nalgebra/src/linalg/cholesky.rs

366 lines
14 KiB
Rust
Raw Normal View History

#[cfg(feature = "serde-serialize")]
2018-10-22 13:00:10 +08:00
use serde::{Deserialize, Serialize};
2019-11-17 20:10:50 +08:00
use num::One;
2020-03-21 19:16:46 +08:00
use simba::scalar::ComplexField;
use simba::simd::SimdComplexField;
2019-03-23 21:29:07 +08:00
use crate::allocator::Allocator;
use crate::base::{DefaultAllocator, Matrix, MatrixMN, MatrixN, Vector};
2019-03-23 21:29:07 +08:00
use crate::constraint::{SameNumberOfRows, ShapeConstraint};
use crate::dimension::{Dim, DimAdd, DimDiff, DimSub, DimSum, U1};
2019-03-23 21:29:07 +08:00
use crate::storage::{Storage, StorageMut};
2018-09-24 12:48:42 +08:00
/// The Cholesky decomposition of a symmetric-definite-positive matrix.
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[cfg_attr(
feature = "serde-serialize",
2019-11-02 21:59:07 +08:00
serde(bound(serialize = "DefaultAllocator: Allocator<N, D>,
MatrixN<N, D>: Serialize"))
)]
#[cfg_attr(
feature = "serde-serialize",
2019-11-02 21:59:07 +08:00
serde(bound(deserialize = "DefaultAllocator: Allocator<N, D>,
MatrixN<N, D>: Deserialize<'de>"))
)]
#[derive(Clone, Debug)]
pub struct Cholesky<N: SimdComplexField, D: Dim>
2020-06-07 15:07:25 +08:00
where
DefaultAllocator: Allocator<N, D, D>,
2018-02-02 19:26:35 +08:00
{
chol: MatrixN<N, D>,
}
impl<N: SimdComplexField, D: Dim> Copy for Cholesky<N, D>
2018-02-02 19:26:35 +08:00
where
DefaultAllocator: Allocator<N, D, D>,
MatrixN<N, D>: Copy,
2019-11-02 21:59:07 +08:00
{
}
impl<N: SimdComplexField, D: Dim> Cholesky<N, D>
2020-06-07 15:07:25 +08:00
where
DefaultAllocator: Allocator<N, D, D>,
2018-02-02 19:26:35 +08:00
{
/// Computes the Cholesky decomposition of `matrix` without checking that the matrix is definite-positive.
///
/// If the input matrix is not definite-positive, the decomposition may contain trash values (Inf, NaN, etc.)
pub fn new_unchecked(mut matrix: MatrixN<N, D>) -> Self {
assert!(matrix.is_square(), "The input matrix must be square.");
let n = matrix.nrows();
2018-02-02 19:26:35 +08:00
for j in 0..n {
for k in 0..j {
2018-12-03 04:00:08 +08:00
let factor = unsafe { -*matrix.get_unchecked((j, k)) };
let (mut col_j, col_k) = matrix.columns_range_pair_mut(j, k);
2018-02-02 19:26:35 +08:00
let mut col_j = col_j.rows_range_mut(j..);
let col_k = col_k.rows_range(j..);
col_j.axpy(factor.simd_conjugate(), &col_k, N::one());
}
2018-12-03 04:00:08 +08:00
let diag = unsafe { *matrix.get_unchecked((j, j)) };
let denom = diag.simd_sqrt();
unsafe {
*matrix.get_unchecked_mut((j, j)) = denom;
}
let mut col = matrix.slice_range_mut(j + 1.., j);
col /= denom;
}
Cholesky { chol: matrix }
}
/// Retrieves the lower-triangular factor of the Cholesky decomposition with its strictly
/// upper-triangular part filled with zeros.
pub fn unpack(mut self) -> MatrixN<N, D> {
self.chol.fill_upper_triangle(N::zero(), 1);
self.chol
}
/// Retrieves the lower-triangular factor of the Cholesky decomposition, without zeroing-out
/// its strict upper-triangular part.
///
/// The values of the strict upper-triangular part are garbage and should be ignored by further
/// computations.
pub fn unpack_dirty(self) -> MatrixN<N, D> {
self.chol
}
/// Retrieves the lower-triangular factor of the Cholesky decomposition with its strictly
/// uppen-triangular part filled with zeros.
pub fn l(&self) -> MatrixN<N, D> {
self.chol.lower_triangle()
}
/// Retrieves the lower-triangular factor of the Cholesky decomposition, without zeroing-out
/// its strict upper-triangular part.
///
/// This is an allocation-less version of `self.l()`. The values of the strict upper-triangular
/// part are garbage and should be ignored by further computations.
pub fn l_dirty(&self) -> &MatrixN<N, D> {
&self.chol
}
/// Solves the system `self * x = b` where `self` is the decomposed matrix and `x` the unknown.
///
/// The result is stored on `b`.
pub fn solve_mut<R2: Dim, C2: Dim, S2>(&self, b: &mut Matrix<N, R2, C2, S2>)
2018-02-02 19:26:35 +08:00
where
S2: StorageMut<N, R2, C2>,
ShapeConstraint: SameNumberOfRows<R2, D>,
{
self.chol.solve_lower_triangular_unchecked_mut(b);
self.chol.ad_solve_lower_triangular_unchecked_mut(b);
}
/// Returns the solution of the system `self * x = b` where `self` is the decomposed matrix and
/// `x` the unknown.
pub fn solve<R2: Dim, C2: Dim, S2>(&self, b: &Matrix<N, R2, C2, S2>) -> MatrixMN<N, R2, C2>
2018-02-02 19:26:35 +08:00
where
2019-11-02 21:59:07 +08:00
S2: Storage<N, R2, C2>,
2018-02-02 19:26:35 +08:00
DefaultAllocator: Allocator<N, R2, C2>,
ShapeConstraint: SameNumberOfRows<R2, D>,
{
let mut res = b.clone_owned();
self.solve_mut(&mut res);
res
}
/// Computes the inverse of the decomposed matrix.
pub fn inverse(&self) -> MatrixN<N, D> {
let shape = self.chol.data.shape();
let mut res = MatrixN::identity_generic(shape.0, shape.1);
self.solve_mut(&mut res);
res
}
}
impl<N: ComplexField, D: Dim> Cholesky<N, D>
2020-06-07 15:07:25 +08:00
where
DefaultAllocator: Allocator<N, D, D>,
{
/// Attempts to compute the Cholesky decomposition of `matrix`.
///
/// Returns `None` if the input matrix is not definite-positive. The input matrix is assumed
/// to be symmetric and only the lower-triangular part is read.
pub fn new(mut matrix: MatrixN<N, D>) -> Option<Self> {
assert!(matrix.is_square(), "The input matrix must be square.");
let n = matrix.nrows();
for j in 0..n {
for k in 0..j {
let factor = unsafe { -*matrix.get_unchecked((j, k)) };
let (mut col_j, col_k) = matrix.columns_range_pair_mut(j, k);
let mut col_j = col_j.rows_range_mut(j..);
let col_k = col_k.rows_range(j..);
col_j.axpy(factor.conjugate(), &col_k, N::one());
}
let diag = unsafe { *matrix.get_unchecked((j, j)) };
if !diag.is_zero() {
if let Some(denom) = diag.try_sqrt() {
unsafe {
*matrix.get_unchecked_mut((j, j)) = denom;
}
let mut col = matrix.slice_range_mut(j + 1.., j);
col /= denom;
continue;
}
}
// The diagonal element is either zero or its square root could not
// be taken (e.g. for negative real numbers).
return None;
}
Some(Cholesky { chol: matrix })
}
2019-11-02 21:59:07 +08:00
2019-11-02 23:49:57 +08:00
/// Given the Cholesky decomposition of a matrix `M`, a scalar `sigma` and a vector `v`,
2019-11-17 20:24:00 +08:00
/// performs a rank one update such that we end up with the decomposition of `M + sigma * (v * v.adjoint())`.
2019-11-04 03:00:15 +08:00
#[inline]
2019-11-04 01:02:27 +08:00
pub fn rank_one_update<R2: Dim, S2>(&mut self, x: &Vector<N, R2, S2>, sigma: N::RealField)
2019-11-03 01:27:01 +08:00
where
2019-11-02 21:59:07 +08:00
S2: Storage<N, R2, U1>,
DefaultAllocator: Allocator<N, R2, U1>,
ShapeConstraint: SameNumberOfRows<R2, D>,
{
2019-11-17 20:10:50 +08:00
Self::xx_rank_one_update(&mut self.chol, &mut x.clone_owned(), sigma)
2019-11-02 21:59:07 +08:00
}
2019-11-04 03:00:15 +08:00
/// Updates the decomposition such that we get the decomposition of a matrix with the given column `col` in the `j`th position.
/// Since the matrix is square, an identical row will be added in the `j`th row.
2019-11-04 01:02:27 +08:00
pub fn insert_column<R2, S2>(
2019-11-17 20:10:50 +08:00
&self,
j: usize,
2019-11-17 20:10:50 +08:00
col: Vector<N, R2, S2>,
) -> Cholesky<N, DimSum<D, U1>>
where
D: DimAdd<U1>,
2019-11-04 01:02:27 +08:00
R2: Dim,
S2: Storage<N, R2, U1>,
2019-11-17 20:10:50 +08:00
DefaultAllocator: Allocator<N, DimSum<D, U1>, DimSum<D, U1>> + Allocator<N, R2>,
ShapeConstraint: SameNumberOfRows<R2, DimSum<D, U1>>,
{
2019-11-17 20:10:50 +08:00
let mut col = col.into_owned();
2019-11-04 01:02:27 +08:00
// for an explanation of the formulas, see https://en.wikipedia.org/wiki/Cholesky_decomposition#Updating_the_decomposition
2019-11-03 22:17:20 +08:00
let n = col.nrows();
2020-03-21 19:16:46 +08:00
assert_eq!(
n,
self.chol.nrows() + 1,
"The new column must have the size of the factored matrix plus one."
);
assert!(j < n, "j needs to be within the bound of the new matrix.");
2019-11-04 03:00:15 +08:00
2019-11-04 04:24:44 +08:00
// loads the data into a new matrix with an additional jth row/column
2020-03-21 19:16:46 +08:00
let mut chol = unsafe {
Matrix::new_uninitialized_generic(
self.chol.data.shape().0.add(U1),
self.chol.data.shape().1.add(U1),
)
};
chol.slice_range_mut(..j, ..j)
.copy_from(&self.chol.slice_range(..j, ..j));
chol.slice_range_mut(..j, j + 1..)
.copy_from(&self.chol.slice_range(..j, j..));
chol.slice_range_mut(j + 1.., ..j)
.copy_from(&self.chol.slice_range(j.., ..j));
chol.slice_range_mut(j + 1.., j + 1..)
.copy_from(&self.chol.slice_range(j.., j..));
2019-11-03 22:17:20 +08:00
2019-11-03 22:43:49 +08:00
// update the jth row
2019-11-04 03:00:15 +08:00
let top_left_corner = self.chol.slice_range(..j, ..j);
2019-11-17 20:10:50 +08:00
let col_j = col[j];
let (mut new_rowj_adjoint, mut new_colj) = col.rows_range_pair_mut(..j, j + 1..);
2020-03-21 19:16:46 +08:00
assert!(
top_left_corner.solve_lower_triangular_mut(&mut new_rowj_adjoint),
"Cholesky::insert_column : Unable to solve lower triangular system!"
);
2019-11-17 20:10:50 +08:00
2019-11-04 03:00:15 +08:00
new_rowj_adjoint.adjoint_to(&mut chol.slice_range_mut(j, ..j));
2019-11-03 22:17:20 +08:00
2019-11-03 22:43:49 +08:00
// update the center element
2019-11-17 20:10:50 +08:00
let center_element = N::sqrt(col_j - N::from_real(new_rowj_adjoint.norm_squared()));
chol[(j, j)] = center_element;
2019-11-03 22:17:20 +08:00
2019-11-03 22:43:49 +08:00
// update the jth column
2019-11-04 03:00:15 +08:00
let bottom_left_corner = self.chol.slice_range(j.., ..j);
// new_colj = (col_jplus - bottom_left_corner * new_rowj.adjoint()) / center_element;
2020-03-21 19:16:46 +08:00
new_colj.gemm(
-N::one() / center_element,
&bottom_left_corner,
&new_rowj_adjoint,
N::one() / center_element,
);
2019-11-17 20:24:00 +08:00
chol.slice_range_mut(j + 1.., j).copy_from(&new_colj);
2019-11-03 22:17:20 +08:00
// update the bottom right corner
2019-11-17 20:24:00 +08:00
let mut bottom_right_corner = chol.slice_range_mut(j + 1.., j + 1..);
2020-03-21 19:16:46 +08:00
Self::xx_rank_one_update(
&mut bottom_right_corner,
&mut new_colj,
-N::RealField::one(),
);
Cholesky { chol }
}
2019-11-03 20:26:18 +08:00
/// Updates the decomposition such that we get the decomposition of the factored matrix with its `j`th column removed.
/// Since the matrix is square, the `j`th row will also be removed.
2020-03-21 19:16:46 +08:00
pub fn remove_column(&self, j: usize) -> Cholesky<N, DimDiff<D, U1>>
where
D: DimSub<U1>,
DefaultAllocator: Allocator<N, DimDiff<D, U1>, DimDiff<D, U1>> + Allocator<N, D>,
2019-11-03 20:26:18 +08:00
{
let n = self.chol.nrows();
2019-11-03 21:33:35 +08:00
assert!(n > 0, "The matrix needs at least one column.");
2019-11-03 20:26:18 +08:00
assert!(j < n, "j needs to be within the bound of the matrix.");
2019-11-04 03:00:15 +08:00
2019-11-04 04:24:44 +08:00
// loads the data into a new matrix except for the jth row/column
2020-03-21 19:16:46 +08:00
let mut chol = unsafe {
Matrix::new_uninitialized_generic(
self.chol.data.shape().0.sub(U1),
self.chol.data.shape().1.sub(U1),
)
};
chol.slice_range_mut(..j, ..j)
.copy_from(&self.chol.slice_range(..j, ..j));
chol.slice_range_mut(..j, j..)
.copy_from(&self.chol.slice_range(..j, j + 1..));
chol.slice_range_mut(j.., ..j)
.copy_from(&self.chol.slice_range(j + 1.., ..j));
chol.slice_range_mut(j.., j..)
.copy_from(&self.chol.slice_range(j + 1.., j + 1..));
2019-11-03 21:33:35 +08:00
2019-11-03 22:17:20 +08:00
// updates the bottom right corner
2019-11-04 03:00:15 +08:00
let mut bottom_right_corner = chol.slice_range_mut(j.., j..);
2019-11-17 20:10:50 +08:00
let mut workspace = self.chol.column(j).clone_owned();
2019-11-17 20:24:00 +08:00
let mut old_colj = workspace.rows_range_mut(j + 1..);
2019-11-17 20:10:50 +08:00
Self::xx_rank_one_update(&mut bottom_right_corner, &mut old_colj, N::RealField::one());
2019-11-03 20:26:18 +08:00
Cholesky { chol }
}
2019-11-04 04:24:44 +08:00
/// Given the Cholesky decomposition of a matrix `M`, a scalar `sigma` and a vector `x`,
2019-11-17 20:24:00 +08:00
/// performs a rank one update such that we end up with the decomposition of `M + sigma * (x * x.adjoint())`.
2019-11-04 04:24:44 +08:00
///
/// This helper method is called by `rank_one_update` but also `insert_column` and `remove_column`
2019-11-04 04:24:44 +08:00
/// where it is used on a square slice of the decomposition
2020-03-21 19:16:46 +08:00
fn xx_rank_one_update<Dm, Sm, Rx, Sx>(
chol: &mut Matrix<N, Dm, Dm, Sm>,
x: &mut Vector<N, Rx, Sx>,
sigma: N::RealField,
) where
//N: ComplexField,
Dm: Dim,
Rx: Dim,
Sm: StorageMut<N, Dm, Dm>,
Sx: StorageMut<N, Rx, U1>,
2019-11-04 04:24:44 +08:00
{
// heavily inspired by Eigen's `llt_rank_update_lower` implementation https://eigen.tuxfamily.org/dox/LLT_8h_source.html
let n = x.nrows();
assert_eq!(
n,
chol.nrows(),
"The input vector must be of the same size as the factorized matrix."
);
2019-11-17 20:10:50 +08:00
2019-11-04 04:24:44 +08:00
let mut beta = crate::one::<N::RealField>();
2019-11-17 20:10:50 +08:00
2019-11-04 04:24:44 +08:00
for j in 0..n {
// updates the diagonal
let diag = N::real(unsafe { *chol.get_unchecked((j, j)) });
let diag2 = diag * diag;
let xj = unsafe { *x.get_unchecked(j) };
let sigma_xj2 = sigma * N::modulus_squared(xj);
let gamma = diag2 * beta + sigma_xj2;
let new_diag = (diag2 + sigma_xj2 / beta).sqrt();
unsafe { *chol.get_unchecked_mut((j, j)) = N::from_real(new_diag) };
beta += sigma_xj2 / diag2;
// updates the terms of L
let mut xjplus = x.rows_range_mut(j + 1..);
let mut col_j = chol.slice_range_mut(j + 1.., j);
// temp_jplus -= (wj / N::from_real(diag)) * col_j;
xjplus.axpy(-xj / N::from_real(diag), &col_j, N::one());
if gamma != crate::zero::<N::RealField>() {
// col_j = N::from_real(nljj / diag) * col_j + (N::from_real(nljj * sigma / gamma) * N::conjugate(wj)) * temp_jplus;
col_j.axpy(
N::from_real(new_diag * sigma / gamma) * N::conjugate(xj),
&xjplus,
N::from_real(new_diag / diag),
);
}
}
}
}