#[macro_escape]; macro_rules! mat_impl( ($t: ident, $dim: expr) => ( impl $t { #[inline] pub fn new(mij: [N, ..$dim * $dim]) -> $t { $t { mij: mij } } } ) ) macro_rules! one_impl( ($t: ident, [ $($value: ident)|+ ] ) => ( impl One for $t { #[inline] fn one() -> $t { let (_0, _1) = (Zero::zero::(), One::one::()); return $t::new( [ $( copy $value, )+ ] ) } } ) ) macro_rules! zero_impl( ($t: ident, [ $($value: ident)|+ ] ) => ( impl Zero for $t { #[inline] fn zero() -> $t { let _0 = Zero::zero(); return $t::new( [ $( copy $value, )+ ] ) } #[inline] fn is_zero(&self) -> bool { self.mij.iter().all(|e| e.is_zero()) } } ) ) macro_rules! dim_impl( ($t: ident, $dim: expr) => ( impl Dim for $t { #[inline] fn dim() -> uint { $dim } } ) ) macro_rules! mat_indexing_impl( ($t: ident, $dim: expr) => ( impl $t { #[inline] pub fn offset(&self, i: uint, j: uint) -> uint { i * $dim + j } #[inline] pub fn set(&mut self, i: uint, j: uint, t: &N) { self.mij[self.offset(i, j)] = copy *t } #[inline] pub fn at(&self, i: uint, j: uint) -> N { copy self.mij[self.offset(i, j)] } } ) ) macro_rules! mul_impl( ($t: ident, $dim: expr) => ( impl Mul<$t, $t> for $t { fn mul(&self, other: &$t) -> $t { let mut res: $t = Zero::zero(); for iterate(0u, $dim) |i| { for iterate(0u, $dim) |j| { let mut acc = Zero::zero::(); for iterate(0u, $dim) |k| { acc = acc + self.at(i, k) * other.at(k, j); } res.set(i, j, &acc); } } res } } ) ) macro_rules! rmul_impl( ($t: ident, $v: ident, $dim: expr) => ( impl RMul<$v> for $t { fn rmul(&self, other: &$v) -> $v { let mut res : $v = Zero::zero(); for iterate(0u, $dim) |i| { for iterate(0u, $dim) |j| { res.at[i] = res.at[i] + other.at[j] * self.at(i, j); } } res } } ) ) macro_rules! lmul_impl( ($t: ident, $v: ident, $dim: expr) => ( impl LMul<$v> for $t { fn lmul(&self, other: &$v) -> $v { let mut res : $v = Zero::zero(); for iterate(0u, $dim) |i| { for iterate(0u, $dim) |j| { res.at[i] = res.at[i] + other.at[j] * self.at(j, i); } } res } } ) ) macro_rules! transform_impl( ($t: ident, $v: ident) => ( impl Transform<$v> for $t { #[inline] fn transform_vec(&self, v: &$v) -> $v { self.rmul(v) } #[inline] fn inv_transform(&self, v: &$v) -> $v { self.inverse().transform_vec(v) } } ) ) macro_rules! inv_impl( ($t: ident, $dim: expr) => ( impl Inv for $t { #[inline] fn inverse(&self) -> $t { let mut res : $t = copy *self; res.invert(); res } fn invert(&mut self) { let mut res: $t = One::one(); let _0N: N = Zero::zero(); // inversion using Gauss-Jordan elimination for iterate(0u, $dim) |k| { // search a non-zero value on the k-th column // FIXME: would it be worth it to spend some more time searching for the // max instead? let mut n0 = k; // index of a non-zero entry while (n0 != $dim) { if self.at(n0, k) != _0N { break; } n0 = n0 + 1; } // swap pivot line if n0 != k { for iterate(0u, $dim) |j| { let off_n0_j = self.offset(n0, j); let off_k_j = self.offset(k, j); swap(self.mij, off_n0_j, off_k_j); swap(res.mij, off_n0_j, off_k_j); } } let pivot = self.at(k, k); for iterate(k, $dim) |j| { let selfval = &(self.at(k, j) / pivot); self.set(k, j, selfval); } for iterate(0u, $dim) |j| { let resval = &(res.at(k, j) / pivot); res.set(k, j, resval); } for iterate(0u, $dim) |l| { if l != k { let normalizer = self.at(l, k); for iterate(k, $dim) |j| { let selfval = &(self.at(l, j) - self.at(k, j) * normalizer); self.set(l, j, selfval); } for iterate(0u, $dim) |j| { let resval = &(res.at(l, j) - res.at(k, j) * normalizer); res.set(l, j, resval); } } } } *self = res; } } ) ) macro_rules! transpose_impl( ($t: ident, $dim: expr) => ( impl Transpose for $t { #[inline] fn transposed(&self) -> $t { let mut res = copy *self; res.transpose(); res } fn transpose(&mut self) { for iterate(1u, $dim) |i| { for iterate(0u, $dim - 1) |j| { let off_i_j = self.offset(i, j); let off_j_i = self.offset(j, i); swap(self.mij, off_i_j, off_j_i); } } } } ) ) macro_rules! approx_eq_impl( ($t: ident) => ( impl> ApproxEq for $t { #[inline] fn approx_epsilon() -> N { ApproxEq::approx_epsilon::() } #[inline] fn approx_eq(&self, other: &$t) -> bool { let mut zip = self.mij.iter().zip(other.mij.iter()); do zip.all |(a, b)| { a.approx_eq(b) } } #[inline] fn approx_eq_eps(&self, other: &$t, epsilon: &N) -> bool { let mut zip = self.mij.iter().zip(other.mij.iter()); do zip.all |(a, b)| { a.approx_eq_eps(b, epsilon) } } } ) ) macro_rules! rand_impl( ($t: ident, $param: ident, [ $($elem: ident)|+ ]) => ( impl Rand for $t { #[inline] fn rand($param: &mut R) -> $t { $t::new([ $( $elem.gen(), )+ ]) } } ) )