nalgebra/src/linalg/cholesky.rs

302 lines
12 KiB
Rust
Raw Normal View History

#[cfg(feature = "serde-serialize")]
2018-10-22 13:00:10 +08:00
use serde::{Deserialize, Serialize};
2019-03-25 18:19:36 +08:00
use alga::general::ComplexField;
2019-03-23 21:29:07 +08:00
use crate::allocator::Allocator;
use crate::base::{DefaultAllocator, Matrix, MatrixMN, MatrixN, SquareMatrix};
use crate::constraint::{SameNumberOfRows, ShapeConstraint};
2019-11-03 20:26:18 +08:00
use crate::dimension::{Dim, DimAdd, DimSum, DimDiff, DimSub, Dynamic, U1};
2019-03-23 21:29:07 +08:00
use crate::storage::{Storage, StorageMut};
use crate::base::allocator::Reallocator;
2018-09-24 12:48:42 +08:00
/// The Cholesky decomposition of a symmetric-definite-positive matrix.
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[cfg_attr(
feature = "serde-serialize",
2019-11-02 21:59:07 +08:00
serde(bound(serialize = "DefaultAllocator: Allocator<N, D>,
MatrixN<N, D>: Serialize"))
)]
#[cfg_attr(
feature = "serde-serialize",
2019-11-02 21:59:07 +08:00
serde(bound(deserialize = "DefaultAllocator: Allocator<N, D>,
MatrixN<N, D>: Deserialize<'de>"))
)]
#[derive(Clone, Debug)]
2019-03-25 18:19:36 +08:00
pub struct Cholesky<N: ComplexField, D: Dim>
2019-11-02 21:59:07 +08:00
where
DefaultAllocator: Allocator<N, D, D>,
2018-02-02 19:26:35 +08:00
{
chol: MatrixN<N, D>,
}
2019-03-25 18:19:36 +08:00
impl<N: ComplexField, D: Dim> Copy for Cholesky<N, D>
2018-02-02 19:26:35 +08:00
where
DefaultAllocator: Allocator<N, D, D>,
MatrixN<N, D>: Copy,
2019-11-02 21:59:07 +08:00
{
}
2019-03-25 18:19:36 +08:00
impl<N: ComplexField, D: DimSub<Dynamic>> Cholesky<N, D>
2019-11-02 21:59:07 +08:00
where
DefaultAllocator: Allocator<N, D, D>,
2018-02-02 19:26:35 +08:00
{
/// Attempts to compute the Cholesky decomposition of `matrix`.
///
2018-09-24 12:48:42 +08:00
/// Returns `None` if the input matrix is not definite-positive. The input matrix is assumed
/// to be symmetric and only the lower-triangular part is read.
pub fn new(mut matrix: MatrixN<N, D>) -> Option<Self> {
assert!(matrix.is_square(), "The input matrix must be square.");
let n = matrix.nrows();
2018-02-02 19:26:35 +08:00
for j in 0..n {
for k in 0..j {
2018-12-03 04:00:08 +08:00
let factor = unsafe { -*matrix.get_unchecked((j, k)) };
let (mut col_j, col_k) = matrix.columns_range_pair_mut(j, k);
2018-02-02 19:26:35 +08:00
let mut col_j = col_j.rows_range_mut(j..);
let col_k = col_k.rows_range(j..);
col_j.axpy(factor.conjugate(), &col_k, N::one());
}
2018-12-03 04:00:08 +08:00
let diag = unsafe { *matrix.get_unchecked((j, j)) };
if !diag.is_zero() {
if let Some(denom) = diag.try_sqrt() {
unsafe {
*matrix.get_unchecked_mut((j, j)) = denom;
}
let mut col = matrix.slice_range_mut(j + 1.., j);
col /= denom;
continue;
}
}
// The diagonal element is either zero or its square root could not
// be taken (e.g. for negative real numbers).
return None;
}
Some(Cholesky { chol: matrix })
}
/// Retrieves the lower-triangular factor of the Cholesky decomposition with its strictly
/// upper-triangular part filled with zeros.
pub fn unpack(mut self) -> MatrixN<N, D> {
self.chol.fill_upper_triangle(N::zero(), 1);
self.chol
}
/// Retrieves the lower-triangular factor of the Cholesky decomposition, without zeroing-out
/// its strict upper-triangular part.
///
/// The values of the strict upper-triangular part are garbage and should be ignored by further
/// computations.
pub fn unpack_dirty(self) -> MatrixN<N, D> {
self.chol
}
/// Retrieves the lower-triangular factor of the Cholesky decomposition with its strictly
/// uppen-triangular part filled with zeros.
pub fn l(&self) -> MatrixN<N, D> {
self.chol.lower_triangle()
}
/// Retrieves the lower-triangular factor of the Cholesky decomposition, without zeroing-out
/// its strict upper-triangular part.
///
/// This is an allocation-less version of `self.l()`. The values of the strict upper-triangular
/// part are garbage and should be ignored by further computations.
pub fn l_dirty(&self) -> &MatrixN<N, D> {
&self.chol
}
/// Solves the system `self * x = b` where `self` is the decomposed matrix and `x` the unknown.
///
/// The result is stored on `b`.
pub fn solve_mut<R2: Dim, C2: Dim, S2>(&self, b: &mut Matrix<N, R2, C2, S2>)
2018-02-02 19:26:35 +08:00
where
S2: StorageMut<N, R2, C2>,
ShapeConstraint: SameNumberOfRows<R2, D>,
{
2017-08-16 00:24:34 +08:00
let _ = self.chol.solve_lower_triangular_mut(b);
let _ = self.chol.ad_solve_lower_triangular_mut(b);
}
/// Returns the solution of the system `self * x = b` where `self` is the decomposed matrix and
/// `x` the unknown.
pub fn solve<R2: Dim, C2: Dim, S2>(&self, b: &Matrix<N, R2, C2, S2>) -> MatrixMN<N, R2, C2>
2018-02-02 19:26:35 +08:00
where
2019-11-02 21:59:07 +08:00
S2: Storage<N, R2, C2>,
2018-02-02 19:26:35 +08:00
DefaultAllocator: Allocator<N, R2, C2>,
ShapeConstraint: SameNumberOfRows<R2, D>,
{
let mut res = b.clone_owned();
self.solve_mut(&mut res);
res
}
/// Computes the inverse of the decomposed matrix.
pub fn inverse(&self) -> MatrixN<N, D> {
let shape = self.chol.data.shape();
let mut res = MatrixN::identity_generic(shape.0, shape.1);
self.solve_mut(&mut res);
res
}
2019-11-02 21:59:07 +08:00
2019-11-02 23:49:57 +08:00
/// Given the Cholesky decomposition of a matrix `M`, a scalar `sigma` and a vector `v`,
2019-11-03 02:04:07 +08:00
/// performs a rank one update such that we end up with the decomposition of `M + sigma * v*v.adjoint()`.
2019-11-03 01:27:01 +08:00
pub fn rank_one_update<R2: Dim, S2>(&mut self, x: &Matrix<N, R2, U1, S2>, sigma: N::RealField)
where
2019-11-02 21:59:07 +08:00
S2: Storage<N, R2, U1>,
DefaultAllocator: Allocator<N, R2, U1>,
ShapeConstraint: SameNumberOfRows<R2, D>,
{
2019-11-03 02:05:39 +08:00
// heavily inspired by Eigen's `llt_rank_update_lower` implementation https://eigen.tuxfamily.org/dox/LLT_8h_source.html
2019-11-02 21:59:07 +08:00
let n = x.nrows();
2019-11-03 16:36:03 +08:00
assert_eq!(
n,
self.chol.nrows(),
"The input vector must be of the same size as the factorized matrix."
);
2019-11-03 02:04:07 +08:00
let mut x = x.clone_owned();
2019-11-03 01:27:01 +08:00
let mut beta = crate::one::<N::RealField>();
for j in 0..n {
2019-11-03 02:28:46 +08:00
// updates the diagonal
2019-11-03 02:04:07 +08:00
let diag = N::real(unsafe { *self.chol.get_unchecked((j, j)) });
let diag2 = diag * diag;
let xj = unsafe { *x.get_unchecked(j) };
let sigma_xj2 = sigma * N::modulus_squared(xj);
let gamma = diag2 * beta + sigma_xj2;
let new_diag = (diag2 + sigma_xj2 / beta).sqrt();
unsafe { *self.chol.get_unchecked_mut((j, j)) = N::from_real(new_diag) };
beta += sigma_xj2 / diag2;
2019-11-03 02:28:46 +08:00
// updates the terms of L
let mut xjplus = x.rows_range_mut(j + 1..);
let mut col_j = self.chol.slice_range_mut(j + 1.., j);
// temp_jplus -= (wj / N::from_real(diag)) * col_j;
xjplus.axpy(-xj / N::from_real(diag), &col_j, N::one());
if gamma != crate::zero::<N::RealField>() {
// col_j = N::from_real(nljj / diag) * col_j + (N::from_real(nljj * sigma / gamma) * N::conjugate(wj)) * temp_jplus;
col_j.axpy(
N::from_real(new_diag * sigma / gamma) * N::conjugate(xj),
&xjplus,
N::from_real(new_diag / diag),
);
2019-11-02 21:59:07 +08:00
}
}
}
/// Updates the decomposition such that we get the decomposition of a matrix with the given column `c` in the `j`th position.
/// Since the matrix is square, an identical row will be added in the `j`th row.
pub fn insert_column<R2: Dim, S2>(
self,
j: usize,
c: &Matrix<N, R2, U1, S2>,
) -> Cholesky<N, DimSum<D, U1>>
where
D: DimAdd<U1>,
DefaultAllocator: Reallocator<N, D, D, D, DimSum<D, U1>> + Reallocator<N, D, DimSum<D, U1>, DimSum<D, U1>, DimSum<D, U1>>,
S2: Storage<N, R2, U1>,
ShapeConstraint: SameNumberOfRows<R2, DimSum<D, U1>>,
{
let n = c.nrows();
assert_eq!(
n,
self.chol.nrows() + 1,
"The new column must have the size of the factored matrix plus one."
);
assert!(j < n, "j needs to be within the bound of the new matrix.");
// TODO what is the fastest way to produce the new matrix ?
2019-11-03 21:33:35 +08:00
let chol= self.chol.clone().insert_column(j, N::zero()).insert_row(j, N::zero());
// TODO see https://en.wikipedia.org/wiki/Cholesky_decomposition#Updating_the_decomposition
unimplemented!();
Cholesky { chol }
}
2019-11-03 20:26:18 +08:00
/// Updates the decomposition such that we get the decomposition of the factored matrix with its `j`th column removed.
/// Since the matrix is square, the `j`th row will also be removed.
pub fn remove_column(
self,
j: usize,
) -> Cholesky<N, DimDiff<D, U1>>
where
D: DimSub<U1>,
DefaultAllocator: Reallocator<N, D, D, D, DimDiff<D, U1>> + Reallocator<N, D, DimDiff<D, U1>, DimDiff<D, U1>, DimDiff<D, U1>>,
{
let n = self.chol.nrows();
2019-11-03 21:33:35 +08:00
assert!(n > 0, "The matrix needs at least one column.");
2019-11-03 20:26:18 +08:00
assert!(j < n, "j needs to be within the bound of the matrix.");
// TODO what is the fastest way to produce the new matrix ?
2019-11-03 21:33:35 +08:00
let mut chol= self.chol.clone().remove_column(j).remove_row(j);
// updates the corner
let mut corner = chol.slice_range_mut(j.., j..);
let colj = self.chol.slice_range(j+1.., j);
rank_one_update_helper(&mut corner, &colj, N::real(N::one()));
2019-11-03 20:26:18 +08:00
Cholesky { chol }
}
}
2019-03-25 18:19:36 +08:00
impl<N: ComplexField, D: DimSub<Dynamic>, S: Storage<N, D, D>> SquareMatrix<N, D, S>
2019-11-02 21:59:07 +08:00
where
DefaultAllocator: Allocator<N, D, D>,
2018-02-02 19:26:35 +08:00
{
/// Attempts to compute the Cholesky decomposition of this matrix.
///
2018-09-24 12:48:42 +08:00
/// Returns `None` if the input matrix is not definite-positive. The input matrix is assumed
/// to be symmetric and only the lower-triangular part is read.
pub fn cholesky(self) -> Option<Cholesky<N, D>> {
Cholesky::new(self.into_owned())
}
}
2019-11-03 21:33:35 +08:00
/// Given the Cholesky decomposition of a matrix `M`, a scalar `sigma` and a vector `v`,
/// performs a rank one update such that we end up with the decomposition of `M + sigma * v*v.adjoint()`.
fn rank_one_update_helper<N, D, S, R2, S2>(chol : &mut Matrix<N, D, D, S>, x: &Matrix<N, R2, U1, S2>, sigma: N::RealField)
where
N: ComplexField, D: DimSub<Dynamic>, R2: Dim,
S: StorageMut<N, D, D>,
S2: Storage<N, R2, U1>,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, R2, U1>,
ShapeConstraint: SameNumberOfRows<R2, D>,
{
// heavily inspired by Eigen's `llt_rank_update_lower` implementation https://eigen.tuxfamily.org/dox/LLT_8h_source.html
let n = x.nrows();
assert_eq!(
n,
chol.nrows(),
"The input vector must be of the same size as the factorized matrix."
);
let mut x = x.clone_owned();
let mut beta = crate::one::<N::RealField>();
for j in 0..n {
// updates the diagonal
let diag = N::real(unsafe { *chol.get_unchecked((j, j)) });
let diag2 = diag * diag;
let xj = unsafe { *x.get_unchecked(j) };
let sigma_xj2 = sigma * N::modulus_squared(xj);
let gamma = diag2 * beta + sigma_xj2;
let new_diag = (diag2 + sigma_xj2 / beta).sqrt();
unsafe { *chol.get_unchecked_mut((j, j)) = N::from_real(new_diag) };
beta += sigma_xj2 / diag2;
// updates the terms of L
let mut xjplus = x.rows_range_mut(j + 1..);
let mut col_j = chol.slice_range_mut(j + 1.., j);
// temp_jplus -= (wj / N::from_real(diag)) * col_j;
xjplus.axpy(-xj / N::from_real(diag), &col_j, N::one());
if gamma != crate::zero::<N::RealField>() {
// col_j = N::from_real(nljj / diag) * col_j + (N::from_real(nljj * sigma / gamma) * N::conjugate(wj)) * temp_jplus;
col_j.axpy(
N::from_real(new_diag * sigma / gamma) * N::conjugate(xj),
&xjplus,
N::from_real(new_diag / diag),
);
}
}
}