self::delimit_subproblem(&mut t, eps, dim.value() - 1);
|
|||
|
|
|||
|
while end != start {
|
|||
|
let subdim = end - start + 1;
|
|||
|
|
|||
|
if subdim > 2 {
|
|||
|
let m = end - 1;
|
|||
|
let n = end;
|
|||
|
|
|||
|
let h11 = t[(start + 0, start + 0)];
|
|||
|
let h12 = t[(start + 0, start + 1)];
|
|||
|
let h21 = t[(start + 1, start + 0)];
|
|||
|
let h22 = t[(start + 1, start + 1)];
|
|||
|
let h32 = t[(start + 2, start + 1)];
|
|||
|
|
|||
|
let hnn = t[(n, n)];
|
|||
|
let hmm = t[(m, m)];
|
|||
|
let hnm = t[(n, m)];
|
|||
|
let hmn = t[(m, n)];
|
|||
|
|
|||
|
let tra = hnn + hmm;
|
|||
|
let det = hnn * hmm - hnm * hmn;
|
|||
|
|
|||
|
let mut axis = Vector3::new(h11 * h11 + h12 * h21 - tra * h11 + det,
|
|||
|
h21 * (h11 + h22 - tra),
|
|||
|
h21 * h32);
|
|||
|
|
|||
|
for k in start .. n - 1 {
|
|||
|
let (norm, not_zero) = householder::reflection_axis_mut(&mut axis);
|
|||
|
|
|||
|
if not_zero {
|
|||
|
if k > start {
|
|||
|
t[(k + 0, k - 1)] = norm;
|
|||
|
t[(k + 1, k - 1)] = N::zero();
|
|||
|
t[(k + 2, k - 1)] = N::zero();
|
|||
|
}
|
|||
|
|
|||
|
let refl = Reflection::new(Unit::new_unchecked(axis), N::zero());
|
|||
|
|
|||
|
{
|
|||
|
let krows = cmp::min(k + 4, end + 1);
|
|||
|
let mut work = work.rows_mut(0, krows);
|
|||
|
refl.reflect(&mut t.generic_slice_mut((k, k), (U3, Dynamic::new(dim.value() - k))));
|
|||
|
refl.reflect_rows(&mut t.generic_slice_mut((0, k), (Dynamic::new(krows), U3)), &mut work);
|
|||
|
}
|
|||
|
|
|||
|
if let Some(ref mut q) = q {
|
|||
|
refl.reflect_rows(&mut q.generic_slice_mut((0, k), (dim, U3)), work);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
axis.x = t[(k + 1, k)];
|
|||
|
axis.y = t[(k + 2, k)];
|
|||
|
|
|||
|
if k < n - 2 {
|
|||
|
axis.z = t[(k + 3, k)];
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
let mut axis = Vector2::new(axis.x, axis.y);
|
|||
|
let (norm, not_zero) = householder::reflection_axis_mut(&mut axis);
|
|||
|
|
|||
|
if not_zero {
|
|||
|
let refl = Reflection::new(Unit::new_unchecked(axis), N::zero());
|
|||
|
|
|||
|
t[(m, m - 1)] = norm;
|
|||
|
t[(n, m - 1)] = N::zero();
|
|||
|
|
|||
|
{
|
|||
|
let mut work = work.rows_mut(0, end + 1);
|
|||
|
refl.reflect(&mut t.generic_slice_mut((m, m), (U2, Dynamic::new(dim.value() - m))));
|
|||
|
refl.reflect_rows(&mut t.generic_slice_mut((0, m), (Dynamic::new(end + 1), U2)), &mut work);
|
|||
|
}
|
|||
|
|
|||
|
if let Some(ref mut q) = q {
|
|||
|
refl.reflect_rows(&mut q.generic_slice_mut((0, m), (dim, U2)), work);
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
else {
|
|||
|
// Decouple the 2x2 block if it has real eigenvalues.
|
|||
|
if let Some(rot) = compute_2x2_basis(&t.fixed_slice::<U2, U2>(start, start)) {
|
|||
|
let inv_rot = rot.inverse();
|
|||
|
inv_rot.rotate(&mut t.generic_slice_mut((start, start), (U2, Dynamic::new(dim.value() - start))));
|
|||
|
rot.rotate_rows(&mut t.generic_slice_mut((0, start), (Dynamic::new(end + 1), U2)));
|
|||
|
t[(end, start)] = N::zero();
|
|||
|
|
|||
|
if let Some(ref mut q) = q {
|
|||
|
rot.rotate_rows(&mut q.generic_slice_mut((0, start), (dim, U2)));
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
// Check if we reached the beginning of the matrix.
|
|||
|
if end > 2 {
|
|||
|
end -= 2;
|
|||
|
}
|
|||
|
else {
|
|||
|
break;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
let sub = Self::delimit_subproblem(&mut t, eps, end);
|
|||
|
|
|||
|
start = sub.0;
|
|||
|
end = sub.1;
|
|||
|
|
|||
|
niter += 1;
|
|||
|
if niter == max_niter {
|
|||
|
return None;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
t *= amax_m;
|
|||
|
|
|||
|
Some((q, t))
|
|||
|
}
|
|||
|
|
|||
|
/// Computes the eigenvalues of the decomposed matrix.
|
|||
|
fn do_eigenvalues(t: &MatrixN<N, D>, out: &mut VectorN<N, D>) -> bool {
|
|||
|
let dim = t.nrows();
|
|||
|
let mut m = 0;
|
|||
|
|
|||
|
while m < dim - 1 {
|
|||
|
let n = m + 1;
|
|||
|
|
|||
|
if t[(n, m)].is_zero() {
|
|||
|
out[m] = t[(m, m)];
|
|||
|
m += 1;
|
|||
|
}
|
|||
|
else {
|
|||
|
// Complex eigenvalue.
|
|||
|
return false;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
if m == dim - 1 {
|
|||
|
out[m] = t[(m, m)];
|
|||
|
}
|
|||
|
|
|||
|
true
|
|||
|
}
|
|||
|
|
|||
|
/// Computes the complex eigenvalues of the decomposed matrix.
|
|||
|
fn do_complex_eigenvalues(t: &MatrixN<N, D>, out: &mut VectorN<Complex<N>, D>)
|
|||
|
where DefaultAllocator: Allocator<Complex<N>, D> {
|
|||
|
let dim = t.nrows();
|
|||
|
let mut m = 0;
|
|||
|
|
|||
|
while m < dim - 1 {
|
|||
|
let n = m + 1;
|
|||
|
|
|||
|
if t[(n, m)].is_zero() {
|
|||
|
out[m] = Complex::new(t[(m, m)], N::zero());
|
|||
|
m += 1;
|
|||
|
}
|
|||
|
else {
|
|||
|
// Solve the 2x2 eigenvalue subproblem.
|
|||
|
let hmm = t[(m, m)];
|
|||
|
let hnm = t[(n, m)];
|
|||
|
let hmn = t[(m, n)];
|
|||
|
let hnn = t[(n, n)];
|
|||
|
|
|||
|
let tra = hnn + hmm;
|
|||
|
let det = hnn * hmm - hnm * hmn;
|
|||
|
let discr = tra * tra * ::convert(0.25) - det;
|
|||
|
|
|||
|
// All 2x2 blocks have negative discriminant because we already decoupled those
|
|||
|
// with positive eigenvalues..
|
|||
|
let sqrt_discr = Complex::new(N::zero(), (-discr).sqrt());
|
|||
|
|
|||
|
out[m] = Complex::new(tra * ::convert(0.5), N::zero()) + sqrt_discr;
|
|||
|
out[m + 1] = Complex::new(tra * ::convert(0.5), N::zero()) - sqrt_discr;
|
|||
|
|
|||
|
m += 2;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
if m == dim - 1 {
|
|||
|
out[m] = Complex::new(t[(m, m)], N::zero());
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
fn delimit_subproblem(t: &mut MatrixN<N, D>, eps: N, end: usize) -> (usize, usize)
|
|||
|
where D: DimSub<U1>,
|
|||
|
DefaultAllocator: Allocator<N, DimDiff<D, U1>> {
|
|||
|
|
|||
|
let mut n = end;
|
|||
|
|
|||
|
while n > 0 {
|
|||
|
let m = n - 1;
|
|||
|
|
|||
|
if t[(n, m)].abs() <= eps * (t[(n, n)].abs() + t[(m, m)].abs()) {
|
|||
|
t[(n, m)] = N::zero();
|
|||
|
}
|
|||
|
else {
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
n -= 1;
|
|||
|
}
|
|||
|
|
|||
|
if n == 0 {
|
|||
|
return (0, 0);
|
|||
|
}
|
|||
|
|
|||
|
let mut new_start = n - 1;
|
|||
|
while new_start > 0 {
|
|||
|
let m = new_start - 1;
|
|||
|
|
|||
|
let off_diag = t[(new_start, m)];
|
|||
|
if off_diag.is_zero() ||
|
|||
|
off_diag.abs() <= eps * (t[(new_start, new_start)].abs() + t[(m, m)].abs()) {
|
|||
|
t[(new_start, m)] = N::zero();
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
new_start -= 1;
|
|||
|
}
|
|||
|
|
|||
|
(new_start, n)
|
|||
|
}
|
|||
|
|
|||
|
/// Retrieves the unitary matrix `Q` and the upper-quasitriangular matrix `T` such that the
|
|||
|
/// decomposed matrix equals `Q * T * Q.transpose()`.
|
|||
|
pub fn unpack(self) -> (MatrixN<N, D>, MatrixN<N, D>) {
|
|||
|
(self.q, self.t)
|
|||
|
}
|
|||
|
|
|||
|
/// Computes the real eigenvalues of the decomposed matrix.
|
|||
|
///
|
|||
|
/// Return `None` if some eigenvalues are complex.
|
|||
|
pub fn eigenvalues(&self) -> Option<VectorN<N, D>> {
|
|||
|
let mut out = unsafe { VectorN::new_uninitialized_generic(self.t.data.shape().0, U1) };
|
|||
|
if Self::do_eigenvalues(&self.t, &mut out) {
|
|||
|
Some(out)
|
|||
|
}
|
|||
|
else {
|
|||
|
None
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/// Computes the complex eigenvalues of the decomposed matrix.
|
|||
|
pub fn complex_eigenvalues(&self) -> VectorN<Complex<N>, D>
|
|||
|
where DefaultAllocator: Allocator<Complex<N>, D> {
|
|||
|
let mut out = unsafe { VectorN::new_uninitialized_generic(self.t.data.shape().0, U1) };
|
|||
|
Self::do_complex_eigenvalues(&self.t, &mut out);
|
|||
|
out
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
fn decompose_2x2<N: Real, D: Dim>(mut m: MatrixN<N, D>, compute_q: bool)
|
|||
|
-> Option<(Option<MatrixN<N, D>>, MatrixN<N, D>)>
|
|||
|
where DefaultAllocator: Allocator<N, D, D> {
|
|||
|
|
|||
|
let dim = m.data.shape().0;
|
|||
|
let mut q = None;
|
|||
|
match compute_2x2_basis(&m.fixed_slice::<U2, U2>(0, 0)) {
|
|||
|
Some(rot) => {
|
|||
|
let mut m = m.fixed_slice_mut::<U2, U2>(0, 0);
|
|||
|
let inv_rot = rot.inverse();
|
|||
|
inv_rot.rotate(&mut m);
|
|||
|
rot.rotate_rows(&mut m);
|
|||
|
|
|||
|
if compute_q {
|
|||
|
let c = rot.unwrap();
|
|||
|
// XXX: we have to build the matrix manually because
|
|||
|
// rot.to_rotation_matrix().unwrap() causes an ICE.
|
|||
|
q = Some(MatrixN::from_column_slice_generic(dim, dim, &[c.re, c.im,
|
|||
|
-c.im, c.re]));
|
|||
|
}
|
|||
|
},
|
|||
|
None => if compute_q { q = Some(MatrixN::identity_generic(dim, dim)); }
|
|||
|
};
|
|||
|
|
|||
|
Some((q, m))
|
|||
|
}
|
|||
|
|
|||
|
fn compute_2x2_eigvals<N: Real, S: Storage<N, U2, U2>>(m: &SquareMatrix<N, U2, S>)
|
|||
|
-> Option<(N, N)> {
|
|||
|
|
|||
|
// Solve the 2x2 eigenvalue subproblem.
|
|||
|
let h00 = m[(0, 0)];
|
|||
|
let h10 = m[(1, 0)];
|
|||
|
let h01 = m[(0, 1)];
|
|||
|
let h11 = m[(1, 1)];
|
|||
|
|
|||
|
// NOTE: this discriminant computation is mor stable than the
|
|||
|
// one based on the trace and determinant: 0.25 * tra * tra - det
|
|||
|
// because et ensures positiveness for symmetric matrices.
|
|||
|
let val = (h00 - h11) * ::convert(0.5);
|
|||
|
let discr = h10 * h01 + val * val;
|
|||
|
|
|||
|
if discr >= N::zero() {
|
|||
|
let sqrt_discr = discr.sqrt();
|
|||
|
let half_tra = (h00 + h11) * ::convert(0.5);
|
|||
|
Some((half_tra + sqrt_discr, half_tra - sqrt_discr))
|
|||
|
}
|
|||
|
else {
|
|||
|
None
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
// Computes the 2x2 transformation that upper-triangulates a 2x2 matrix with real eigenvalues.
|
|||
|
/// Computes the singular vectors for a 2x2 matrix.
|
|||
|
///
|
|||
|
/// Returns `None` if the matrix has complex eigenvalues, or is upper-triangular. In both case,
|
|||
|
/// the basis is the identity.
|
|||
|
fn compute_2x2_basis<N: Real, S: Storage<N, U2, U2>>(m: &SquareMatrix<N, U2, S>)
|
|||
|
-> Option<UnitComplex<N>> {
|
|||
|
let h10 = m[(1, 0)];
|
|||
|
|
|||
|
if h10.is_zero() {
|
|||
|
return None;
|
|||
|
}
|
|||
|
|
|||
|
if let Some((eigval1, eigval2)) = compute_2x2_eigvals(m) {
|
|||
|
let x1 = m[(1, 1)] - eigval1;
|
|||
|
let x2 = m[(1, 1)] - eigval2;
|
|||
|
|
|||
|
// NOTE: Choose the one that yields a larger x component.
|
|||
|
// This is necessary for numerical stability of the normalization of the complex
|
|||
|
// number.
|
|||
|
let basis = if x1.abs() > x2.abs() {
|
|||
|
Complex::new(x1, -h10)
|
|||
|
}
|
|||
|
else {
|
|||
|
Complex::new(x2, -h10)
|
|||
|
};
|
|||
|
|
|||
|
Some(UnitComplex::from_complex(basis))
|
|||
|
}
|
|||
|
else {
|
|||
|
None
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
impl<N: Real, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S>
|
|||
|
where D: DimSub<U1>, // For Hessenberg.
|
|||
|
ShapeConstraint: DimEq<Dynamic, DimDiff<D, U1>>, // For Hessenberg.
|
|||
|
DefaultAllocator: Allocator<N, D, DimDiff<D, U1>> + // For Hessenberg.
|
|||
|
Allocator<N, DimDiff<D, U1>> + // For Hessenberg.
|
|||
|
Allocator<N, D, D> +
|
|||
|
Allocator<N, D> {
|
|||
|
/// Computes the eigenvalues of this matrix.
|
|||
|
pub fn eigenvalues(&self) -> Option<VectorN<N, D>> {
|
|||
|
assert!(self.is_square(), "Unable to compute eigenvalues of a non-square matrix.");
|
|||
|
|
|||
|
let mut work = unsafe {
|
|||
|
VectorN::new_uninitialized_generic(self.data.shape().0, U1)
|
|||
|
};
|
|||
|
|
|||
|
// Special case for 2x2 natrices.
|
|||
|
if self.nrows() == 2 {
|
|||
|
// FIXME: can we avoid this slicing
|
|||
|
// (which is needed here just to transform D to U2)?
|
|||
|
let me = self.fixed_slice::<U2, U2>(0, 0);
|
|||
|
return match compute_2x2_eigvals(&me) {
|
|||
|
Some((a, b)) => {
|
|||
|
work[0] = a;
|
|||
|
work[1] = b;
|
|||
|
Some(work)
|
|||
|
},
|
|||
|
None => None
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
// FIXME: add balancing?
|
|||
|
let schur = RealSchur::do_decompose(self.clone_owned(), &mut work, N::default_epsilon(), 0, false).unwrap();
|
|||
|
if RealSchur::do_eigenvalues(&schur.1, &mut work) {
|
|||
|
Some(work)
|
|||
|
}
|
|||
|
else {
|
|||
|
None
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/// Computes the eigenvalues of this matrix.
|
|||
|
pub fn complex_eigenvalues(&self) -> VectorN<Complex<N>, D>
|
|||
|
// FIXME: add balancing?
|
|||
|
where DefaultAllocator: Allocator<Complex<N>, D> {
|
|||
|
|
|||
|
let dim = self.data.shape().0;
|
|||
|
let mut work = unsafe { VectorN::new_uninitialized_generic(dim, U1) };
|
|||
|
|
|||
|
let schur = RealSchur::do_decompose(self.clone_owned(), &mut work, N::default_epsilon(), 0, false).unwrap();
|
|||
|
let mut eig = unsafe { VectorN::new_uninitialized_generic(dim, U1) };
|
|||
|
RealSchur::do_complex_eigenvalues(&schur.1, &mut eig);
|
|||
|
eig
|
|||
|
}
|
|||
|
}
|