nalgebra/src/structs/dvec_macros.rs

515 lines
16 KiB
Rust
Raw Normal View History

#![macro_escape]
macro_rules! dvec_impl(
($dvec: ident, $mul: ident, $div: ident, $add: ident, $sub: ident) => (
double_dispatch_binop_decl_trait!($dvec, $mul)
double_dispatch_binop_decl_trait!($dvec, $div)
double_dispatch_binop_decl_trait!($dvec, $add)
double_dispatch_binop_decl_trait!($dvec, $sub)
mul_redispatch_impl!($dvec, $mul)
div_redispatch_impl!($dvec, $div)
add_redispatch_impl!($dvec, $add)
sub_redispatch_impl!($dvec, $sub)
impl<N: Zero + Clone> $dvec<N> {
/// Builds a vector filled with zeros.
///
/// # Arguments
/// * `dim` - The dimension of the vector.
#[inline]
pub fn new_zeros(dim: uint) -> $dvec<N> {
$dvec::from_elem(dim, Zero::zero())
}
/// Tests if all components of the vector are zeroes.
#[inline]
pub fn is_zero(&self) -> bool {
self.as_slice().iter().all(|e| e.is_zero())
}
}
impl<N> $dvec<N> {
/// Slices this vector.
#[inline]
pub fn as_slice<'a>(&'a self) -> &'a [N] {
self.at.slice_to(self.len())
}
/// Mutably slices this vector.
#[inline]
pub fn as_mut_slice<'a>(&'a mut self) -> &'a mut [N] {
let len = self.len();
self.at.mut_slice_to(len)
}
}
impl<N: Clone> Indexable<uint, N> for $dvec<N> {
#[inline]
fn at(&self, i: uint) -> N {
assert!(i < self.len());
unsafe {
self.unsafe_at(i)
}
}
#[inline]
fn set(&mut self, i: uint, val: N) {
assert!(i < self.len());
unsafe {
self.unsafe_set(i, val);
}
}
#[inline]
fn swap(&mut self, i: uint, j: uint) {
assert!(i < self.len());
assert!(j < self.len());
self.as_mut_slice().swap(i, j);
}
#[inline]
fn shape(&self) -> uint {
self.len()
}
#[inline]
unsafe fn unsafe_at(&self, i: uint) -> N {
(*self.at.as_slice().unsafe_get(i)).clone()
}
#[inline]
unsafe fn unsafe_set(&mut self, i: uint, val: N) {
*self.at.as_mut_slice().unsafe_mut_ref(i) = val
}
}
2014-09-18 10:20:36 +08:00
impl<N> Index<uint, N> for $dvec<N> {
fn index(&self, i: &uint) -> &N {
&self.as_slice()[*i]
}
}
impl<N> IndexMut<uint, N> for $dvec<N> {
fn index_mut(&mut self, i: &uint) -> &mut N {
&mut self.as_mut_slice()[*i]
}
}
impl<N: One + Zero + Clone> $dvec<N> {
/// Builds a vector filled with ones.
///
/// # Arguments
/// * `dim` - The dimension of the vector.
#[inline]
pub fn new_ones(dim: uint) -> $dvec<N> {
$dvec::from_elem(dim, One::one())
}
}
impl<N: Rand + Zero> $dvec<N> {
/// Builds a vector filled with random values.
#[inline]
pub fn new_random(dim: uint) -> $dvec<N> {
$dvec::from_fn(dim, |_| rand::random())
}
}
impl<N> Iterable<N> for $dvec<N> {
#[inline]
fn iter<'l>(&'l self) -> Items<'l, N> {
self.as_slice().iter()
}
}
impl<N> IterableMut<N> for $dvec<N> {
#[inline]
fn mut_iter<'l>(&'l mut self) -> MutItems<'l, N> {
self.as_mut_slice().mut_iter()
}
}
impl<N: Clone + Float + ApproxEq<N> + $mul<N, $dvec<N>>> $dvec<N> {
/// Computes the canonical basis for the given dimension. A canonical basis is a set of
/// vectors, mutually orthogonal, with all its component equal to 0.0 except one which is equal
/// to 1.0.
pub fn canonical_basis_with_dim(dim: uint) -> Vec<$dvec<N>> {
let mut res : Vec<$dvec<N>> = Vec::new();
for i in range(0u, dim) {
let mut basis_element : $dvec<N> = $dvec::new_zeros(dim);
basis_element.set(i, One::one());
res.push(basis_element);
}
res
}
/// Computes a basis of the space orthogonal to the vector. If the input vector is of dimension
/// `n`, this will return `n - 1` vectors.
pub fn orthogonal_subspace_basis(&self) -> Vec<$dvec<N>> {
// compute the basis of the orthogonal subspace using Gram-Schmidt
// orthogonalization algorithm
let dim = self.len();
let mut res : Vec<$dvec<N>> = Vec::new();
for i in range(0u, dim) {
let mut basis_element : $dvec<N> = $dvec::new_zeros(self.len());
basis_element.set(i, One::one());
if res.len() == dim - 1 {
break;
}
let mut elt = basis_element.clone();
elt = elt - self * Dot::dot(&basis_element, self);
for v in res.iter() {
elt = elt - v * Dot::dot(&elt, v)
};
if !ApproxEq::approx_eq(&Norm::sqnorm(&elt), &Zero::zero()) {
res.push(Norm::normalize_cpy(&elt));
}
}
assert!(res.len() == dim - 1);
res
}
}
impl<N: Add<N, N> + Zero> $add<N, $dvec<N>> for $dvec<N> {
#[inline]
fn binop(left: &$dvec<N>, right: &$dvec<N>) -> $dvec<N> {
assert!(left.len() == right.len());
FromIterator::from_iter(left.as_slice().iter().zip(right.as_slice().iter()).map(|(a, b)| *a + *b))
}
}
impl<N: Sub<N, N> + Zero> $sub<N, $dvec<N>> for $dvec<N> {
#[inline]
fn binop(left: &$dvec<N>, right: &$dvec<N>) -> $dvec<N> {
assert!(left.len() == right.len());
FromIterator::from_iter(left.as_slice().iter().zip(right.as_slice().iter()).map(|(a, b)| *a - *b))
}
}
impl<N: Neg<N> + Zero> Neg<$dvec<N>> for $dvec<N> {
#[inline]
fn neg(&self) -> $dvec<N> {
FromIterator::from_iter(self.as_slice().iter().map(|a| -*a))
}
}
impl<N: Num + Clone> Dot<N> for $dvec<N> {
#[inline]
fn dot(a: &$dvec<N>, b: &$dvec<N>) -> N {
assert!(a.len() == b.len());
let mut res: N = Zero::zero();
for i in range(0u, a.len()) {
res = res + unsafe { a.unsafe_at(i) * b.unsafe_at(i) };
}
res
}
#[inline]
fn sub_dot(a: &$dvec<N>, b: &$dvec<N>, c: &$dvec<N>) -> N {
let mut res: N = Zero::zero();
for i in range(0u, a.len()) {
res = res + unsafe { (a.unsafe_at(i) - b.unsafe_at(i)) * c.unsafe_at(i) };
}
res
}
}
impl<N: Float + Clone> Norm<N> for $dvec<N> {
#[inline]
fn sqnorm(v: &$dvec<N>) -> N {
Dot::dot(v, v)
}
#[inline]
fn norm(v: &$dvec<N>) -> N {
Norm::sqnorm(v).sqrt()
}
#[inline]
fn normalize_cpy(v: &$dvec<N>) -> $dvec<N> {
let mut res : $dvec<N> = v.clone();
let _ = res.normalize();
res
}
#[inline]
fn normalize(&mut self) -> N {
let l = Norm::norm(self);
for n in self.as_mut_slice().mut_iter() {
*n = *n / l;
}
l
}
}
impl<N: ApproxEq<N>> ApproxEq<N> for $dvec<N> {
#[inline]
fn approx_epsilon(_: Option<$dvec<N>>) -> N {
ApproxEq::approx_epsilon(None::<N>)
}
#[inline]
fn approx_eq(a: &$dvec<N>, b: &$dvec<N>) -> bool {
let mut zip = a.as_slice().iter().zip(b.as_slice().iter());
zip.all(|(a, b)| ApproxEq::approx_eq(a, b))
}
#[inline]
fn approx_eq_eps(a: &$dvec<N>, b: &$dvec<N>, epsilon: &N) -> bool {
let mut zip = a.as_slice().iter().zip(b.as_slice().iter());
zip.all(|(a, b)| ApproxEq::approx_eq_eps(a, b, epsilon))
}
}
dvec_scalar_mul_impl!($dvec, f64, $mul)
dvec_scalar_mul_impl!($dvec, f32, $mul)
dvec_scalar_mul_impl!($dvec, u64, $mul)
dvec_scalar_mul_impl!($dvec, u32, $mul)
dvec_scalar_mul_impl!($dvec, u16, $mul)
dvec_scalar_mul_impl!($dvec, u8, $mul)
dvec_scalar_mul_impl!($dvec, i64, $mul)
dvec_scalar_mul_impl!($dvec, i32, $mul)
dvec_scalar_mul_impl!($dvec, i16, $mul)
dvec_scalar_mul_impl!($dvec, i8, $mul)
dvec_scalar_mul_impl!($dvec, uint, $mul)
dvec_scalar_mul_impl!($dvec, int, $mul)
dvec_scalar_div_impl!($dvec, f64, $div)
dvec_scalar_div_impl!($dvec, f32, $div)
dvec_scalar_div_impl!($dvec, u64, $div)
dvec_scalar_div_impl!($dvec, u32, $div)
dvec_scalar_div_impl!($dvec, u16, $div)
dvec_scalar_div_impl!($dvec, u8, $div)
dvec_scalar_div_impl!($dvec, i64, $div)
dvec_scalar_div_impl!($dvec, i32, $div)
dvec_scalar_div_impl!($dvec, i16, $div)
dvec_scalar_div_impl!($dvec, i8, $div)
dvec_scalar_div_impl!($dvec, uint, $div)
dvec_scalar_div_impl!($dvec, int, $div)
dvec_scalar_add_impl!($dvec, f64, $add)
dvec_scalar_add_impl!($dvec, f32, $add)
dvec_scalar_add_impl!($dvec, u64, $add)
dvec_scalar_add_impl!($dvec, u32, $add)
dvec_scalar_add_impl!($dvec, u16, $add)
dvec_scalar_add_impl!($dvec, u8, $add)
dvec_scalar_add_impl!($dvec, i64, $add)
dvec_scalar_add_impl!($dvec, i32, $add)
dvec_scalar_add_impl!($dvec, i16, $add)
dvec_scalar_add_impl!($dvec, i8, $add)
dvec_scalar_add_impl!($dvec, uint, $add)
dvec_scalar_add_impl!($dvec, int, $add)
dvec_scalar_sub_impl!($dvec, f64, $sub)
dvec_scalar_sub_impl!($dvec, f32, $sub)
dvec_scalar_sub_impl!($dvec, u64, $sub)
dvec_scalar_sub_impl!($dvec, u32, $sub)
dvec_scalar_sub_impl!($dvec, u16, $sub)
dvec_scalar_sub_impl!($dvec, u8, $sub)
dvec_scalar_sub_impl!($dvec, i64, $sub)
dvec_scalar_sub_impl!($dvec, i32, $sub)
dvec_scalar_sub_impl!($dvec, i16, $sub)
dvec_scalar_sub_impl!($dvec, i8, $sub)
dvec_scalar_sub_impl!($dvec, uint, $sub)
dvec_scalar_sub_impl!($dvec, int, $sub)
)
)
macro_rules! dvec_scalar_mul_impl (
($dvec: ident, $n: ident, $mul: ident) => (
impl $mul<$n, $dvec<$n>> for $n {
#[inline]
fn binop(left: &$dvec<$n>, right: &$n) -> $dvec<$n> {
FromIterator::from_iter(left.as_slice().iter().map(|a| a * *right))
}
}
)
)
macro_rules! dvec_scalar_div_impl (
($dvec: ident, $n: ident, $div: ident) => (
impl $div<$n, $dvec<$n>> for $n {
#[inline]
fn binop(left: &$dvec<$n>, right: &$n) -> $dvec<$n> {
FromIterator::from_iter(left.as_slice().iter().map(|a| a / *right))
}
}
)
)
macro_rules! dvec_scalar_add_impl (
($dvec: ident, $n: ident, $add: ident) => (
impl $add<$n, $dvec<$n>> for $n {
#[inline]
fn binop(left: &$dvec<$n>, right: &$n) -> $dvec<$n> {
FromIterator::from_iter(left.as_slice().iter().map(|a| a + *right))
}
}
)
)
macro_rules! dvec_scalar_sub_impl (
($dvec: ident, $n: ident, $sub: ident) => (
impl $sub<$n, $dvec<$n>> for $n {
#[inline]
fn binop(left: &$dvec<$n>, right: &$n) -> $dvec<$n> {
FromIterator::from_iter(left.as_slice().iter().map(|a| a - *right))
}
}
)
)
macro_rules! small_dvec_impl (
($dvec: ident, $dim: expr, $mul: ident, $div: ident, $add: ident, $sub: ident $(,$idx: expr)*) => (
impl<N> Collection for $dvec<N> {
#[inline]
fn len(&self) -> uint {
self.dim
}
}
impl<N: PartialEq> PartialEq for $dvec<N> {
#[inline]
fn eq(&self, other: &$dvec<N>) -> bool {
if self.len() != other.len() {
return false; // FIXME: fail instead?
}
for (a, b) in self.as_slice().iter().zip(other.as_slice().iter()) {
if *a != *b {
return false;
}
}
true
}
}
impl<N: Clone> Clone for $dvec<N> {
fn clone(&self) -> $dvec<N> {
let at: [N, ..$dim] = [ $( self.at[$idx].clone(), )* ];
$dvec {
at: at,
dim: self.dim
}
}
}
dvec_impl!($dvec, $mul, $div, $add, $sub)
)
)
macro_rules! small_dvec_from_impl (
($dvec: ident, $dim: expr $(,$zeros: expr)*) => (
impl<N: Clone + Zero> $dvec<N> {
/// Builds a vector filled with a constant.
#[inline]
pub fn from_elem(dim: uint, elem: N) -> $dvec<N> {
assert!(dim <= $dim);
let mut at: [N, ..$dim] = [ $( $zeros, )* ];
for n in at.mut_slice_to(dim).mut_iter() {
*n = elem.clone();
}
$dvec {
at: at,
dim: dim
}
}
}
impl<N: Clone + Zero> $dvec<N> {
/// Builds a vector filled with the components provided by a vector.
///
/// The vector must have at least `dim` elements.
#[inline]
pub fn from_slice(dim: uint, vec: &[N]) -> $dvec<N> {
assert!(dim <= vec.len() && dim <= $dim);
// FIXME: not safe.
let mut at: [N, ..$dim] = [ $( $zeros, )* ];
for (curr, other) in vec.iter().zip(at.mut_iter()) {
*other = curr.clone();
}
$dvec {
at: at,
dim: dim
}
}
}
impl<N: Zero> $dvec<N> {
/// Builds a vector filled with the result of a function.
#[inline(always)]
pub fn from_fn(dim: uint, f: |uint| -> N) -> $dvec<N> {
assert!(dim <= $dim);
let mut at: [N, ..$dim] = [ $( $zeros, )* ];
for i in range(0, dim) {
at[i] = f(i);
}
$dvec {
at: at,
dim: dim
}
}
}
impl<N: Zero> FromIterator<N> for $dvec<N> {
#[inline]
fn from_iter<I: Iterator<N>>(mut param: I) -> $dvec<N> {
let mut at: [N, ..$dim] = [ $( $zeros, )* ];
let mut dim = 0;
for n in param {
if dim == $dim {
break;
}
at[dim] = n;
dim = dim + 1;
}
$dvec {
at: at,
dim: dim
}
}
}
)
)