2018-10-31 00:29:32 +08:00
|
|
|
use alga::general::{ClosedAdd, ClosedMul};
|
|
|
|
use num::{One, Zero};
|
|
|
|
use std::iter;
|
|
|
|
use std::marker::PhantomData;
|
|
|
|
use std::mem;
|
|
|
|
use std::ops::{Add, Mul, Range};
|
|
|
|
use std::slice;
|
2018-10-30 14:46:34 +08:00
|
|
|
|
2018-10-31 00:29:32 +08:00
|
|
|
use allocator::Allocator;
|
|
|
|
use constraint::{AreMultipliable, DimEq, SameNumberOfRows, ShapeConstraint};
|
|
|
|
use sparse::{CsMatrix, CsStorage, CsStorageIter, CsVecStorage, CsVector};
|
|
|
|
use storage::{Storage, StorageMut};
|
|
|
|
use {DefaultAllocator, Dim, Matrix, MatrixMN, Real, Scalar, Vector, VectorN, U1};
|
|
|
|
|
|
|
|
pub struct CsCholesky<N: Real, D: Dim>
|
|
|
|
where
|
|
|
|
DefaultAllocator: Allocator<usize, D> + Allocator<N, D>,
|
|
|
|
{
|
|
|
|
// Non-zero pattern of the original matrix upper-triangular part.
|
|
|
|
// Unlike the original matrix, the `original_p` array does contain the last sentinel value
|
|
|
|
// equal to `original_i.len()` at the end.
|
|
|
|
original_p: Vec<usize>,
|
|
|
|
original_i: Vec<usize>,
|
|
|
|
original_len: usize, // Number of elements on the numerical value vector of the original matrix.
|
|
|
|
// Decomposition result.
|
|
|
|
l: CsMatrix<N, D, D>,
|
|
|
|
// Used only for the pattern.
|
|
|
|
// FIXME: store only the nonzero pattern instead.
|
|
|
|
u: CsMatrix<N, D, D>,
|
|
|
|
ok: bool,
|
|
|
|
// Workspaces.
|
|
|
|
work_x: VectorN<N, D>,
|
|
|
|
work_c: VectorN<usize, D>,
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<N: Real, D: Dim> CsCholesky<N, D>
|
|
|
|
where
|
|
|
|
DefaultAllocator: Allocator<usize, D> + Allocator<N, D>,
|
|
|
|
{
|
|
|
|
/// Computes the cholesky decomposition of the sparse matrix `m`.
|
|
|
|
pub fn new(m: &CsMatrix<N, D, D>) -> Self {
|
|
|
|
let mut me = Self::new_symbolic(m);
|
|
|
|
let _ = me.decompose(&m.data.vals);
|
|
|
|
me
|
|
|
|
}
|
|
|
|
/// Perform symbolic analysis for the given matrix.
|
|
|
|
///
|
|
|
|
/// This does not access the numerical values of `m`.
|
|
|
|
pub fn new_symbolic(m: &CsMatrix<N, D, D>) -> Self {
|
|
|
|
assert!(
|
|
|
|
m.is_square(),
|
|
|
|
"The matrix `m` must be square to compute its elimination tree."
|
|
|
|
);
|
|
|
|
|
|
|
|
let (l, u) = Self::nonzero_pattern(m);
|
|
|
|
|
|
|
|
// Workspaces.
|
|
|
|
let work_x = unsafe { VectorN::new_uninitialized_generic(m.data.shape().0, U1) };
|
|
|
|
let work_c = unsafe { VectorN::new_uninitialized_generic(m.data.shape().1, U1) };
|
|
|
|
let mut original_p = m.data.p.as_slice().to_vec();
|
|
|
|
original_p.push(m.data.i.len());
|
|
|
|
|
|
|
|
CsCholesky {
|
|
|
|
original_p,
|
|
|
|
original_i: m.data.i.clone(),
|
|
|
|
original_len: m.data.i.len(),
|
|
|
|
l,
|
|
|
|
u,
|
|
|
|
ok: false,
|
|
|
|
work_x,
|
|
|
|
work_c,
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
pub fn l(&self) -> Option<&CsMatrix<N, D, D>> {
|
|
|
|
if self.ok {
|
|
|
|
Some(&self.l)
|
|
|
|
} else {
|
|
|
|
None
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
pub fn unwrap_l(self) -> Option<CsMatrix<N, D, D>> {
|
|
|
|
if self.ok {
|
|
|
|
Some(self.l)
|
|
|
|
} else {
|
|
|
|
None
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Performs the numerical Cholesky decomposition given the set of numerical values.
|
|
|
|
pub fn decompose(&mut self, values: &[N]) -> bool {
|
|
|
|
assert!(
|
|
|
|
values.len() >= self.original_len,
|
|
|
|
"The set of values is too small."
|
|
|
|
);
|
|
|
|
|
|
|
|
// Reset `work_c` to the column pointers of `l`.
|
|
|
|
self.work_c.copy_from(&self.l.data.p);
|
|
|
|
|
|
|
|
// Perform the decomposition.
|
|
|
|
for k in 0..self.l.nrows() {
|
|
|
|
// Scatter the k-th column of the original matrix with the values provided.
|
|
|
|
let column_range = self.original_p[k]..self.original_p[k + 1];
|
|
|
|
|
|
|
|
self.work_x[k] = N::zero();
|
|
|
|
for p in column_range.clone() {
|
|
|
|
let irow = self.original_i[p];
|
|
|
|
|
|
|
|
if irow <= k {
|
|
|
|
self.work_x[irow] = values[p];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
let mut diag = self.work_x[k];
|
|
|
|
self.work_x[k] = N::zero();
|
|
|
|
|
|
|
|
// Triangular solve.
|
|
|
|
for irow in self.u.data.column_row_indices(k) {
|
|
|
|
if irow >= k {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
let lki = self.work_x[irow] / self.l.data.vals[self.l.data.p[irow]];
|
|
|
|
self.work_x[irow] = N::zero();
|
|
|
|
|
|
|
|
for p in self.l.data.p[irow] + 1..self.work_c[irow] {
|
|
|
|
self.work_x[self.l.data.i[p]] -= self.l.data.vals[p] * lki;
|
|
|
|
}
|
|
|
|
|
|
|
|
diag -= lki * lki;
|
|
|
|
let p = self.work_c[irow];
|
|
|
|
self.work_c[irow] += 1;
|
|
|
|
self.l.data.i[p] = k;
|
|
|
|
self.l.data.vals[p] = lki;
|
|
|
|
}
|
|
|
|
|
|
|
|
if diag <= N::zero() {
|
|
|
|
self.ok = false;
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Deal with the diagonal element.
|
|
|
|
let p = self.work_c[k];
|
|
|
|
self.work_c[k] += 1;
|
|
|
|
self.l.data.i[p] = k;
|
|
|
|
self.l.data.vals[p] = diag.sqrt();
|
|
|
|
}
|
|
|
|
|
|
|
|
self.ok = true;
|
|
|
|
true
|
|
|
|
}
|
|
|
|
|
|
|
|
fn elimination_tree<S: CsStorage<N, D, D>>(m: &CsMatrix<N, D, D, S>) -> Vec<usize> {
|
|
|
|
let nrows = m.nrows();
|
|
|
|
let mut forest: Vec<_> = iter::repeat(usize::max_value()).take(nrows).collect();
|
|
|
|
let mut ancestor: Vec<_> = iter::repeat(usize::max_value()).take(nrows).collect();
|
|
|
|
|
|
|
|
for k in 0..nrows {
|
|
|
|
for irow in m.data.column_row_indices(k) {
|
|
|
|
let mut i = irow;
|
|
|
|
|
|
|
|
while i < k {
|
|
|
|
let i_ancestor = ancestor[i];
|
|
|
|
ancestor[i] = k;
|
|
|
|
|
|
|
|
if i_ancestor == usize::max_value() {
|
|
|
|
forest[i] = k;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
i = i_ancestor;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
forest
|
|
|
|
}
|
|
|
|
|
|
|
|
fn reach<S: CsStorage<N, D, D>>(
|
|
|
|
m: &CsMatrix<N, D, D, S>,
|
|
|
|
j: usize,
|
|
|
|
max_j: usize,
|
|
|
|
tree: &[usize],
|
|
|
|
marks: &mut Vec<bool>,
|
|
|
|
out: &mut Vec<usize>,
|
|
|
|
) {
|
|
|
|
marks.clear();
|
|
|
|
marks.resize(tree.len(), false);
|
|
|
|
|
|
|
|
// FIXME: avoid all those allocations.
|
|
|
|
let mut tmp = Vec::new();
|
|
|
|
let mut res = Vec::new();
|
|
|
|
|
|
|
|
for irow in m.data.column_row_indices(j) {
|
|
|
|
let mut curr = irow;
|
|
|
|
while curr != usize::max_value() && curr <= max_j && !marks[curr] {
|
|
|
|
marks[curr] = true;
|
|
|
|
tmp.push(curr);
|
|
|
|
curr = tree[curr];
|
|
|
|
}
|
|
|
|
|
|
|
|
tmp.append(&mut res);
|
|
|
|
mem::swap(&mut tmp, &mut res);
|
|
|
|
}
|
|
|
|
|
|
|
|
out.append(&mut res);
|
|
|
|
}
|
|
|
|
|
|
|
|
fn nonzero_pattern<S: CsStorage<N, D, D>>(
|
|
|
|
m: &CsMatrix<N, D, D, S>,
|
|
|
|
) -> (CsMatrix<N, D, D>, CsMatrix<N, D, D>) {
|
|
|
|
let etree = Self::elimination_tree(m);
|
|
|
|
let (nrows, ncols) = m.data.shape();
|
|
|
|
let mut rows = Vec::with_capacity(m.len());
|
|
|
|
let mut cols = unsafe { VectorN::new_uninitialized_generic(m.data.shape().0, U1) };
|
|
|
|
let mut marks = Vec::new();
|
|
|
|
|
|
|
|
// NOTE: the following will actually compute the non-zero pattern of
|
|
|
|
// the transpose of l.
|
|
|
|
for i in 0..nrows.value() {
|
|
|
|
cols[i] = rows.len();
|
|
|
|
Self::reach(m, i, i, &etree, &mut marks, &mut rows);
|
|
|
|
}
|
|
|
|
|
|
|
|
let mut vals = Vec::with_capacity(rows.len());
|
|
|
|
unsafe {
|
|
|
|
vals.set_len(rows.len());
|
|
|
|
}
|
|
|
|
vals.shrink_to_fit();
|
|
|
|
|
|
|
|
let data = CsVecStorage {
|
|
|
|
shape: (nrows, ncols),
|
|
|
|
p: cols,
|
|
|
|
i: rows,
|
|
|
|
vals,
|
|
|
|
};
|
|
|
|
|
|
|
|
let u = CsMatrix::from_data(data);
|
|
|
|
// XXX: avoid this transpose.
|
|
|
|
let l = u.transpose();
|
|
|
|
|
|
|
|
(l, u)
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
*
|
|
|
|
* NOTE: All the following methods are untested and currently unused.
|
|
|
|
*
|
|
|
|
*
|
|
|
|
fn column_counts<S: CsStorage<N, D, D>>(
|
|
|
|
m: &CsMatrix<N, D, D, S>,
|
|
|
|
tree: &[usize],
|
|
|
|
) -> Vec<usize> {
|
|
|
|
let len = m.data.shape().0.value();
|
|
|
|
let mut counts: Vec<_> = iter::repeat(0).take(len).collect();
|
|
|
|
let mut reach = Vec::new();
|
|
|
|
let mut marks = Vec::new();
|
|
|
|
|
|
|
|
for i in 0..len {
|
|
|
|
Self::reach(m, i, i, tree, &mut marks, &mut reach);
|
|
|
|
|
|
|
|
for j in reach.drain(..) {
|
|
|
|
counts[j] += 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
counts
|
|
|
|
}
|
|
|
|
|
|
|
|
fn tree_postorder(tree: &[usize]) -> Vec<usize> {
|
|
|
|
// FIXME: avoid all those allocations?
|
|
|
|
let mut first_child: Vec<_> = iter::repeat(usize::max_value()).take(tree.len()).collect();
|
|
|
|
let mut other_children: Vec<_> =
|
|
|
|
iter::repeat(usize::max_value()).take(tree.len()).collect();
|
|
|
|
|
|
|
|
// Build the children list from the parent list.
|
|
|
|
// The set of children of the node `i` is given by the linked list
|
|
|
|
// starting at `first_child[i]`. The nodes of this list are then:
|
|
|
|
// { first_child[i], other_children[first_child[i]], other_children[other_children[first_child[i]], ... }
|
|
|
|
for (i, parent) in tree.iter().enumerate() {
|
|
|
|
if *parent != usize::max_value() {
|
|
|
|
let brother = first_child[*parent];
|
|
|
|
first_child[*parent] = i;
|
|
|
|
other_children[i] = brother;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
let mut stack = Vec::with_capacity(tree.len());
|
|
|
|
let mut postorder = Vec::with_capacity(tree.len());
|
|
|
|
|
|
|
|
for (i, node) in tree.iter().enumerate() {
|
|
|
|
if *node == usize::max_value() {
|
|
|
|
Self::dfs(
|
|
|
|
i,
|
|
|
|
&mut first_child,
|
|
|
|
&other_children,
|
|
|
|
&mut stack,
|
|
|
|
&mut postorder,
|
|
|
|
)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
postorder
|
|
|
|
}
|
|
|
|
|
|
|
|
fn dfs(
|
|
|
|
i: usize,
|
|
|
|
first_child: &mut [usize],
|
|
|
|
other_children: &[usize],
|
|
|
|
stack: &mut Vec<usize>,
|
|
|
|
result: &mut Vec<usize>,
|
|
|
|
) {
|
|
|
|
stack.clear();
|
|
|
|
stack.push(i);
|
|
|
|
|
|
|
|
while let Some(n) = stack.pop() {
|
|
|
|
let child = first_child[n];
|
|
|
|
|
|
|
|
if child == usize::max_value() {
|
|
|
|
// No children left.
|
|
|
|
result.push(n);
|
|
|
|
} else {
|
|
|
|
stack.push(n);
|
|
|
|
stack.push(child);
|
|
|
|
first_child[n] = other_children[child];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
*/
|
|
|
|
}
|