forked from M-Labs/nalgebra
113 lines
4.0 KiB
Rust
113 lines
4.0 KiB
Rust
|
use alga::general::Real;
|
||
|
|
||
|
use core::{DefaultAllocator, MatrixN, MatrixMN, Matrix};
|
||
|
use constraint::{ShapeConstraint, SameNumberOfRows};
|
||
|
use storage::{Storage, StorageMut};
|
||
|
use allocator::Allocator;
|
||
|
use dimension::{Dim, Dynamic, DimSub};
|
||
|
|
||
|
/// The cholesky decomposion of a symmetric-definite-positive matrix.
|
||
|
pub struct Cholesky<N: Real, D: Dim>
|
||
|
where DefaultAllocator: Allocator<N, D, D> {
|
||
|
chol: MatrixN<N, D>
|
||
|
}
|
||
|
|
||
|
impl<N: Real, D: DimSub<Dynamic>> Cholesky<N, D>
|
||
|
where DefaultAllocator: Allocator<N, D, D> {
|
||
|
/// Attempts to compute the sholesky decomposition of `matrix`.
|
||
|
///
|
||
|
/// Returns `None` if the input matrix is not definite-positive. The intput matrix is assumed
|
||
|
/// to be symmetric and only the lower-triangular part is read.
|
||
|
pub fn new(mut matrix: MatrixN<N, D>) -> Option<Self> {
|
||
|
assert!(matrix.is_square(), "The input matrix must be square.");
|
||
|
|
||
|
let n = matrix.nrows();
|
||
|
|
||
|
for j in 0 .. n {
|
||
|
for k in 0 .. j {
|
||
|
let factor = unsafe { -*matrix.get_unchecked(j, k) };
|
||
|
|
||
|
let (mut col_j, col_k) = matrix.columns_range_pair_mut(j, k);
|
||
|
let mut col_j = col_j.rows_range_mut(j ..);
|
||
|
let col_k = col_k.rows_range(j ..);
|
||
|
|
||
|
col_j.axpy(factor, &col_k, N::one());
|
||
|
}
|
||
|
|
||
|
let diag = unsafe { *matrix.get_unchecked(j, j) };
|
||
|
if diag > N::zero() {
|
||
|
let denom = diag.sqrt();
|
||
|
unsafe { *matrix.get_unchecked_mut(j, j) = denom; }
|
||
|
|
||
|
let mut col = matrix.slice_range_mut(j + 1 .., j);
|
||
|
col /= denom;
|
||
|
}
|
||
|
else {
|
||
|
return None;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
Some(Cholesky { chol: matrix })
|
||
|
}
|
||
|
|
||
|
/// Retrieves the lower-triangular factor of the cholesky decomposition.
|
||
|
pub fn unpack(mut self) -> MatrixN<N, D> {
|
||
|
self.chol.fill_upper_triangle(N::zero(), 1);
|
||
|
self.chol
|
||
|
}
|
||
|
|
||
|
/// Retrieves the lower-triangular factor of che cholesky decomposition, without zeroing-out
|
||
|
/// its strict upper-triangular part.
|
||
|
///
|
||
|
/// This is an allocation-less version of `self.l()`. The values of the strict upper-triangular
|
||
|
/// part are garbage and should be ignored by further computations.
|
||
|
pub fn unpack_dirty(self) -> MatrixN<N, D> {
|
||
|
self.chol
|
||
|
}
|
||
|
|
||
|
/// Retrieves the lower-triangular factor of the cholesky decomposition.
|
||
|
pub fn l(&self) -> MatrixN<N, D> {
|
||
|
self.chol.lower_triangle()
|
||
|
}
|
||
|
|
||
|
/// Retrieves the lower-triangular factor of the cholesky decomposition, without zeroing-out
|
||
|
/// its strict upper-triangular part.
|
||
|
///
|
||
|
/// This is an allocation-less version of `self.l()`. The values of the strict upper-triangular
|
||
|
/// part are garbage and should be ignored by further computations.
|
||
|
pub fn l_dirty(&self) -> &MatrixN<N, D> {
|
||
|
&self.chol
|
||
|
}
|
||
|
|
||
|
/// Solves the system `self * x = b` where `self` is the decomposed matrix and `x` the unknown.
|
||
|
///
|
||
|
/// The result is stored on `b`.
|
||
|
pub fn solve_mut<R2: Dim, C2: Dim, S2>(&self, b: &mut Matrix<N, R2, C2, S2>)
|
||
|
where S2: StorageMut<N, R2, C2>,
|
||
|
ShapeConstraint: SameNumberOfRows<R2, D> {
|
||
|
self.chol.solve_lower_triangular_mut(b);
|
||
|
self.chol.tr_solve_lower_triangular_mut(b);
|
||
|
}
|
||
|
|
||
|
/// Solves the system `self * x = b` where `self` is the decomposed matrix and `x` the unknown.
|
||
|
///
|
||
|
/// The result is stored on `b`.
|
||
|
pub fn solve<R2: Dim, C2: Dim, S2>(&self, b: &Matrix<N, R2, C2, S2>) -> MatrixMN<N, R2, C2>
|
||
|
where S2: StorageMut<N, R2, C2>,
|
||
|
DefaultAllocator: Allocator<N, R2, C2>,
|
||
|
ShapeConstraint: SameNumberOfRows<R2, D> {
|
||
|
let mut res = b.clone_owned();
|
||
|
self.solve_mut(&mut res);
|
||
|
res
|
||
|
}
|
||
|
|
||
|
/// Computes the inverse of the decomposed matrix.
|
||
|
pub fn inverse(&self) -> MatrixN<N, D> {
|
||
|
let shape = self.chol.data.shape();
|
||
|
let mut res = MatrixN::identity_generic(shape.0, shape.1);
|
||
|
|
||
|
self.solve_mut(&mut res);
|
||
|
res
|
||
|
}
|
||
|
}
|