forked from M-Labs/nalgebra
326 lines
6.7 KiB
Rust
326 lines
6.7 KiB
Rust
|
#[macro_escape];
|
||
|
|
||
|
macro_rules! mat_impl(
|
||
|
($t: ident, $dim: expr) => (
|
||
|
impl<N> $t<N>
|
||
|
{
|
||
|
#[inline]
|
||
|
pub fn new(mij: [N, ..$dim * $dim]) -> $t<N>
|
||
|
{ $t { mij: mij } }
|
||
|
}
|
||
|
)
|
||
|
)
|
||
|
|
||
|
macro_rules! one_impl(
|
||
|
($t: ident, [ $($value: ident)|+ ] ) => (
|
||
|
impl<N: Copy + One + Zero> One for $t<N>
|
||
|
{
|
||
|
#[inline]
|
||
|
fn one() -> $t<N>
|
||
|
{
|
||
|
let (_0, _1) = (Zero::zero::<N>(), One::one::<N>());
|
||
|
return $t::new( [ $( copy $value, )+ ] )
|
||
|
}
|
||
|
}
|
||
|
)
|
||
|
)
|
||
|
|
||
|
macro_rules! zero_impl(
|
||
|
($t: ident, [ $($value: ident)|+ ] ) => (
|
||
|
impl<N: Copy + Zero> Zero for $t<N>
|
||
|
{
|
||
|
#[inline]
|
||
|
fn zero() -> $t<N>
|
||
|
{
|
||
|
let _0 = Zero::zero();
|
||
|
return $t::new( [ $( copy $value, )+ ] )
|
||
|
}
|
||
|
|
||
|
#[inline]
|
||
|
fn is_zero(&self) -> bool
|
||
|
{ self.mij.iter().all(|e| e.is_zero()) }
|
||
|
}
|
||
|
)
|
||
|
)
|
||
|
|
||
|
macro_rules! dim_impl(
|
||
|
($t: ident, $dim: expr) => (
|
||
|
impl<N> Dim for $t<N>
|
||
|
{
|
||
|
#[inline]
|
||
|
fn dim() -> uint
|
||
|
{ $dim }
|
||
|
}
|
||
|
)
|
||
|
)
|
||
|
|
||
|
macro_rules! mat_indexing_impl(
|
||
|
($t: ident, $dim: expr) => (
|
||
|
impl<N: Copy> $t<N>
|
||
|
{
|
||
|
#[inline]
|
||
|
pub fn offset(&self, i: uint, j: uint) -> uint
|
||
|
{ i * $dim + j }
|
||
|
|
||
|
#[inline]
|
||
|
pub fn set(&mut self, i: uint, j: uint, t: &N)
|
||
|
{
|
||
|
self.mij[self.offset(i, j)] = copy *t
|
||
|
}
|
||
|
|
||
|
#[inline]
|
||
|
pub fn at(&self, i: uint, j: uint) -> N
|
||
|
{
|
||
|
copy self.mij[self.offset(i, j)]
|
||
|
}
|
||
|
}
|
||
|
)
|
||
|
)
|
||
|
|
||
|
macro_rules! mul_impl(
|
||
|
($t: ident, $dim: expr) => (
|
||
|
impl<N: Copy + Ring>
|
||
|
Mul<$t<N>, $t<N>> for $t<N>
|
||
|
{
|
||
|
fn mul(&self, other: &$t<N>) -> $t<N>
|
||
|
{
|
||
|
let mut res: $t<N> = Zero::zero();
|
||
|
|
||
|
for iterate(0u, $dim) |i|
|
||
|
{
|
||
|
for iterate(0u, $dim) |j|
|
||
|
{
|
||
|
let mut acc = Zero::zero::<N>();
|
||
|
|
||
|
for iterate(0u, $dim) |k|
|
||
|
{ acc = acc + self.at(i, k) * other.at(k, j); }
|
||
|
|
||
|
res.set(i, j, &acc);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
res
|
||
|
}
|
||
|
}
|
||
|
)
|
||
|
)
|
||
|
|
||
|
macro_rules! rmul_impl(
|
||
|
($t: ident, $v: ident, $dim: expr) => (
|
||
|
impl<N: Copy + Ring>
|
||
|
RMul<$v<N>> for $t<N>
|
||
|
{
|
||
|
fn rmul(&self, other: &$v<N>) -> $v<N>
|
||
|
{
|
||
|
let mut res : $v<N> = Zero::zero();
|
||
|
|
||
|
for iterate(0u, $dim) |i|
|
||
|
{
|
||
|
for iterate(0u, $dim) |j|
|
||
|
{ res.at[i] = res.at[i] + other.at[j] * self.at(i, j); }
|
||
|
}
|
||
|
|
||
|
res
|
||
|
}
|
||
|
}
|
||
|
)
|
||
|
)
|
||
|
|
||
|
macro_rules! lmul_impl(
|
||
|
($t: ident, $v: ident, $dim: expr) => (
|
||
|
impl<N: Copy + Ring>
|
||
|
LMul<$v<N>> for $t<N>
|
||
|
{
|
||
|
fn lmul(&self, other: &$v<N>) -> $v<N>
|
||
|
{
|
||
|
|
||
|
let mut res : $v<N> = Zero::zero();
|
||
|
|
||
|
for iterate(0u, $dim) |i|
|
||
|
{
|
||
|
for iterate(0u, $dim) |j|
|
||
|
{ res.at[i] = res.at[i] + other.at[j] * self.at(j, i); }
|
||
|
}
|
||
|
|
||
|
res
|
||
|
}
|
||
|
}
|
||
|
)
|
||
|
)
|
||
|
|
||
|
macro_rules! transform_impl(
|
||
|
($t: ident, $v: ident) => (
|
||
|
impl<N: Copy + DivisionRing + Eq>
|
||
|
Transform<$v<N>> for $t<N>
|
||
|
{
|
||
|
#[inline]
|
||
|
fn transform_vec(&self, v: &$v<N>) -> $v<N>
|
||
|
{ self.rmul(v) }
|
||
|
|
||
|
#[inline]
|
||
|
fn inv_transform(&self, v: &$v<N>) -> $v<N>
|
||
|
{ self.inverse().transform_vec(v) }
|
||
|
}
|
||
|
)
|
||
|
)
|
||
|
|
||
|
macro_rules! inv_impl(
|
||
|
($t: ident, $dim: expr) => (
|
||
|
impl<N: Copy + Eq + DivisionRing>
|
||
|
Inv for $t<N>
|
||
|
{
|
||
|
#[inline]
|
||
|
fn inverse(&self) -> $t<N>
|
||
|
{
|
||
|
let mut res : $t<N> = copy *self;
|
||
|
|
||
|
res.invert();
|
||
|
|
||
|
res
|
||
|
}
|
||
|
|
||
|
fn invert(&mut self)
|
||
|
{
|
||
|
let mut res: $t<N> = One::one();
|
||
|
let _0N: N = Zero::zero();
|
||
|
|
||
|
// inversion using Gauss-Jordan elimination
|
||
|
for iterate(0u, $dim) |k|
|
||
|
{
|
||
|
// search a non-zero value on the k-th column
|
||
|
// FIXME: would it be worth it to spend some more time searching for the
|
||
|
// max instead?
|
||
|
|
||
|
let mut n0 = k; // index of a non-zero entry
|
||
|
|
||
|
while (n0 != $dim)
|
||
|
{
|
||
|
if self.at(n0, k) != _0N
|
||
|
{ break; }
|
||
|
|
||
|
n0 = n0 + 1;
|
||
|
}
|
||
|
|
||
|
// swap pivot line
|
||
|
if n0 != k
|
||
|
{
|
||
|
for iterate(0u, $dim) |j|
|
||
|
{
|
||
|
let off_n0_j = self.offset(n0, j);
|
||
|
let off_k_j = self.offset(k, j);
|
||
|
|
||
|
swap(self.mij, off_n0_j, off_k_j);
|
||
|
swap(res.mij, off_n0_j, off_k_j);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
let pivot = self.at(k, k);
|
||
|
|
||
|
for iterate(k, $dim) |j|
|
||
|
{
|
||
|
let selfval = &(self.at(k, j) / pivot);
|
||
|
self.set(k, j, selfval);
|
||
|
}
|
||
|
|
||
|
for iterate(0u, $dim) |j|
|
||
|
{
|
||
|
let resval = &(res.at(k, j) / pivot);
|
||
|
res.set(k, j, resval);
|
||
|
}
|
||
|
|
||
|
for iterate(0u, $dim) |l|
|
||
|
{
|
||
|
if l != k
|
||
|
{
|
||
|
let normalizer = self.at(l, k);
|
||
|
|
||
|
for iterate(k, $dim) |j|
|
||
|
{
|
||
|
let selfval = &(self.at(l, j) - self.at(k, j) * normalizer);
|
||
|
self.set(l, j, selfval);
|
||
|
}
|
||
|
|
||
|
for iterate(0u, $dim) |j|
|
||
|
{
|
||
|
let resval = &(res.at(l, j) - res.at(k, j) * normalizer);
|
||
|
res.set(l, j, resval);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
*self = res;
|
||
|
}
|
||
|
}
|
||
|
)
|
||
|
)
|
||
|
|
||
|
macro_rules! transpose_impl(
|
||
|
($t: ident, $dim: expr) => (
|
||
|
impl<N: Copy> Transpose for $t<N>
|
||
|
{
|
||
|
#[inline]
|
||
|
fn transposed(&self) -> $t<N>
|
||
|
{
|
||
|
let mut res = copy *self;
|
||
|
|
||
|
res.transpose();
|
||
|
|
||
|
res
|
||
|
}
|
||
|
|
||
|
fn transpose(&mut self)
|
||
|
{
|
||
|
for iterate(1u, $dim) |i|
|
||
|
{
|
||
|
for iterate(0u, $dim - 1) |j|
|
||
|
{
|
||
|
let off_i_j = self.offset(i, j);
|
||
|
let off_j_i = self.offset(j, i);
|
||
|
|
||
|
swap(self.mij, off_i_j, off_j_i);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
)
|
||
|
)
|
||
|
|
||
|
macro_rules! approx_eq_impl(
|
||
|
($t: ident) => (
|
||
|
impl<N: ApproxEq<N>> ApproxEq<N> for $t<N>
|
||
|
{
|
||
|
#[inline]
|
||
|
fn approx_epsilon() -> N
|
||
|
{ ApproxEq::approx_epsilon::<N, N>() }
|
||
|
|
||
|
#[inline]
|
||
|
fn approx_eq(&self, other: &$t<N>) -> bool
|
||
|
{
|
||
|
let mut zip = self.mij.iter().zip(other.mij.iter());
|
||
|
|
||
|
do zip.all |(a, b)| { a.approx_eq(b) }
|
||
|
}
|
||
|
|
||
|
#[inline]
|
||
|
fn approx_eq_eps(&self, other: &$t<N>, epsilon: &N) -> bool
|
||
|
{
|
||
|
let mut zip = self.mij.iter().zip(other.mij.iter());
|
||
|
|
||
|
do zip.all |(a, b)| { a.approx_eq_eps(b, epsilon) }
|
||
|
}
|
||
|
}
|
||
|
)
|
||
|
)
|
||
|
|
||
|
macro_rules! rand_impl(
|
||
|
($t: ident, $param: ident, [ $($elem: ident)|+ ]) => (
|
||
|
impl<N: Rand> Rand for $t<N>
|
||
|
{
|
||
|
#[inline]
|
||
|
fn rand<R: Rng>($param: &mut R) -> $t<N>
|
||
|
{ $t::new([ $( $elem.gen(), )+ ]) }
|
||
|
}
|
||
|
)
|
||
|
)
|