forked from M-Labs/nalgebra
Fix cholesky computation.
This commit is contained in:
parent
7ecbacacda
commit
9bf1d0280d
@ -52,6 +52,15 @@ where
|
||||
pub(crate) vals: Vec<N>,
|
||||
}
|
||||
|
||||
impl<N: Scalar, R: Dim, C: Dim> CsVecStorage<N, R, C>
|
||||
where
|
||||
DefaultAllocator: Allocator<usize, C>,
|
||||
{
|
||||
pub fn values(&self) -> &[N] {
|
||||
&self.vals
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Scalar, R: Dim, C: Dim> CsVecStorage<N, R, C> where DefaultAllocator: Allocator<usize, C> {}
|
||||
|
||||
impl<'a, N: Scalar, R: Dim, C: Dim> CsStorageIter<'a, N, R, C> for CsVecStorage<N, R, C>
|
||||
@ -187,10 +196,35 @@ where
|
||||
}
|
||||
|
||||
impl<N: Scalar, R: Dim, C: Dim, S: CsStorage<N, R, C>> CsMatrix<N, R, C, S> {
|
||||
pub fn from_data(data: S) -> Self {
|
||||
CsMatrix {
|
||||
data,
|
||||
_phantoms: PhantomData,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn len(&self) -> usize {
|
||||
self.data.len()
|
||||
}
|
||||
|
||||
pub fn nrows(&self) -> usize {
|
||||
self.data.shape().0.value()
|
||||
}
|
||||
|
||||
pub fn ncols(&self) -> usize {
|
||||
self.data.shape().1.value()
|
||||
}
|
||||
|
||||
pub fn shape(&self) -> (usize, usize) {
|
||||
let (nrows, ncols) = self.data.shape();
|
||||
(nrows.value(), ncols.value())
|
||||
}
|
||||
|
||||
pub fn is_square(&self) -> bool {
|
||||
let (nrows, ncols) = self.data.shape();
|
||||
nrows.value() == ncols.value()
|
||||
}
|
||||
|
||||
pub fn transpose(&self) -> CsMatrix<N, C, R>
|
||||
where
|
||||
DefaultAllocator: Allocator<usize, R>,
|
||||
|
@ -1,184 +0,0 @@
|
||||
use alga::general::{ClosedAdd, ClosedMul};
|
||||
use num::{One, Zero};
|
||||
use std::iter;
|
||||
use std::marker::PhantomData;
|
||||
use std::ops::{Add, Mul, Range};
|
||||
use std::slice;
|
||||
|
||||
use allocator::Allocator;
|
||||
use constraint::{AreMultipliable, DimEq, SameNumberOfRows, ShapeConstraint};
|
||||
use sparse::{CsMatrix, CsStorage, CsVector};
|
||||
use storage::{Storage, StorageMut};
|
||||
use {DefaultAllocator, Dim, Matrix, MatrixMN, Real, Scalar, Vector, VectorN, U1};
|
||||
|
||||
pub struct SymbolicAnalysis {
|
||||
pinv: Vec<usize>,
|
||||
q: Vec<usize>,
|
||||
elimination_tree: Vec<usize>,
|
||||
cp: Vec<usize>,
|
||||
leftmost: Vec<usize>,
|
||||
m2: usize,
|
||||
lnz: usize,
|
||||
unz: usize,
|
||||
}
|
||||
|
||||
#[derive(Copy, Clone, Debug)]
|
||||
pub struct EliminationTreeNode {
|
||||
parent: usize,
|
||||
}
|
||||
|
||||
impl EliminationTreeNode {
|
||||
pub fn root() -> Self {
|
||||
EliminationTreeNode {
|
||||
parent: usize::max_value(),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn with_parent(parent: usize) -> Self {
|
||||
EliminationTreeNode { parent }
|
||||
}
|
||||
|
||||
pub fn is_root(&self) -> bool {
|
||||
self.parent == usize::max_value()
|
||||
}
|
||||
|
||||
pub fn parent(&self) -> usize {
|
||||
self.parent
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Real, D: Dim, S: CsStorage<N, D, D>> CsMatrix<N, D, D, S> {
|
||||
fn elimination_tree(&self) -> Vec<EliminationTreeNode> {
|
||||
let (nrows, ncols) = self.data.shape();
|
||||
assert_eq!(
|
||||
nrows.value(),
|
||||
ncols.value(),
|
||||
"The matrix `self` must be square to compute its elimination tree."
|
||||
);
|
||||
|
||||
let mut forest: Vec<_> = iter::repeat(EliminationTreeNode::root())
|
||||
.take(nrows.value())
|
||||
.collect();
|
||||
let mut ancestor: Vec<_> = iter::repeat(usize::max_value())
|
||||
.take(nrows.value())
|
||||
.collect();
|
||||
|
||||
for k in 0..nrows.value() {
|
||||
for irow in self.data.column_row_indices(k) {
|
||||
let mut i = irow;
|
||||
|
||||
while i < k {
|
||||
let i_ancestor = ancestor[i];
|
||||
ancestor[i] = k;
|
||||
|
||||
if i_ancestor == usize::max_value() {
|
||||
forest[i] = EliminationTreeNode::with_parent(k);
|
||||
break;
|
||||
}
|
||||
|
||||
i = i_ancestor;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
forest
|
||||
}
|
||||
|
||||
fn reach(
|
||||
&self,
|
||||
j: usize,
|
||||
max_j: usize,
|
||||
tree: &[EliminationTreeNode],
|
||||
marks: &mut Vec<bool>,
|
||||
out: &mut Vec<usize>,
|
||||
) {
|
||||
marks.clear();
|
||||
marks.resize(tree.len(), false);
|
||||
|
||||
for irow in self.data.column_row_indices(j) {
|
||||
let mut curr = irow;
|
||||
while curr != usize::max_value() && curr <= max_j && !marks[curr] {
|
||||
marks[curr] = true;
|
||||
out.push(curr);
|
||||
curr = tree[curr].parent;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn column_counts(&self, tree: &[EliminationTreeNode]) -> Vec<usize> {
|
||||
let len = self.data.shape().0.value();
|
||||
let mut counts: Vec<_> = iter::repeat(0).take(len).collect();
|
||||
let mut reach = Vec::new();
|
||||
let mut marks = Vec::new();
|
||||
|
||||
for i in 0..len {
|
||||
self.reach(i, i, tree, &mut marks, &mut reach);
|
||||
|
||||
for j in reach.drain(..) {
|
||||
counts[j] += 1;
|
||||
}
|
||||
}
|
||||
|
||||
counts
|
||||
}
|
||||
|
||||
fn tree_postorder(tree: &[EliminationTreeNode]) -> Vec<usize> {
|
||||
// FIXME: avoid all those allocations?
|
||||
let mut first_child: Vec<_> = iter::repeat(usize::max_value()).take(tree.len()).collect();
|
||||
let mut other_children: Vec<_> =
|
||||
iter::repeat(usize::max_value()).take(tree.len()).collect();
|
||||
|
||||
// Build the children list from the parent list.
|
||||
// The set of children of the node `i` is given by the linked list
|
||||
// starting at `first_child[i]`. The nodes of this list are then:
|
||||
// { first_child[i], other_children[first_child[i]], other_children[other_children[first_child[i]], ... }
|
||||
for (i, node) in tree.iter().enumerate() {
|
||||
if !node.is_root() {
|
||||
let brother = first_child[node.parent];
|
||||
first_child[node.parent] = i;
|
||||
other_children[i] = brother;
|
||||
}
|
||||
}
|
||||
|
||||
let mut stack = Vec::with_capacity(tree.len());
|
||||
let mut postorder = Vec::with_capacity(tree.len());
|
||||
|
||||
for (i, node) in tree.iter().enumerate() {
|
||||
if node.is_root() {
|
||||
Self::dfs(
|
||||
i,
|
||||
&mut first_child,
|
||||
&other_children,
|
||||
&mut stack,
|
||||
&mut postorder,
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
postorder
|
||||
}
|
||||
|
||||
fn dfs(
|
||||
i: usize,
|
||||
first_child: &mut [usize],
|
||||
other_children: &[usize],
|
||||
stack: &mut Vec<usize>,
|
||||
result: &mut Vec<usize>,
|
||||
) {
|
||||
stack.clear();
|
||||
stack.push(i);
|
||||
|
||||
while let Some(n) = stack.pop() {
|
||||
let child = first_child[n];
|
||||
|
||||
if child == usize::max_value() {
|
||||
// No children left.
|
||||
result.push(n);
|
||||
} else {
|
||||
stack.push(n);
|
||||
stack.push(child);
|
||||
first_child[n] = other_children[child];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
@ -1 +1,331 @@
|
||||
use alga::general::{ClosedAdd, ClosedMul};
|
||||
use num::{One, Zero};
|
||||
use std::iter;
|
||||
use std::marker::PhantomData;
|
||||
use std::mem;
|
||||
use std::ops::{Add, Mul, Range};
|
||||
use std::slice;
|
||||
|
||||
use allocator::Allocator;
|
||||
use constraint::{AreMultipliable, DimEq, SameNumberOfRows, ShapeConstraint};
|
||||
use sparse::{CsMatrix, CsStorage, CsStorageIter, CsVecStorage, CsVector};
|
||||
use storage::{Storage, StorageMut};
|
||||
use {DefaultAllocator, Dim, Matrix, MatrixMN, Real, Scalar, Vector, VectorN, U1};
|
||||
|
||||
pub struct CsCholesky<N: Real, D: Dim>
|
||||
where
|
||||
DefaultAllocator: Allocator<usize, D> + Allocator<N, D>,
|
||||
{
|
||||
// Non-zero pattern of the original matrix upper-triangular part.
|
||||
// Unlike the original matrix, the `original_p` array does contain the last sentinel value
|
||||
// equal to `original_i.len()` at the end.
|
||||
original_p: Vec<usize>,
|
||||
original_i: Vec<usize>,
|
||||
original_len: usize, // Number of elements on the numerical value vector of the original matrix.
|
||||
// Decomposition result.
|
||||
l: CsMatrix<N, D, D>,
|
||||
// Used only for the pattern.
|
||||
// FIXME: store only the nonzero pattern instead.
|
||||
u: CsMatrix<N, D, D>,
|
||||
ok: bool,
|
||||
// Workspaces.
|
||||
work_x: VectorN<N, D>,
|
||||
work_c: VectorN<usize, D>,
|
||||
}
|
||||
|
||||
impl<N: Real, D: Dim> CsCholesky<N, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<usize, D> + Allocator<N, D>,
|
||||
{
|
||||
/// Computes the cholesky decomposition of the sparse matrix `m`.
|
||||
pub fn new(m: &CsMatrix<N, D, D>) -> Self {
|
||||
let mut me = Self::new_symbolic(m);
|
||||
let _ = me.decompose(&m.data.vals);
|
||||
me
|
||||
}
|
||||
/// Perform symbolic analysis for the given matrix.
|
||||
///
|
||||
/// This does not access the numerical values of `m`.
|
||||
pub fn new_symbolic(m: &CsMatrix<N, D, D>) -> Self {
|
||||
assert!(
|
||||
m.is_square(),
|
||||
"The matrix `m` must be square to compute its elimination tree."
|
||||
);
|
||||
|
||||
let (l, u) = Self::nonzero_pattern(m);
|
||||
|
||||
// Workspaces.
|
||||
let work_x = unsafe { VectorN::new_uninitialized_generic(m.data.shape().0, U1) };
|
||||
let work_c = unsafe { VectorN::new_uninitialized_generic(m.data.shape().1, U1) };
|
||||
let mut original_p = m.data.p.as_slice().to_vec();
|
||||
original_p.push(m.data.i.len());
|
||||
|
||||
CsCholesky {
|
||||
original_p,
|
||||
original_i: m.data.i.clone(),
|
||||
original_len: m.data.i.len(),
|
||||
l,
|
||||
u,
|
||||
ok: false,
|
||||
work_x,
|
||||
work_c,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn l(&self) -> Option<&CsMatrix<N, D, D>> {
|
||||
if self.ok {
|
||||
Some(&self.l)
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
|
||||
pub fn unwrap_l(self) -> Option<CsMatrix<N, D, D>> {
|
||||
if self.ok {
|
||||
Some(self.l)
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
|
||||
// Performs the numerical Cholesky decomposition given the set of numerical values.
|
||||
pub fn decompose(&mut self, values: &[N]) -> bool {
|
||||
assert!(
|
||||
values.len() >= self.original_len,
|
||||
"The set of values is too small."
|
||||
);
|
||||
|
||||
// Reset `work_c` to the column pointers of `l`.
|
||||
self.work_c.copy_from(&self.l.data.p);
|
||||
|
||||
// Perform the decomposition.
|
||||
for k in 0..self.l.nrows() {
|
||||
// Scatter the k-th column of the original matrix with the values provided.
|
||||
let column_range = self.original_p[k]..self.original_p[k + 1];
|
||||
|
||||
self.work_x[k] = N::zero();
|
||||
for p in column_range.clone() {
|
||||
let irow = self.original_i[p];
|
||||
|
||||
if irow <= k {
|
||||
self.work_x[irow] = values[p];
|
||||
}
|
||||
}
|
||||
|
||||
let mut diag = self.work_x[k];
|
||||
self.work_x[k] = N::zero();
|
||||
|
||||
// Triangular solve.
|
||||
for irow in self.u.data.column_row_indices(k) {
|
||||
if irow >= k {
|
||||
continue;
|
||||
}
|
||||
|
||||
let lki = self.work_x[irow] / self.l.data.vals[self.l.data.p[irow]];
|
||||
self.work_x[irow] = N::zero();
|
||||
|
||||
for p in self.l.data.p[irow] + 1..self.work_c[irow] {
|
||||
self.work_x[self.l.data.i[p]] -= self.l.data.vals[p] * lki;
|
||||
}
|
||||
|
||||
diag -= lki * lki;
|
||||
let p = self.work_c[irow];
|
||||
self.work_c[irow] += 1;
|
||||
self.l.data.i[p] = k;
|
||||
self.l.data.vals[p] = lki;
|
||||
}
|
||||
|
||||
if diag <= N::zero() {
|
||||
self.ok = false;
|
||||
return false;
|
||||
}
|
||||
|
||||
// Deal with the diagonal element.
|
||||
let p = self.work_c[k];
|
||||
self.work_c[k] += 1;
|
||||
self.l.data.i[p] = k;
|
||||
self.l.data.vals[p] = diag.sqrt();
|
||||
}
|
||||
|
||||
self.ok = true;
|
||||
true
|
||||
}
|
||||
|
||||
fn elimination_tree<S: CsStorage<N, D, D>>(m: &CsMatrix<N, D, D, S>) -> Vec<usize> {
|
||||
let nrows = m.nrows();
|
||||
let mut forest: Vec<_> = iter::repeat(usize::max_value()).take(nrows).collect();
|
||||
let mut ancestor: Vec<_> = iter::repeat(usize::max_value()).take(nrows).collect();
|
||||
|
||||
for k in 0..nrows {
|
||||
for irow in m.data.column_row_indices(k) {
|
||||
let mut i = irow;
|
||||
|
||||
while i < k {
|
||||
let i_ancestor = ancestor[i];
|
||||
ancestor[i] = k;
|
||||
|
||||
if i_ancestor == usize::max_value() {
|
||||
forest[i] = k;
|
||||
break;
|
||||
}
|
||||
|
||||
i = i_ancestor;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
forest
|
||||
}
|
||||
|
||||
fn reach<S: CsStorage<N, D, D>>(
|
||||
m: &CsMatrix<N, D, D, S>,
|
||||
j: usize,
|
||||
max_j: usize,
|
||||
tree: &[usize],
|
||||
marks: &mut Vec<bool>,
|
||||
out: &mut Vec<usize>,
|
||||
) {
|
||||
marks.clear();
|
||||
marks.resize(tree.len(), false);
|
||||
|
||||
// FIXME: avoid all those allocations.
|
||||
let mut tmp = Vec::new();
|
||||
let mut res = Vec::new();
|
||||
|
||||
for irow in m.data.column_row_indices(j) {
|
||||
let mut curr = irow;
|
||||
while curr != usize::max_value() && curr <= max_j && !marks[curr] {
|
||||
marks[curr] = true;
|
||||
tmp.push(curr);
|
||||
curr = tree[curr];
|
||||
}
|
||||
|
||||
tmp.append(&mut res);
|
||||
mem::swap(&mut tmp, &mut res);
|
||||
}
|
||||
|
||||
out.append(&mut res);
|
||||
}
|
||||
|
||||
fn nonzero_pattern<S: CsStorage<N, D, D>>(
|
||||
m: &CsMatrix<N, D, D, S>,
|
||||
) -> (CsMatrix<N, D, D>, CsMatrix<N, D, D>) {
|
||||
let etree = Self::elimination_tree(m);
|
||||
let (nrows, ncols) = m.data.shape();
|
||||
let mut rows = Vec::with_capacity(m.len());
|
||||
let mut cols = unsafe { VectorN::new_uninitialized_generic(m.data.shape().0, U1) };
|
||||
let mut marks = Vec::new();
|
||||
|
||||
// NOTE: the following will actually compute the non-zero pattern of
|
||||
// the transpose of l.
|
||||
for i in 0..nrows.value() {
|
||||
cols[i] = rows.len();
|
||||
Self::reach(m, i, i, &etree, &mut marks, &mut rows);
|
||||
}
|
||||
|
||||
let mut vals = Vec::with_capacity(rows.len());
|
||||
unsafe {
|
||||
vals.set_len(rows.len());
|
||||
}
|
||||
vals.shrink_to_fit();
|
||||
|
||||
let data = CsVecStorage {
|
||||
shape: (nrows, ncols),
|
||||
p: cols,
|
||||
i: rows,
|
||||
vals,
|
||||
};
|
||||
|
||||
let u = CsMatrix::from_data(data);
|
||||
// XXX: avoid this transpose.
|
||||
let l = u.transpose();
|
||||
|
||||
(l, u)
|
||||
}
|
||||
|
||||
/*
|
||||
*
|
||||
* NOTE: All the following methods are untested and currently unused.
|
||||
*
|
||||
*
|
||||
fn column_counts<S: CsStorage<N, D, D>>(
|
||||
m: &CsMatrix<N, D, D, S>,
|
||||
tree: &[usize],
|
||||
) -> Vec<usize> {
|
||||
let len = m.data.shape().0.value();
|
||||
let mut counts: Vec<_> = iter::repeat(0).take(len).collect();
|
||||
let mut reach = Vec::new();
|
||||
let mut marks = Vec::new();
|
||||
|
||||
for i in 0..len {
|
||||
Self::reach(m, i, i, tree, &mut marks, &mut reach);
|
||||
|
||||
for j in reach.drain(..) {
|
||||
counts[j] += 1;
|
||||
}
|
||||
}
|
||||
|
||||
counts
|
||||
}
|
||||
|
||||
fn tree_postorder(tree: &[usize]) -> Vec<usize> {
|
||||
// FIXME: avoid all those allocations?
|
||||
let mut first_child: Vec<_> = iter::repeat(usize::max_value()).take(tree.len()).collect();
|
||||
let mut other_children: Vec<_> =
|
||||
iter::repeat(usize::max_value()).take(tree.len()).collect();
|
||||
|
||||
// Build the children list from the parent list.
|
||||
// The set of children of the node `i` is given by the linked list
|
||||
// starting at `first_child[i]`. The nodes of this list are then:
|
||||
// { first_child[i], other_children[first_child[i]], other_children[other_children[first_child[i]], ... }
|
||||
for (i, parent) in tree.iter().enumerate() {
|
||||
if *parent != usize::max_value() {
|
||||
let brother = first_child[*parent];
|
||||
first_child[*parent] = i;
|
||||
other_children[i] = brother;
|
||||
}
|
||||
}
|
||||
|
||||
let mut stack = Vec::with_capacity(tree.len());
|
||||
let mut postorder = Vec::with_capacity(tree.len());
|
||||
|
||||
for (i, node) in tree.iter().enumerate() {
|
||||
if *node == usize::max_value() {
|
||||
Self::dfs(
|
||||
i,
|
||||
&mut first_child,
|
||||
&other_children,
|
||||
&mut stack,
|
||||
&mut postorder,
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
postorder
|
||||
}
|
||||
|
||||
fn dfs(
|
||||
i: usize,
|
||||
first_child: &mut [usize],
|
||||
other_children: &[usize],
|
||||
stack: &mut Vec<usize>,
|
||||
result: &mut Vec<usize>,
|
||||
) {
|
||||
stack.clear();
|
||||
stack.push(i);
|
||||
|
||||
while let Some(n) = stack.pop() {
|
||||
let child = first_child[n];
|
||||
|
||||
if child == usize::max_value() {
|
||||
// No children left.
|
||||
result.push(n);
|
||||
} else {
|
||||
stack.push(n);
|
||||
stack.push(child);
|
||||
first_child[n] = other_children[child];
|
||||
}
|
||||
}
|
||||
}
|
||||
*/
|
||||
}
|
||||
|
@ -1,7 +1,9 @@
|
||||
pub use self::cs_matrix::{CsMatrix, CsStorage, CsStorageMut, CsVector};
|
||||
pub use self::cs_matrix::{
|
||||
CsMatrix, CsStorage, CsStorageIter, CsStorageMut, CsVecStorage, CsVector,
|
||||
};
|
||||
pub use self::cs_matrix_cholesky::CsCholesky;
|
||||
|
||||
mod cs_matrix;
|
||||
mod cs_matrix_analysis;
|
||||
mod cs_matrix_cholesky;
|
||||
mod cs_matrix_conversion;
|
||||
mod cs_matrix_ops;
|
||||
|
55
tests/sparse/cs_cholesky.rs
Normal file
55
tests/sparse/cs_cholesky.rs
Normal file
@ -0,0 +1,55 @@
|
||||
#![cfg_attr(rustfmt, rustfmt_skip)]
|
||||
|
||||
use na::{CsMatrix, CsVector, CsCholesky, Cholesky, Matrix5, Vector5};
|
||||
|
||||
#[test]
|
||||
fn cs_cholesky() {
|
||||
let mut a = Matrix5::new(
|
||||
40.0, 0.0, 0.0, 0.0, 0.0,
|
||||
2.0, 60.0, 0.0, 0.0, 0.0,
|
||||
1.0, 0.0, 11.0, 0.0, 0.0,
|
||||
0.0, 0.0, 0.0, 50.0, 0.0,
|
||||
1.0, 0.0, 0.0, 4.0, 10.0
|
||||
);
|
||||
a.fill_upper_triangle_with_lower_triangle();
|
||||
test_cholesky(a);
|
||||
|
||||
let a = Matrix5::from_diagonal(&Vector5::new(40.0, 60.0, 11.0, 50.0, 10.0));
|
||||
test_cholesky(a);
|
||||
|
||||
let mut a = Matrix5::new(
|
||||
40.0, 0.0, 0.0, 0.0, 0.0,
|
||||
2.0, 60.0, 0.0, 0.0, 0.0,
|
||||
1.0, 0.0, 11.0, 0.0, 0.0,
|
||||
1.0, 0.0, 0.0, 50.0, 0.0,
|
||||
0.0, 0.0, 0.0, 4.0, 10.0
|
||||
);
|
||||
a.fill_upper_triangle_with_lower_triangle();
|
||||
test_cholesky(a);
|
||||
|
||||
let mut a = Matrix5::new(
|
||||
2.0, 0.0, 0.0, 0.0, 0.0,
|
||||
0.0, 2.0, 0.0, 0.0, 0.0,
|
||||
1.0, 1.0, 2.0, 0.0, 0.0,
|
||||
0.0, 0.0, 0.0, 2.0, 0.0,
|
||||
1.0, 1.0, 0.0, 0.0, 2.0
|
||||
);
|
||||
a.fill_upper_triangle_with_lower_triangle();
|
||||
test_cholesky(a);
|
||||
}
|
||||
|
||||
|
||||
fn test_cholesky(a: Matrix5<f32>) {
|
||||
let cs_a: CsMatrix<_, _, _> = a.into();
|
||||
|
||||
let chol_a = Cholesky::new(a).unwrap();
|
||||
let chol_cs_a = CsCholesky::new(&cs_a);
|
||||
let l = chol_a.l();
|
||||
println!("{:?}", chol_cs_a.l());
|
||||
let cs_l: Matrix5<_> = chol_cs_a.unwrap_l().unwrap().into();
|
||||
|
||||
println!("{}", l);
|
||||
println!("{}", cs_l);
|
||||
|
||||
assert_eq!(l, cs_l);
|
||||
}
|
@ -1,5 +1,6 @@
|
||||
mod cs_cholesky;
|
||||
mod cs_construction;
|
||||
mod cs_conversion;
|
||||
mod cs_matrix;
|
||||
mod cs_ops;
|
||||
mod cs_linalg;
|
||||
mod cs_solve;
|
||||
|
Loading…
Reference in New Issue
Block a user