2016-12-05 05:44:42 +08:00
|
|
|
#[cfg(feature = "arbitrary")]
|
|
|
|
use quickcheck::{Arbitrary, Gen};
|
|
|
|
|
|
|
|
use num::One;
|
|
|
|
use num_complex::Complex;
|
|
|
|
use rand::{Rand, Rng};
|
|
|
|
|
|
|
|
use alga::general::Real;
|
2018-05-19 23:15:15 +08:00
|
|
|
use base::allocator::Allocator;
|
|
|
|
use base::dimension::{U1, U2};
|
|
|
|
use base::storage::Storage;
|
|
|
|
use base::{DefaultAllocator, Unit, Vector};
|
2018-02-02 19:26:35 +08:00
|
|
|
use geometry::{Rotation, UnitComplex};
|
2016-12-05 05:44:42 +08:00
|
|
|
|
|
|
|
impl<N: Real> UnitComplex<N> {
|
|
|
|
/// The unit complex number multiplicative identity.
|
|
|
|
#[inline]
|
|
|
|
pub fn identity() -> Self {
|
|
|
|
Self::new_unchecked(Complex::new(N::one(), N::zero()))
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Builds the unit complex number corresponding to the rotation with the angle.
|
|
|
|
#[inline]
|
|
|
|
pub fn new(angle: N) -> Self {
|
2017-08-03 01:37:44 +08:00
|
|
|
let (sin, cos) = angle.sin_cos();
|
|
|
|
Self::from_cos_sin_unchecked(cos, sin)
|
2016-12-05 05:44:42 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/// Builds the unit complex number corresponding to the rotation with the angle.
|
|
|
|
///
|
|
|
|
/// Same as `Self::new(angle)`.
|
|
|
|
#[inline]
|
|
|
|
pub fn from_angle(angle: N) -> Self {
|
|
|
|
Self::new(angle)
|
|
|
|
}
|
|
|
|
|
2017-08-03 01:37:44 +08:00
|
|
|
/// Builds the unit complex number frow the sinus and cosinus of the rotation angle.
|
|
|
|
///
|
|
|
|
/// The input values are not checked.
|
|
|
|
#[inline]
|
|
|
|
pub fn from_cos_sin_unchecked(cos: N, sin: N) -> Self {
|
|
|
|
UnitComplex::new_unchecked(Complex::new(cos, sin))
|
|
|
|
}
|
|
|
|
|
2016-12-05 05:44:42 +08:00
|
|
|
/// Builds a unit complex rotation from an angle in radian wrapped in a 1-dimensional vector.
|
|
|
|
///
|
|
|
|
/// Equivalent to `Self::new(axisangle[0])`.
|
|
|
|
#[inline]
|
2017-08-03 01:37:44 +08:00
|
|
|
pub fn from_scaled_axis<SB: Storage<N, U1, U1>>(axisangle: Vector<N, U1, SB>) -> Self {
|
2016-12-05 05:44:42 +08:00
|
|
|
Self::from_angle(axisangle[0])
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Creates a new unit complex number from a complex number.
|
|
|
|
///
|
|
|
|
/// The input complex number will be normalized.
|
|
|
|
#[inline]
|
|
|
|
pub fn from_complex(q: Complex<N>) -> Self {
|
2017-08-03 01:37:44 +08:00
|
|
|
Self::from_complex_and_get(q).0
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Creates a new unit complex number from a complex number.
|
|
|
|
///
|
|
|
|
/// The input complex number will be normalized. Returns the complex number norm as well.
|
|
|
|
#[inline]
|
|
|
|
pub fn from_complex_and_get(q: Complex<N>) -> (Self, N) {
|
|
|
|
let norm = (q.im * q.im + q.re * q.re).sqrt();
|
|
|
|
(Self::new_unchecked(q / norm), norm)
|
2016-12-05 05:44:42 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/// Builds the unit complex number from the corresponding 2D rotation matrix.
|
|
|
|
#[inline]
|
2017-08-03 01:37:44 +08:00
|
|
|
pub fn from_rotation_matrix(rotmat: &Rotation<N, U2>) -> Self
|
2018-02-02 19:26:35 +08:00
|
|
|
where
|
|
|
|
DefaultAllocator: Allocator<N, U2, U2>,
|
|
|
|
{
|
2016-12-05 05:44:42 +08:00
|
|
|
Self::new_unchecked(Complex::new(rotmat[(0, 0)], rotmat[(1, 0)]))
|
|
|
|
}
|
|
|
|
|
|
|
|
/// The unit complex needed to make `a` and `b` be collinear and point toward the same
|
|
|
|
/// direction.
|
|
|
|
#[inline]
|
2017-08-03 01:37:44 +08:00
|
|
|
pub fn rotation_between<SB, SC>(a: &Vector<N, U2, SB>, b: &Vector<N, U2, SC>) -> Self
|
2018-02-02 19:26:35 +08:00
|
|
|
where
|
|
|
|
SB: Storage<N, U2, U1>,
|
|
|
|
SC: Storage<N, U2, U1>,
|
|
|
|
{
|
2016-12-05 05:44:42 +08:00
|
|
|
Self::scaled_rotation_between(a, b, N::one())
|
|
|
|
}
|
|
|
|
|
|
|
|
/// The smallest rotation needed to make `a` and `b` collinear and point toward the same
|
|
|
|
/// direction, raised to the power `s`.
|
|
|
|
#[inline]
|
2018-02-02 19:26:35 +08:00
|
|
|
pub fn scaled_rotation_between<SB, SC>(
|
|
|
|
a: &Vector<N, U2, SB>,
|
|
|
|
b: &Vector<N, U2, SC>,
|
|
|
|
s: N,
|
|
|
|
) -> Self
|
|
|
|
where
|
|
|
|
SB: Storage<N, U2, U1>,
|
|
|
|
SC: Storage<N, U2, U1>,
|
|
|
|
{
|
2018-03-09 00:30:59 +08:00
|
|
|
// FIXME: code duplication with Rotation.
|
|
|
|
if let (Some(na), Some(nb)) = (
|
|
|
|
Unit::try_new(a.clone_owned(), N::zero()),
|
|
|
|
Unit::try_new(b.clone_owned(), N::zero()),
|
|
|
|
) {
|
|
|
|
Self::scaled_rotation_between_axis(&na, &nb, s)
|
2018-02-02 19:26:35 +08:00
|
|
|
} else {
|
2016-12-05 05:44:42 +08:00
|
|
|
Self::identity()
|
|
|
|
}
|
|
|
|
}
|
2018-03-09 00:30:59 +08:00
|
|
|
|
|
|
|
/// The unit complex needed to make `a` and `b` be collinear and point toward the same
|
|
|
|
/// direction.
|
|
|
|
#[inline]
|
|
|
|
pub fn rotation_between_axis<SB, SC>(
|
|
|
|
a: &Unit<Vector<N, U2, SB>>,
|
|
|
|
b: &Unit<Vector<N, U2, SC>>,
|
|
|
|
) -> Self
|
|
|
|
where
|
|
|
|
SB: Storage<N, U2>,
|
|
|
|
SC: Storage<N, U2>,
|
|
|
|
{
|
|
|
|
Self::scaled_rotation_between_axis(a, b, N::one())
|
|
|
|
}
|
|
|
|
|
|
|
|
/// The smallest rotation needed to make `a` and `b` collinear and point toward the same
|
|
|
|
/// direction, raised to the power `s`.
|
|
|
|
#[inline]
|
|
|
|
pub fn scaled_rotation_between_axis<SB, SC>(
|
|
|
|
na: &Unit<Vector<N, U2, SB>>,
|
|
|
|
nb: &Unit<Vector<N, U2, SC>>,
|
|
|
|
s: N,
|
|
|
|
) -> Self
|
|
|
|
where
|
|
|
|
SB: Storage<N, U2>,
|
|
|
|
SC: Storage<N, U2>,
|
|
|
|
{
|
|
|
|
let sang = na.perp(&nb);
|
|
|
|
let cang = na.dot(&nb);
|
|
|
|
|
|
|
|
Self::from_angle(sang.atan2(cang) * s)
|
|
|
|
}
|
2016-12-05 05:44:42 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
impl<N: Real> One for UnitComplex<N> {
|
|
|
|
#[inline]
|
|
|
|
fn one() -> Self {
|
|
|
|
Self::identity()
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<N: Real + Rand> Rand for UnitComplex<N> {
|
|
|
|
#[inline]
|
|
|
|
fn rand<R: Rng>(rng: &mut R) -> Self {
|
|
|
|
UnitComplex::from_angle(N::rand(rng))
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-02-02 19:26:35 +08:00
|
|
|
#[cfg(feature = "arbitrary")]
|
2016-12-05 05:44:42 +08:00
|
|
|
impl<N: Real + Arbitrary> Arbitrary for UnitComplex<N> {
|
|
|
|
#[inline]
|
|
|
|
fn arbitrary<G: Gen>(g: &mut G) -> Self {
|
|
|
|
UnitComplex::from_angle(N::arbitrary(g))
|
|
|
|
}
|
|
|
|
}
|