forked from M-Labs/nalgebra
108 lines
3.2 KiB
Rust
108 lines
3.2 KiB
Rust
|
#[cfg(feature = "arbitrary")]
|
||
|
use quickcheck::{Arbitrary, Gen};
|
||
|
|
||
|
use num::One;
|
||
|
use num_complex::Complex;
|
||
|
use rand::{Rand, Rng};
|
||
|
|
||
|
use alga::general::Real;
|
||
|
use core::ColumnVector;
|
||
|
use core::dimension::{U1, U2};
|
||
|
use core::storage::Storage;
|
||
|
use geometry::{UnitComplex, RotationBase};
|
||
|
|
||
|
|
||
|
impl<N: Real> UnitComplex<N> {
|
||
|
/// The unit complex number multiplicative identity.
|
||
|
#[inline]
|
||
|
pub fn identity() -> Self {
|
||
|
Self::new_unchecked(Complex::new(N::one(), N::zero()))
|
||
|
}
|
||
|
|
||
|
/// Builds the unit complex number corresponding to the rotation with the angle.
|
||
|
#[inline]
|
||
|
pub fn new(angle: N) -> Self {
|
||
|
let (s, c) = angle.sin_cos();
|
||
|
UnitComplex::new_unchecked(Complex::new(c, s))
|
||
|
}
|
||
|
|
||
|
/// Builds the unit complex number corresponding to the rotation with the angle.
|
||
|
///
|
||
|
/// Same as `Self::new(angle)`.
|
||
|
#[inline]
|
||
|
pub fn from_angle(angle: N) -> Self {
|
||
|
Self::new(angle)
|
||
|
}
|
||
|
|
||
|
/// Builds a unit complex rotation from an angle in radian wrapped in a 1-dimensional vector.
|
||
|
///
|
||
|
/// Equivalent to `Self::new(axisangle[0])`.
|
||
|
#[inline]
|
||
|
pub fn from_scaled_axis<SB: Storage<N, U1, U1>>(axisangle: ColumnVector<N, U1, SB>) -> Self {
|
||
|
Self::from_angle(axisangle[0])
|
||
|
}
|
||
|
|
||
|
/// Creates a new unit complex number from a complex number.
|
||
|
///
|
||
|
/// The input complex number will be normalized.
|
||
|
#[inline]
|
||
|
pub fn from_complex(q: Complex<N>) -> Self {
|
||
|
Self::new_unchecked(q / (q.im * q.im + q.re * q.re).sqrt())
|
||
|
}
|
||
|
|
||
|
/// Builds the unit complex number from the corresponding 2D rotation matrix.
|
||
|
#[inline]
|
||
|
pub fn from_rotation_matrix<S: Storage<N, U2, U2>>(rotmat: &RotationBase<N, U2, S>) -> Self {
|
||
|
Self::new_unchecked(Complex::new(rotmat[(0, 0)], rotmat[(1, 0)]))
|
||
|
}
|
||
|
|
||
|
/// The unit complex needed to make `a` and `b` be collinear and point toward the same
|
||
|
/// direction.
|
||
|
#[inline]
|
||
|
pub fn rotation_between<SB, SC>(a: &ColumnVector<N, U2, SB>, b: &ColumnVector<N, U2, SC>) -> Self
|
||
|
where SB: Storage<N, U2, U1>,
|
||
|
SC: Storage<N, U2, U1> {
|
||
|
Self::scaled_rotation_between(a, b, N::one())
|
||
|
}
|
||
|
|
||
|
/// The smallest rotation needed to make `a` and `b` collinear and point toward the same
|
||
|
/// direction, raised to the power `s`.
|
||
|
#[inline]
|
||
|
pub fn scaled_rotation_between<SB, SC>(a: &ColumnVector<N, U2, SB>, b: &ColumnVector<N, U2, SC>, s: N) -> Self
|
||
|
where SB: Storage<N, U2, U1>,
|
||
|
SC: Storage<N, U2, U1> {
|
||
|
if let (Some(na), Some(nb)) = (a.try_normalize(N::zero()), b.try_normalize(N::zero())) {
|
||
|
let sang = na.perp(&nb);
|
||
|
let cang = na.dot(&nb);
|
||
|
|
||
|
Self::from_angle(sang.atan2(cang) * s)
|
||
|
}
|
||
|
else {
|
||
|
Self::identity()
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
impl<N: Real> One for UnitComplex<N> {
|
||
|
#[inline]
|
||
|
fn one() -> Self {
|
||
|
Self::identity()
|
||
|
}
|
||
|
}
|
||
|
|
||
|
impl<N: Real + Rand> Rand for UnitComplex<N> {
|
||
|
#[inline]
|
||
|
fn rand<R: Rng>(rng: &mut R) -> Self {
|
||
|
UnitComplex::from_angle(N::rand(rng))
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#[cfg(feature="arbitrary")]
|
||
|
impl<N: Real + Arbitrary> Arbitrary for UnitComplex<N> {
|
||
|
#[inline]
|
||
|
fn arbitrary<G: Gen>(g: &mut G) -> Self {
|
||
|
UnitComplex::from_angle(N::arbitrary(g))
|
||
|
|
||
|
}
|
||
|
}
|