nalgebra/src/geometry/similarity_conversion.rs

159 lines
6.4 KiB
Rust
Raw Normal View History

use alga::general::{Real, SubsetOf, SupersetOf};
use alga::linear::Rotation;
use core::{DefaultAllocator, MatrixN};
use core::dimension::{DimName, DimNameAdd, DimNameSum, DimMin, U1};
use core::allocator::Allocator;
use geometry::{Point, Translation, Isometry, Similarity, Transform, SuperTCategoryOf, TAffine};
/*
* This file provides the following conversions:
* =============================================
*
* Similarity -> Similarity
* Similarity -> Transform
* Similarity -> Matrix (homogeneous)
*/
impl<N1, N2, D: DimName, R1, R2> SubsetOf<Similarity<N2, D, R2>> for Similarity<N1, D, R1>
where N1: Real + SubsetOf<N2>,
N2: Real + SupersetOf<N1>,
R1: Rotation<Point<N1, D>> + SubsetOf<R2>,
R2: Rotation<Point<N2, D>>,
DefaultAllocator: Allocator<N1, D> +
Allocator<N2, D> {
#[inline]
fn to_superset(&self) -> Similarity<N2, D, R2> {
Similarity::from_isometry(
self.isometry.to_superset(),
self.scaling().to_superset()
)
}
#[inline]
fn is_in_subset(sim: &Similarity<N2, D, R2>) -> bool {
::is_convertible::<_, Isometry<N1, D, R1>>(&sim.isometry) &&
::is_convertible::<_, N1>(&sim.scaling())
}
#[inline]
unsafe fn from_superset_unchecked(sim: &Similarity<N2, D, R2>) -> Self {
Similarity::from_isometry(
sim.isometry.to_subset_unchecked(),
sim.scaling().to_subset_unchecked()
)
}
}
impl<N1, N2, D, R, C> SubsetOf<Transform<N2, D, C>> for Similarity<N1, D, R>
where N1: Real,
N2: Real + SupersetOf<N1>,
C: SuperTCategoryOf<TAffine>,
R: Rotation<Point<N1, D>> +
SubsetOf<MatrixN<N1, DimNameSum<D, U1>>> +
SubsetOf<MatrixN<N2, DimNameSum<D, U1>>>,
D: DimNameAdd<U1> +
DimMin<D, Output = D>, // needed by .determinant()
DefaultAllocator: Allocator<N1, D> +
Allocator<N1, D, D> + // needed by R
Allocator<N1, DimNameSum<D, U1>, DimNameSum<D, U1>> + // needed by: .to_homogeneous()
Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>> + // needed by R
Allocator<(usize, usize), D> + // needed by .determinant()
Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>> +
Allocator<N2, D, D> +
Allocator<N2, D> {
#[inline]
fn to_superset(&self) -> Transform<N2, D, C> {
Transform::from_matrix_unchecked(self.to_homogeneous().to_superset())
}
#[inline]
fn is_in_subset(t: &Transform<N2, D, C>) -> bool {
<Self as SubsetOf<_>>::is_in_subset(t.matrix())
}
#[inline]
unsafe fn from_superset_unchecked(t: &Transform<N2, D, C>) -> Self {
Self::from_superset_unchecked(t.matrix())
}
}
impl<N1, N2, D, R> SubsetOf<MatrixN<N2, DimNameSum<D, U1>>> for Similarity<N1, D, R>
where N1: Real,
N2: Real + SupersetOf<N1>,
R: Rotation<Point<N1, D>> +
SubsetOf<MatrixN<N1, DimNameSum<D, U1>>> +
SubsetOf<MatrixN<N2, DimNameSum<D, U1>>>,
D: DimNameAdd<U1> +
DimMin<D, Output = D>, // needed by .determinant()
DefaultAllocator: Allocator<N1, D> +
Allocator<N1, D, D> + // needed by R
Allocator<N1, DimNameSum<D, U1>, DimNameSum<D, U1>> + // needed by .to_homogeneous()
Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>> + // needed by R
Allocator<(usize, usize), D> + // needed by .determinant()
Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>> +
Allocator<N2, D, D> +
Allocator<N2, D> {
#[inline]
fn to_superset(&self) -> MatrixN<N2, DimNameSum<D, U1>> {
self.to_homogeneous().to_superset()
}
#[inline]
fn is_in_subset(m: &MatrixN<N2, DimNameSum<D, U1>>) -> bool {
let mut rot = m.fixed_slice::<D, D>(0, 0).clone_owned();
if rot.fixed_columns_mut::<U1>(0).try_normalize_mut(N2::zero()).is_some() &&
rot.fixed_columns_mut::<U1>(1).try_normalize_mut(N2::zero()).is_some() &&
rot.fixed_columns_mut::<U1>(2).try_normalize_mut(N2::zero()).is_some() {
// FIXME: could we avoid explicit the computation of the determinant?
// (its sign is needed to see if the scaling factor is negative).
if rot.determinant() < N2::zero() {
rot.fixed_columns_mut::<U1>(0).neg_mut();
rot.fixed_columns_mut::<U1>(1).neg_mut();
rot.fixed_columns_mut::<U1>(2).neg_mut();
}
let bottom = m.fixed_slice::<U1, D>(D::dim(), 0);
// Scalar types agree.
m.iter().all(|e| SupersetOf::<N1>::is_in_subset(e)) &&
// The normalized block part is a rotation.
// rot.is_special_orthogonal(N2::default_epsilon().sqrt()) &&
// The bottom row is (0, 0, ..., 1)
bottom.iter().all(|e| e.is_zero()) &&
m[(D::dim(), D::dim())] == N2::one()
}
else {
false
}
}
#[inline]
unsafe fn from_superset_unchecked(m: &MatrixN<N2, DimNameSum<D, U1>>) -> Self {
let mut mm = m.clone_owned();
let na = mm.fixed_slice_mut::<D, U1>(0, 0).normalize_mut();
let nb = mm.fixed_slice_mut::<D, U1>(0, 1).normalize_mut();
let nc = mm.fixed_slice_mut::<D, U1>(0, 2).normalize_mut();
let mut scale = (na + nb + nc) / ::convert(3.0); // We take the mean, for robustness.
// FIXME: could we avoid the explicit computation of the determinant?
// (its sign is needed to see if the scaling factor is negative).
if mm.fixed_slice::<D, D>(0, 0).determinant() < N2::zero() {
mm.fixed_slice_mut::<D, U1>(0, 0).neg_mut();
mm.fixed_slice_mut::<D, U1>(0, 1).neg_mut();
mm.fixed_slice_mut::<D, U1>(0, 2).neg_mut();
scale = -scale;
}
let t = m.fixed_slice::<D, U1>(0, D::dim()).into_owned();
let t = Translation::from_vector(::convert_unchecked(t));
Self::from_parts(t, ::convert_unchecked(mm), ::convert_unchecked(scale))
}
}