forked from M-Labs/nalgebra
503 lines
16 KiB
Rust
503 lines
16 KiB
Rust
|
#![macro_escape]
|
||
|
|
||
|
macro_rules! dvec_impl(
|
||
|
($dvec: ident, $mul: ident, $div: ident, $add: ident, $sub: ident) => (
|
||
|
double_dispatch_binop_decl_trait!($dvec, $mul)
|
||
|
double_dispatch_binop_decl_trait!($dvec, $div)
|
||
|
double_dispatch_binop_decl_trait!($dvec, $add)
|
||
|
double_dispatch_binop_decl_trait!($dvec, $sub)
|
||
|
|
||
|
mul_redispatch_impl!($dvec, $mul)
|
||
|
div_redispatch_impl!($dvec, $div)
|
||
|
add_redispatch_impl!($dvec, $add)
|
||
|
sub_redispatch_impl!($dvec, $sub)
|
||
|
|
||
|
impl<N: Zero + Clone> $dvec<N> {
|
||
|
/// Builds a vector filled with zeros.
|
||
|
///
|
||
|
/// # Arguments
|
||
|
/// * `dim` - The dimension of the vector.
|
||
|
#[inline]
|
||
|
pub fn new_zeros(dim: uint) -> $dvec<N> {
|
||
|
$dvec::from_elem(dim, Zero::zero())
|
||
|
}
|
||
|
|
||
|
/// Tests if all components of the vector are zeroes.
|
||
|
#[inline]
|
||
|
pub fn is_zero(&self) -> bool {
|
||
|
self.as_slice().iter().all(|e| e.is_zero())
|
||
|
}
|
||
|
}
|
||
|
|
||
|
impl<N> $dvec<N> {
|
||
|
/// Slices this vector.
|
||
|
#[inline]
|
||
|
pub fn as_slice<'a>(&'a self) -> &'a [N] {
|
||
|
self.at.slice_to(self.len())
|
||
|
}
|
||
|
|
||
|
/// Mutably slices this vector.
|
||
|
#[inline]
|
||
|
pub fn as_mut_slice<'a>(&'a mut self) -> &'a mut [N] {
|
||
|
let len = self.len();
|
||
|
self.at.mut_slice_to(len)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
impl<N: Clone> Indexable<uint, N> for $dvec<N> {
|
||
|
#[inline]
|
||
|
fn at(&self, i: uint) -> N {
|
||
|
assert!(i < self.len());
|
||
|
unsafe {
|
||
|
self.unsafe_at(i)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#[inline]
|
||
|
fn set(&mut self, i: uint, val: N) {
|
||
|
assert!(i < self.len());
|
||
|
unsafe {
|
||
|
self.unsafe_set(i, val);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#[inline]
|
||
|
fn swap(&mut self, i: uint, j: uint) {
|
||
|
assert!(i < self.len());
|
||
|
assert!(j < self.len());
|
||
|
self.as_mut_slice().swap(i, j);
|
||
|
}
|
||
|
|
||
|
#[inline]
|
||
|
fn shape(&self) -> uint {
|
||
|
self.len()
|
||
|
}
|
||
|
|
||
|
#[inline]
|
||
|
unsafe fn unsafe_at(&self, i: uint) -> N {
|
||
|
(*self.at.as_slice().unsafe_get(i)).clone()
|
||
|
}
|
||
|
|
||
|
#[inline]
|
||
|
unsafe fn unsafe_set(&mut self, i: uint, val: N) {
|
||
|
*self.at.as_mut_slice().unsafe_mut_ref(i) = val
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
impl<N: One + Zero + Clone> $dvec<N> {
|
||
|
/// Builds a vector filled with ones.
|
||
|
///
|
||
|
/// # Arguments
|
||
|
/// * `dim` - The dimension of the vector.
|
||
|
#[inline]
|
||
|
pub fn new_ones(dim: uint) -> $dvec<N> {
|
||
|
$dvec::from_elem(dim, One::one())
|
||
|
}
|
||
|
}
|
||
|
|
||
|
impl<N: Rand + Zero> $dvec<N> {
|
||
|
/// Builds a vector filled with random values.
|
||
|
#[inline]
|
||
|
pub fn new_random(dim: uint) -> $dvec<N> {
|
||
|
$dvec::from_fn(dim, |_| rand::random())
|
||
|
}
|
||
|
}
|
||
|
|
||
|
impl<N> Iterable<N> for $dvec<N> {
|
||
|
#[inline]
|
||
|
fn iter<'l>(&'l self) -> Items<'l, N> {
|
||
|
self.as_slice().iter()
|
||
|
}
|
||
|
}
|
||
|
|
||
|
impl<N> IterableMut<N> for $dvec<N> {
|
||
|
#[inline]
|
||
|
fn mut_iter<'l>(&'l mut self) -> MutItems<'l, N> {
|
||
|
self.as_mut_slice().mut_iter()
|
||
|
}
|
||
|
}
|
||
|
|
||
|
impl<N: Clone + Float + ApproxEq<N> + $mul<N, $dvec<N>>> $dvec<N> {
|
||
|
/// Computes the canonical basis for the given dimension. A canonical basis is a set of
|
||
|
/// vectors, mutually orthogonal, with all its component equal to 0.0 except one which is equal
|
||
|
/// to 1.0.
|
||
|
pub fn canonical_basis_with_dim(dim: uint) -> Vec<$dvec<N>> {
|
||
|
let mut res : Vec<$dvec<N>> = Vec::new();
|
||
|
|
||
|
for i in range(0u, dim) {
|
||
|
let mut basis_element : $dvec<N> = $dvec::new_zeros(dim);
|
||
|
|
||
|
basis_element.set(i, One::one());
|
||
|
|
||
|
res.push(basis_element);
|
||
|
}
|
||
|
|
||
|
res
|
||
|
}
|
||
|
|
||
|
/// Computes a basis of the space orthogonal to the vector. If the input vector is of dimension
|
||
|
/// `n`, this will return `n - 1` vectors.
|
||
|
pub fn orthogonal_subspace_basis(&self) -> Vec<$dvec<N>> {
|
||
|
// compute the basis of the orthogonal subspace using Gram-Schmidt
|
||
|
// orthogonalization algorithm
|
||
|
let dim = self.len();
|
||
|
let mut res : Vec<$dvec<N>> = Vec::new();
|
||
|
|
||
|
for i in range(0u, dim) {
|
||
|
let mut basis_element : $dvec<N> = $dvec::new_zeros(self.len());
|
||
|
|
||
|
basis_element.set(i, One::one());
|
||
|
|
||
|
if res.len() == dim - 1 {
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
let mut elt = basis_element.clone();
|
||
|
|
||
|
elt = elt - self * Dot::dot(&basis_element, self);
|
||
|
|
||
|
for v in res.iter() {
|
||
|
elt = elt - v * Dot::dot(&elt, v)
|
||
|
};
|
||
|
|
||
|
if !ApproxEq::approx_eq(&Norm::sqnorm(&elt), &Zero::zero()) {
|
||
|
res.push(Norm::normalize_cpy(&elt));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
assert!(res.len() == dim - 1);
|
||
|
|
||
|
res
|
||
|
}
|
||
|
}
|
||
|
|
||
|
impl<N: Add<N, N> + Zero> $add<N, $dvec<N>> for $dvec<N> {
|
||
|
#[inline]
|
||
|
fn binop(left: &$dvec<N>, right: &$dvec<N>) -> $dvec<N> {
|
||
|
assert!(left.len() == right.len());
|
||
|
FromIterator::from_iter(left.as_slice().iter().zip(right.as_slice().iter()).map(|(a, b)| *a + *b))
|
||
|
}
|
||
|
}
|
||
|
|
||
|
impl<N: Sub<N, N> + Zero> $sub<N, $dvec<N>> for $dvec<N> {
|
||
|
#[inline]
|
||
|
fn binop(left: &$dvec<N>, right: &$dvec<N>) -> $dvec<N> {
|
||
|
assert!(left.len() == right.len());
|
||
|
FromIterator::from_iter(left.as_slice().iter().zip(right.as_slice().iter()).map(|(a, b)| *a - *b))
|
||
|
}
|
||
|
}
|
||
|
|
||
|
impl<N: Neg<N> + Zero> Neg<$dvec<N>> for $dvec<N> {
|
||
|
#[inline]
|
||
|
fn neg(&self) -> $dvec<N> {
|
||
|
FromIterator::from_iter(self.as_slice().iter().map(|a| -*a))
|
||
|
}
|
||
|
}
|
||
|
|
||
|
impl<N: Num + Clone> Dot<N> for $dvec<N> {
|
||
|
#[inline]
|
||
|
fn dot(a: &$dvec<N>, b: &$dvec<N>) -> N {
|
||
|
assert!(a.len() == b.len());
|
||
|
|
||
|
let mut res: N = Zero::zero();
|
||
|
|
||
|
for i in range(0u, a.len()) {
|
||
|
res = res + unsafe { a.unsafe_at(i) * b.unsafe_at(i) };
|
||
|
}
|
||
|
|
||
|
res
|
||
|
}
|
||
|
|
||
|
#[inline]
|
||
|
fn sub_dot(a: &$dvec<N>, b: &$dvec<N>, c: &$dvec<N>) -> N {
|
||
|
let mut res: N = Zero::zero();
|
||
|
|
||
|
for i in range(0u, a.len()) {
|
||
|
res = res + unsafe { (a.unsafe_at(i) - b.unsafe_at(i)) * c.unsafe_at(i) };
|
||
|
}
|
||
|
|
||
|
res
|
||
|
}
|
||
|
}
|
||
|
|
||
|
impl<N: Float + Clone> Norm<N> for $dvec<N> {
|
||
|
#[inline]
|
||
|
fn sqnorm(v: &$dvec<N>) -> N {
|
||
|
Dot::dot(v, v)
|
||
|
}
|
||
|
|
||
|
#[inline]
|
||
|
fn norm(v: &$dvec<N>) -> N {
|
||
|
Norm::sqnorm(v).sqrt()
|
||
|
}
|
||
|
|
||
|
#[inline]
|
||
|
fn normalize_cpy(v: &$dvec<N>) -> $dvec<N> {
|
||
|
let mut res : $dvec<N> = v.clone();
|
||
|
|
||
|
let _ = res.normalize();
|
||
|
|
||
|
res
|
||
|
}
|
||
|
|
||
|
#[inline]
|
||
|
fn normalize(&mut self) -> N {
|
||
|
let l = Norm::norm(self);
|
||
|
|
||
|
for n in self.as_mut_slice().mut_iter() {
|
||
|
*n = *n / l;
|
||
|
}
|
||
|
|
||
|
l
|
||
|
}
|
||
|
}
|
||
|
|
||
|
impl<N: ApproxEq<N>> ApproxEq<N> for $dvec<N> {
|
||
|
#[inline]
|
||
|
fn approx_epsilon(_: Option<$dvec<N>>) -> N {
|
||
|
ApproxEq::approx_epsilon(None::<N>)
|
||
|
}
|
||
|
|
||
|
#[inline]
|
||
|
fn approx_eq(a: &$dvec<N>, b: &$dvec<N>) -> bool {
|
||
|
let mut zip = a.as_slice().iter().zip(b.as_slice().iter());
|
||
|
|
||
|
zip.all(|(a, b)| ApproxEq::approx_eq(a, b))
|
||
|
}
|
||
|
|
||
|
#[inline]
|
||
|
fn approx_eq_eps(a: &$dvec<N>, b: &$dvec<N>, epsilon: &N) -> bool {
|
||
|
let mut zip = a.as_slice().iter().zip(b.as_slice().iter());
|
||
|
|
||
|
zip.all(|(a, b)| ApproxEq::approx_eq_eps(a, b, epsilon))
|
||
|
}
|
||
|
}
|
||
|
|
||
|
dvec_scalar_mul_impl!($dvec, f64, $mul)
|
||
|
dvec_scalar_mul_impl!($dvec, f32, $mul)
|
||
|
dvec_scalar_mul_impl!($dvec, u64, $mul)
|
||
|
dvec_scalar_mul_impl!($dvec, u32, $mul)
|
||
|
dvec_scalar_mul_impl!($dvec, u16, $mul)
|
||
|
dvec_scalar_mul_impl!($dvec, u8, $mul)
|
||
|
dvec_scalar_mul_impl!($dvec, i64, $mul)
|
||
|
dvec_scalar_mul_impl!($dvec, i32, $mul)
|
||
|
dvec_scalar_mul_impl!($dvec, i16, $mul)
|
||
|
dvec_scalar_mul_impl!($dvec, i8, $mul)
|
||
|
dvec_scalar_mul_impl!($dvec, uint, $mul)
|
||
|
dvec_scalar_mul_impl!($dvec, int, $mul)
|
||
|
|
||
|
dvec_scalar_div_impl!($dvec, f64, $div)
|
||
|
dvec_scalar_div_impl!($dvec, f32, $div)
|
||
|
dvec_scalar_div_impl!($dvec, u64, $div)
|
||
|
dvec_scalar_div_impl!($dvec, u32, $div)
|
||
|
dvec_scalar_div_impl!($dvec, u16, $div)
|
||
|
dvec_scalar_div_impl!($dvec, u8, $div)
|
||
|
dvec_scalar_div_impl!($dvec, i64, $div)
|
||
|
dvec_scalar_div_impl!($dvec, i32, $div)
|
||
|
dvec_scalar_div_impl!($dvec, i16, $div)
|
||
|
dvec_scalar_div_impl!($dvec, i8, $div)
|
||
|
dvec_scalar_div_impl!($dvec, uint, $div)
|
||
|
dvec_scalar_div_impl!($dvec, int, $div)
|
||
|
|
||
|
dvec_scalar_add_impl!($dvec, f64, $add)
|
||
|
dvec_scalar_add_impl!($dvec, f32, $add)
|
||
|
dvec_scalar_add_impl!($dvec, u64, $add)
|
||
|
dvec_scalar_add_impl!($dvec, u32, $add)
|
||
|
dvec_scalar_add_impl!($dvec, u16, $add)
|
||
|
dvec_scalar_add_impl!($dvec, u8, $add)
|
||
|
dvec_scalar_add_impl!($dvec, i64, $add)
|
||
|
dvec_scalar_add_impl!($dvec, i32, $add)
|
||
|
dvec_scalar_add_impl!($dvec, i16, $add)
|
||
|
dvec_scalar_add_impl!($dvec, i8, $add)
|
||
|
dvec_scalar_add_impl!($dvec, uint, $add)
|
||
|
dvec_scalar_add_impl!($dvec, int, $add)
|
||
|
|
||
|
dvec_scalar_sub_impl!($dvec, f64, $sub)
|
||
|
dvec_scalar_sub_impl!($dvec, f32, $sub)
|
||
|
dvec_scalar_sub_impl!($dvec, u64, $sub)
|
||
|
dvec_scalar_sub_impl!($dvec, u32, $sub)
|
||
|
dvec_scalar_sub_impl!($dvec, u16, $sub)
|
||
|
dvec_scalar_sub_impl!($dvec, u8, $sub)
|
||
|
dvec_scalar_sub_impl!($dvec, i64, $sub)
|
||
|
dvec_scalar_sub_impl!($dvec, i32, $sub)
|
||
|
dvec_scalar_sub_impl!($dvec, i16, $sub)
|
||
|
dvec_scalar_sub_impl!($dvec, i8, $sub)
|
||
|
dvec_scalar_sub_impl!($dvec, uint, $sub)
|
||
|
dvec_scalar_sub_impl!($dvec, int, $sub)
|
||
|
)
|
||
|
)
|
||
|
|
||
|
macro_rules! dvec_scalar_mul_impl (
|
||
|
($dvec: ident, $n: ident, $mul: ident) => (
|
||
|
impl $mul<$n, $dvec<$n>> for $n {
|
||
|
#[inline]
|
||
|
fn binop(left: &$dvec<$n>, right: &$n) -> $dvec<$n> {
|
||
|
FromIterator::from_iter(left.as_slice().iter().map(|a| a * *right))
|
||
|
}
|
||
|
}
|
||
|
)
|
||
|
)
|
||
|
|
||
|
macro_rules! dvec_scalar_div_impl (
|
||
|
($dvec: ident, $n: ident, $div: ident) => (
|
||
|
impl $div<$n, $dvec<$n>> for $n {
|
||
|
#[inline]
|
||
|
fn binop(left: &$dvec<$n>, right: &$n) -> $dvec<$n> {
|
||
|
FromIterator::from_iter(left.as_slice().iter().map(|a| a / *right))
|
||
|
}
|
||
|
}
|
||
|
)
|
||
|
)
|
||
|
|
||
|
macro_rules! dvec_scalar_add_impl (
|
||
|
($dvec: ident, $n: ident, $add: ident) => (
|
||
|
impl $add<$n, $dvec<$n>> for $n {
|
||
|
#[inline]
|
||
|
fn binop(left: &$dvec<$n>, right: &$n) -> $dvec<$n> {
|
||
|
FromIterator::from_iter(left.as_slice().iter().map(|a| a + *right))
|
||
|
}
|
||
|
}
|
||
|
)
|
||
|
)
|
||
|
|
||
|
macro_rules! dvec_scalar_sub_impl (
|
||
|
($dvec: ident, $n: ident, $sub: ident) => (
|
||
|
impl $sub<$n, $dvec<$n>> for $n {
|
||
|
#[inline]
|
||
|
fn binop(left: &$dvec<$n>, right: &$n) -> $dvec<$n> {
|
||
|
FromIterator::from_iter(left.as_slice().iter().map(|a| a - *right))
|
||
|
}
|
||
|
}
|
||
|
)
|
||
|
)
|
||
|
|
||
|
macro_rules! small_dvec_impl (
|
||
|
($dvec: ident, $dim: expr, $mul: ident, $div: ident, $add: ident, $sub: ident $(,$idx: expr)*) => (
|
||
|
impl<N> Collection for $dvec<N> {
|
||
|
#[inline]
|
||
|
fn len(&self) -> uint {
|
||
|
self.dim
|
||
|
}
|
||
|
}
|
||
|
|
||
|
impl<N: PartialEq> PartialEq for $dvec<N> {
|
||
|
#[inline]
|
||
|
fn eq(&self, other: &$dvec<N>) -> bool {
|
||
|
if self.len() != other.len() {
|
||
|
return false; // FIXME: fail instead?
|
||
|
}
|
||
|
|
||
|
for (a, b) in self.as_slice().iter().zip(other.as_slice().iter()) {
|
||
|
if *a != *b {
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
true
|
||
|
}
|
||
|
}
|
||
|
|
||
|
impl<N: Clone> Clone for $dvec<N> {
|
||
|
fn clone(&self) -> $dvec<N> {
|
||
|
let at: [N, ..$dim] = [ $( self.at[$idx].clone(), )* ];
|
||
|
|
||
|
$dvec {
|
||
|
at: at,
|
||
|
dim: self.dim
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
dvec_impl!($dvec, $mul, $div, $add, $sub)
|
||
|
)
|
||
|
)
|
||
|
|
||
|
macro_rules! small_dvec_from_impl (
|
||
|
($dvec: ident, $dim: expr $(,$zeros: expr)*) => (
|
||
|
impl<N: Clone + Zero> $dvec<N> {
|
||
|
/// Builds a vector filled with a constant.
|
||
|
#[inline]
|
||
|
pub fn from_elem(dim: uint, elem: N) -> $dvec<N> {
|
||
|
assert!(dim <= $dim);
|
||
|
|
||
|
let mut at: [N, ..$dim] = [ $( $zeros, )* ];
|
||
|
|
||
|
for n in at.mut_slice_to(dim).mut_iter() {
|
||
|
*n = elem.clone();
|
||
|
}
|
||
|
|
||
|
$dvec {
|
||
|
at: at,
|
||
|
dim: dim
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
impl<N: Clone + Zero> $dvec<N> {
|
||
|
/// Builds a vector filled with the components provided by a vector.
|
||
|
///
|
||
|
/// The vector must have at least `dim` elements.
|
||
|
#[inline]
|
||
|
pub fn from_slice(dim: uint, vec: &[N]) -> $dvec<N> {
|
||
|
assert!(dim <= vec.len() && dim <= $dim);
|
||
|
|
||
|
// FIXME: not safe.
|
||
|
let mut at: [N, ..$dim] = [ $( $zeros, )* ];
|
||
|
|
||
|
for (curr, other) in vec.iter().zip(at.mut_iter()) {
|
||
|
*other = curr.clone();
|
||
|
}
|
||
|
|
||
|
$dvec {
|
||
|
at: at,
|
||
|
dim: dim
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
impl<N: Zero> $dvec<N> {
|
||
|
/// Builds a vector filled with the result of a function.
|
||
|
#[inline(always)]
|
||
|
pub fn from_fn(dim: uint, f: |uint| -> N) -> $dvec<N> {
|
||
|
assert!(dim <= $dim);
|
||
|
|
||
|
let mut at: [N, ..$dim] = [ $( $zeros, )* ];
|
||
|
|
||
|
for i in range(0, dim) {
|
||
|
at[i] = f(i);
|
||
|
}
|
||
|
|
||
|
$dvec {
|
||
|
at: at,
|
||
|
dim: dim
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
impl<N: Zero> FromIterator<N> for $dvec<N> {
|
||
|
#[inline]
|
||
|
fn from_iter<I: Iterator<N>>(mut param: I) -> $dvec<N> {
|
||
|
let mut at: [N, ..$dim] = [ $( $zeros, )* ];
|
||
|
|
||
|
let mut dim = 0;
|
||
|
|
||
|
for n in param {
|
||
|
if dim == $dim {
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
at[dim] = n;
|
||
|
|
||
|
dim = dim + 1;
|
||
|
}
|
||
|
|
||
|
$dvec {
|
||
|
at: at,
|
||
|
dim: dim
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
)
|
||
|
)
|