nalgebra/src/structs/dvec_macros.rs

533 lines
15 KiB
Rust
Raw Normal View History

2015-01-08 04:11:09 +08:00
#![macro_use]
macro_rules! dvec_impl(
($dvec: ident) => (
impl<N: Zero + Copy + Clone> $dvec<N> {
/// Builds a vector filled with zeros.
///
/// # Arguments
/// * `dim` - The dimension of the vector.
#[inline]
pub fn new_zeros(dim: usize) -> $dvec<N> {
$dvec::from_elem(dim, ::zero())
}
/// Tests if all components of the vector are zeroes.
#[inline]
pub fn is_zero(&self) -> bool {
self.as_slice().iter().all(|e| e.is_zero())
}
}
impl<N> $dvec<N> {
/// Slices this vector.
#[inline]
pub fn as_slice<'a>(&'a self) -> &'a [N] {
self.at.slice_to(self.len())
}
/// Mutably slices this vector.
#[inline]
pub fn as_mut_slice<'a>(&'a mut self) -> &'a mut [N] {
let len = self.len();
2014-10-22 19:35:17 +08:00
self.at.slice_to_mut(len)
}
}
impl<N> Shape<usize> for $dvec<N> {
#[inline]
fn shape(&self) -> usize {
self.len()
}
}
impl<N: Copy> Indexable<usize, N> for $dvec<N> {
#[inline]
fn at(&self, i: usize) -> N {
assert!(i < self.len());
unsafe {
self.unsafe_at(i)
}
}
#[inline]
fn set(&mut self, i: usize, val: N) {
assert!(i < self.len());
unsafe {
self.unsafe_set(i, val);
}
}
#[inline]
fn swap(&mut self, i: usize, j: usize) {
assert!(i < self.len());
assert!(j < self.len());
self.as_mut_slice().swap(i, j);
}
#[inline]
unsafe fn unsafe_at(&self, i: usize) -> N {
2015-01-05 22:12:06 +08:00
*self.at.as_slice().get_unchecked(i)
}
#[inline]
unsafe fn unsafe_set(&mut self, i: usize, val: N) {
2015-01-02 06:23:35 +08:00
*self.at.as_mut_slice().get_unchecked_mut(i) = val
}
}
impl<N> Index<usize> for $dvec<N> {
type Output = N;
fn index(&self, i: &usize) -> &N {
2014-09-18 10:20:36 +08:00
&self.as_slice()[*i]
}
}
impl<N> IndexMut<usize> for $dvec<N> {
type Output = N;
fn index_mut(&mut self, i: &usize) -> &mut N {
2014-09-18 10:20:36 +08:00
&mut self.as_mut_slice()[*i]
}
}
impl<N: One + Zero + Copy + Clone> $dvec<N> {
/// Builds a vector filled with ones.
///
/// # Arguments
/// * `dim` - The dimension of the vector.
#[inline]
pub fn new_ones(dim: usize) -> $dvec<N> {
$dvec::from_elem(dim, ::one())
}
}
impl<N: Rand + Zero> $dvec<N> {
/// Builds a vector filled with random values.
#[inline]
pub fn new_random(dim: usize) -> $dvec<N> {
2015-01-07 07:46:50 +08:00
$dvec::from_fn(dim, |&: _| rand::random())
}
}
impl<N> Iterable<N> for $dvec<N> {
#[inline]
fn iter<'l>(&'l self) -> Iter<'l, N> {
self.as_slice().iter()
}
}
impl<N> IterableMut<N> for $dvec<N> {
#[inline]
fn iter_mut<'l>(&'l mut self) -> IterMut<'l, N> {
2014-10-22 19:35:17 +08:00
self.as_mut_slice().iter_mut()
}
}
impl<N: Copy + Add<N, Output = N> + Mul<N, Output = N>> Axpy<N> for $dvec<N> {
fn axpy(&mut self, a: &N, x: &$dvec<N>) {
assert!(self.len() == x.len());
for i in (0 .. x.len()) {
unsafe {
let self_i = self.unsafe_at(i);
self.unsafe_set(i, self_i + *a * x.unsafe_at(i))
}
}
}
}
impl<N: BaseFloat + ApproxEq<N>> $dvec<N> {
/// Computes the canonical basis for the given dimension. A canonical basis is a set of
/// vectors, mutually orthogonal, with all its component equal to 0.0 except one which is equal
/// to 1.0.
pub fn canonical_basis_with_dim(dim: usize) -> Vec<$dvec<N>> {
let mut res : Vec<$dvec<N>> = Vec::new();
for i in (0us .. dim) {
let mut basis_element : $dvec<N> = $dvec::new_zeros(dim);
basis_element.set(i, ::one());
res.push(basis_element);
}
res
}
/// Computes a basis of the space orthogonal to the vector. If the input vector is of dimension
/// `n`, this will return `n - 1` vectors.
pub fn orthogonal_subspace_basis(&self) -> Vec<$dvec<N>> {
// compute the basis of the orthogonal subspace using Gram-Schmidt
// orthogonalization algorithm
let dim = self.len();
let mut res : Vec<$dvec<N>> = Vec::new();
for i in (0us .. dim) {
let mut basis_element : $dvec<N> = $dvec::new_zeros(self.len());
basis_element.set(i, ::one());
if res.len() == dim - 1 {
break;
}
let mut elt = basis_element.clone();
elt.axpy(&-::dot(&basis_element, self), self);
for v in res.iter() {
let proj = ::dot(&elt, v);
elt.axpy(&-proj, v)
};
if !ApproxEq::approx_eq(&Norm::sqnorm(&elt), &::zero()) {
res.push(Norm::normalize_cpy(&elt));
}
}
assert!(res.len() == dim - 1);
res
}
}
impl<N: Copy + Mul<N, Output = N> + Zero> Mul<$dvec<N>> for $dvec<N> {
type Output = $dvec<N>;
#[inline]
fn mul(self, right: $dvec<N>) -> $dvec<N> {
assert!(self.len() == right.len());
let mut res = self;
for (left, right) in res.as_mut_slice().iter_mut().zip(right.as_slice().iter()) {
*left = *left * *right
}
res
}
}
impl<N: Copy + Div<N, Output = N> + Zero> Div<$dvec<N>> for $dvec<N> {
type Output = $dvec<N>;
#[inline]
fn div(self, right: $dvec<N>) -> $dvec<N> {
assert!(self.len() == right.len());
let mut res = self;
for (left, right) in res.as_mut_slice().iter_mut().zip(right.as_slice().iter()) {
*left = *left / *right
}
res
}
}
impl<N: Copy + Add<N, Output = N> + Zero> Add<$dvec<N>> for $dvec<N> {
type Output = $dvec<N>;
#[inline]
fn add(self, right: $dvec<N>) -> $dvec<N> {
assert!(self.len() == right.len());
let mut res = self;
for (left, right) in res.as_mut_slice().iter_mut().zip(right.as_slice().iter()) {
*left = *left + *right
}
res
}
}
impl<N: Copy + Sub<N, Output = N> + Zero> Sub<$dvec<N>> for $dvec<N> {
type Output = $dvec<N>;
#[inline]
fn sub(self, right: $dvec<N>) -> $dvec<N> {
assert!(self.len() == right.len());
let mut res = self;
for (left, right) in res.as_mut_slice().iter_mut().zip(right.as_slice().iter()) {
*left = *left - *right
}
res
}
}
impl<N: Neg<Output = N> + Zero + Copy> Neg for $dvec<N> {
type Output = $dvec<N>;
#[inline]
fn neg(self) -> $dvec<N> {
FromIterator::from_iter(self.as_slice().iter().map(|a| -*a))
}
}
impl<N: BaseNum> Dot<N> for $dvec<N> {
#[inline]
fn dot(&self, other: &$dvec<N>) -> N {
assert!(self.len() == other.len());
let mut res: N = ::zero();
for i in (0us .. self.len()) {
res = res + unsafe { self.unsafe_at(i) * other.unsafe_at(i) };
}
res
}
}
impl<N: BaseFloat> Norm<N> for $dvec<N> {
#[inline]
fn sqnorm(&self) -> N {
Dot::dot(self, self)
}
#[inline]
fn normalize_cpy(&self) -> $dvec<N> {
let mut res : $dvec<N> = self.clone();
let _ = res.normalize();
res
}
#[inline]
fn normalize(&mut self) -> N {
let l = Norm::norm(self);
2014-10-22 19:35:17 +08:00
for n in self.as_mut_slice().iter_mut() {
*n = *n / l;
}
l
}
}
impl<N: ApproxEq<N>> ApproxEq<N> for $dvec<N> {
#[inline]
fn approx_epsilon(_: Option<$dvec<N>>) -> N {
ApproxEq::approx_epsilon(None::<N>)
}
#[inline]
fn approx_ulps(_: Option<$dvec<N>>) -> u32 {
ApproxEq::approx_ulps(None::<N>)
}
#[inline]
fn approx_eq_eps(&self, other: &$dvec<N>, epsilon: &N) -> bool {
let zip = self.as_slice().iter().zip(other.as_slice().iter());
zip.all(|(a, b)| ApproxEq::approx_eq_eps(a, b, epsilon))
}
#[inline]
fn approx_eq_ulps(&self, other: &$dvec<N>, ulps: u32) -> bool {
let zip = self.as_slice().iter().zip(other.as_slice().iter());
zip.all(|(a, b)| ApproxEq::approx_eq_ulps(a, b, ulps))
}
}
impl<N: Copy + Mul<N, Output = N> + Zero> Mul<N> for $dvec<N> {
type Output = $dvec<N>;
#[inline]
fn mul(self, right: N) -> $dvec<N> {
let mut res = self;
for e in res.as_mut_slice().iter_mut() {
*e = *e * right
}
res
}
}
impl<N: Copy + Div<N, Output = N> + Zero> Div<N> for $dvec<N> {
type Output = $dvec<N>;
#[inline]
fn div(self, right: N) -> $dvec<N> {
let mut res = self;
for e in res.as_mut_slice().iter_mut() {
*e = *e / right
}
res
}
}
impl<N: Copy + Add<N, Output = N> + Zero> Add<N> for $dvec<N> {
type Output = $dvec<N>;
#[inline]
fn add(self, right: N) -> $dvec<N> {
let mut res = self;
for e in res.as_mut_slice().iter_mut() {
*e = *e + right
}
res
}
}
impl<N: Copy + Sub<N, Output = N> + Zero> Sub<N> for $dvec<N> {
type Output = $dvec<N>;
#[inline]
fn sub(self, right: N) -> $dvec<N> {
let mut res = self;
for e in res.as_mut_slice().iter_mut() {
*e = *e - right
}
res
}
}
)
);
macro_rules! small_dvec_impl (
2015-01-10 04:55:15 +08:00
($dvec: ident, $dim: expr, $($idx: expr),*) => (
impl<N> $dvec<N> {
#[inline]
pub fn len(&self) -> usize {
self.dim
}
}
impl<N: PartialEq> PartialEq for $dvec<N> {
#[inline]
fn eq(&self, other: &$dvec<N>) -> bool {
if self.len() != other.len() {
return false; // FIXME: fail instead?
}
for (a, b) in self.as_slice().iter().zip(other.as_slice().iter()) {
if *a != *b {
return false;
}
}
true
}
}
impl<N: Clone> Clone for $dvec<N> {
fn clone(&self) -> $dvec<N> {
let at: [N; $dim] = [ $( self.at[$idx].clone(), )* ];
$dvec {
at: at,
dim: self.dim
}
}
}
dvec_impl!($dvec);
)
);
macro_rules! small_dvec_from_impl (
2015-01-10 04:55:15 +08:00
($dvec: ident, $dim: expr, $($zeros: expr),*) => (
impl<N: Copy + Zero> $dvec<N> {
/// Builds a vector filled with a constant.
#[inline]
pub fn from_elem(dim: usize, elem: N) -> $dvec<N> {
assert!(dim <= $dim);
let mut at: [N; $dim] = [ $( $zeros, )* ];
2014-10-22 19:35:17 +08:00
for n in at.slice_to_mut(dim).iter_mut() {
*n = elem;
}
$dvec {
at: at,
dim: dim
}
}
}
impl<N: Copy + Zero> $dvec<N> {
/// Builds a vector filled with the components provided by a vector.
///
/// The vector must have at least `dim` elements.
#[inline]
pub fn from_slice(dim: usize, vec: &[N]) -> $dvec<N> {
assert!(dim <= vec.len() && dim <= $dim);
// FIXME: not safe.
let mut at: [N; $dim] = [ $( $zeros, )* ];
2014-10-22 19:35:17 +08:00
for (curr, other) in vec.iter().zip(at.iter_mut()) {
*other = *curr;
}
$dvec {
at: at,
dim: dim
}
}
}
impl<N: Zero> $dvec<N> {
/// Builds a vector filled with the result of a function.
#[inline(always)]
pub fn from_fn<F: FnMut(usize) -> N>(dim: usize, mut f: F) -> $dvec<N> {
assert!(dim <= $dim);
let mut at: [N; $dim] = [ $( $zeros, )* ];
for i in (0 .. dim) {
at[i] = f(i);
}
$dvec {
at: at,
dim: dim
}
}
}
impl<N: Zero> FromIterator<N> for $dvec<N> {
#[inline]
fn from_iter<I: Iterator<Item = N>>(mut param: I) -> $dvec<N> {
let mut at: [N; $dim] = [ $( $zeros, )* ];
let mut dim = 0;
for n in param {
if dim == $dim {
break;
}
at[dim] = n;
dim = dim + 1;
}
$dvec {
at: at,
dim: dim
}
}
}
#[cfg(feature="arbitrary")]
impl<N: Arbitrary + Zero> Arbitrary for $dvec<N> {
#[inline]
fn arbitrary<G: Gen>(g: &mut G) -> $dvec<N> {
$dvec::from_fn(g.gen_range(0, $dim), |_| Arbitrary::arbitrary(g))
}
}
)
);