forked from M-Labs/nalgebra
164 lines
7.1 KiB
Rust
164 lines
7.1 KiB
Rust
|
use alga::general::{Real, SubsetOf, SupersetOf};
|
||
|
use alga::linear::Rotation;
|
||
|
|
||
|
use core::{SquareMatrix, OwnedSquareMatrix};
|
||
|
use core::dimension::{DimName, DimNameAdd, DimNameSum, U1};
|
||
|
use core::storage::OwnedStorage;
|
||
|
use core::allocator::{Allocator, OwnedAllocator};
|
||
|
|
||
|
use geometry::{PointBase, TranslationBase, IsometryBase, SimilarityBase, TransformBase, SuperTCategoryOf, TAffine};
|
||
|
|
||
|
/*
|
||
|
* This file provides the following conversions:
|
||
|
* =============================================
|
||
|
*
|
||
|
* SimilarityBase -> SimilarityBase
|
||
|
* SimilarityBase -> TransformBase
|
||
|
* SimilarityBase -> Matrix (homogeneous)
|
||
|
*/
|
||
|
|
||
|
|
||
|
impl<N1, N2, D: DimName, SA, SB, R1, R2> SubsetOf<SimilarityBase<N2, D, SB, R2>> for SimilarityBase<N1, D, SA, R1>
|
||
|
where N1: Real + SubsetOf<N2>,
|
||
|
N2: Real + SupersetOf<N1>,
|
||
|
R1: Rotation<PointBase<N1, D, SA>> + SubsetOf<R2>,
|
||
|
R2: Rotation<PointBase<N2, D, SB>>,
|
||
|
SA: OwnedStorage<N1, D, U1>,
|
||
|
SB: OwnedStorage<N2, D, U1>,
|
||
|
SA::Alloc: OwnedAllocator<N1, D, U1, SA>,
|
||
|
SB::Alloc: OwnedAllocator<N2, D, U1, SB> {
|
||
|
#[inline]
|
||
|
fn to_superset(&self) -> SimilarityBase<N2, D, SB, R2> {
|
||
|
SimilarityBase::from_isometry(
|
||
|
self.isometry.to_superset(),
|
||
|
self.scaling().to_superset()
|
||
|
)
|
||
|
}
|
||
|
|
||
|
#[inline]
|
||
|
fn is_in_subset(sim: &SimilarityBase<N2, D, SB, R2>) -> bool {
|
||
|
::is_convertible::<_, IsometryBase<N1, D, SA, R1>>(&sim.isometry) &&
|
||
|
::is_convertible::<_, N1>(&sim.scaling())
|
||
|
}
|
||
|
|
||
|
#[inline]
|
||
|
unsafe fn from_superset_unchecked(sim: &SimilarityBase<N2, D, SB, R2>) -> Self {
|
||
|
SimilarityBase::from_isometry(
|
||
|
sim.isometry.to_subset_unchecked(),
|
||
|
sim.scaling().to_subset_unchecked()
|
||
|
)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
impl<N1, N2, D, SA, SB, R, C> SubsetOf<TransformBase<N2, D, SB, C>> for SimilarityBase<N1, D, SA, R>
|
||
|
where N1: Real,
|
||
|
N2: Real + SupersetOf<N1>,
|
||
|
SA: OwnedStorage<N1, D, U1>,
|
||
|
SB: OwnedStorage<N2, DimNameSum<D, U1>, DimNameSum<D, U1>>,
|
||
|
C: SuperTCategoryOf<TAffine>,
|
||
|
R: Rotation<PointBase<N1, D, SA>> +
|
||
|
SubsetOf<OwnedSquareMatrix<N1, DimNameSum<D, U1>, SA::Alloc>> + // needed by: .to_homogeneous()
|
||
|
SubsetOf<SquareMatrix<N2, DimNameSum<D, U1>, SB>>, // needed by: ::convert_unchecked(mm)
|
||
|
D: DimNameAdd<U1>,
|
||
|
SA::Alloc: OwnedAllocator<N1, D, U1, SA> +
|
||
|
Allocator<N1, D, D> + // needed by R
|
||
|
Allocator<N1, DimNameSum<D, U1>, DimNameSum<D, U1>> + // needed by: .to_homogeneous()
|
||
|
Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>>, // needed by R
|
||
|
SB::Alloc: OwnedAllocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>, SB> +
|
||
|
Allocator<N2, D, D> + // needed by: mm.fixed_slice_mut
|
||
|
Allocator<N2, D, U1> + // needed by: m.fixed_slice
|
||
|
Allocator<N2, U1, D> { // needed by: m.fixed_slice
|
||
|
#[inline]
|
||
|
fn to_superset(&self) -> TransformBase<N2, D, SB, C> {
|
||
|
TransformBase::from_matrix_unchecked(self.to_homogeneous().to_superset())
|
||
|
}
|
||
|
|
||
|
#[inline]
|
||
|
fn is_in_subset(t: &TransformBase<N2, D, SB, C>) -> bool {
|
||
|
<Self as SubsetOf<_>>::is_in_subset(t.matrix())
|
||
|
}
|
||
|
|
||
|
#[inline]
|
||
|
unsafe fn from_superset_unchecked(t: &TransformBase<N2, D, SB, C>) -> Self {
|
||
|
Self::from_superset_unchecked(t.matrix())
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
impl<N1, N2, D, SA, SB, R> SubsetOf<SquareMatrix<N2, DimNameSum<D, U1>, SB>> for SimilarityBase<N1, D, SA, R>
|
||
|
where N1: Real,
|
||
|
N2: Real + SupersetOf<N1>,
|
||
|
SA: OwnedStorage<N1, D, U1>,
|
||
|
SB: OwnedStorage<N2, DimNameSum<D, U1>, DimNameSum<D, U1>>,
|
||
|
R: Rotation<PointBase<N1, D, SA>> +
|
||
|
SubsetOf<OwnedSquareMatrix<N1, DimNameSum<D, U1>, SA::Alloc>> + // needed by: .to_homogeneous()
|
||
|
SubsetOf<SquareMatrix<N2, DimNameSum<D, U1>, SB>>, // needed by: ::convert_unchecked(mm)
|
||
|
D: DimNameAdd<U1>,
|
||
|
SA::Alloc: OwnedAllocator<N1, D, U1, SA> +
|
||
|
Allocator<N1, D, D> + // needed by R
|
||
|
Allocator<N1, DimNameSum<D, U1>, DimNameSum<D, U1>> + // needed by: .to_homogeneous()
|
||
|
Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>>, // needed by R
|
||
|
SB::Alloc: OwnedAllocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>, SB> +
|
||
|
Allocator<N2, D, D> + // needed by: mm.fixed_slice_mut
|
||
|
Allocator<N2, D, U1> + // needed by: m.fixed_slice
|
||
|
Allocator<N2, U1, D> { // needed by: m.fixed_slice
|
||
|
#[inline]
|
||
|
fn to_superset(&self) -> SquareMatrix<N2, DimNameSum<D, U1>, SB> {
|
||
|
self.to_homogeneous().to_superset()
|
||
|
}
|
||
|
|
||
|
#[inline]
|
||
|
fn is_in_subset(m: &SquareMatrix<N2, DimNameSum<D, U1>, SB>) -> bool {
|
||
|
let mut rot = m.fixed_slice::<D, D>(0, 0).clone_owned();
|
||
|
if rot.fixed_columns_mut::<U1>(0).try_normalize_mut(N2::zero()).is_some() &&
|
||
|
rot.fixed_columns_mut::<U1>(1).try_normalize_mut(N2::zero()).is_some() &&
|
||
|
rot.fixed_columns_mut::<U1>(2).try_normalize_mut(N2::zero()).is_some() {
|
||
|
|
||
|
// FIXME: could we avoid explicit the computation of the determinant?
|
||
|
// (its sign is needed to see if the scaling factor is negative).
|
||
|
if rot.determinant() < N2::zero() {
|
||
|
rot.fixed_columns_mut::<U1>(0).neg_mut();
|
||
|
rot.fixed_columns_mut::<U1>(1).neg_mut();
|
||
|
rot.fixed_columns_mut::<U1>(2).neg_mut();
|
||
|
}
|
||
|
|
||
|
let bottom = m.fixed_slice::<U1, D>(D::dim(), 0);
|
||
|
// Scalar types agree.
|
||
|
m.iter().all(|e| SupersetOf::<N1>::is_in_subset(e)) &&
|
||
|
// The normalized block part is a rotation.
|
||
|
// rot.is_special_orthogonal(N2::default_epsilon().sqrt()) &&
|
||
|
// The bottom row is (0, 0, ..., 1)
|
||
|
bottom.iter().all(|e| e.is_zero()) &&
|
||
|
m[(D::dim(), D::dim())] == N2::one()
|
||
|
}
|
||
|
else {
|
||
|
false
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#[inline]
|
||
|
unsafe fn from_superset_unchecked(m: &SquareMatrix<N2, DimNameSum<D, U1>, SB>) -> Self {
|
||
|
let mut mm = m.clone_owned();
|
||
|
let na = mm.fixed_slice_mut::<D, U1>(0, 0).normalize_mut();
|
||
|
let nb = mm.fixed_slice_mut::<D, U1>(0, 1).normalize_mut();
|
||
|
let nc = mm.fixed_slice_mut::<D, U1>(0, 2).normalize_mut();
|
||
|
|
||
|
let mut scale = (na + nb + nc) / ::convert(3.0); // We take the mean, for robustness.
|
||
|
|
||
|
// FIXME: could we avoid the explicit computation of the determinant?
|
||
|
// (its sign is needed to see if the scaling factor is negative).
|
||
|
if mm.fixed_slice::<D, D>(0, 0).determinant() < N2::zero() {
|
||
|
mm.fixed_slice_mut::<D, U1>(0, 0).neg_mut();
|
||
|
mm.fixed_slice_mut::<D, U1>(0, 1).neg_mut();
|
||
|
mm.fixed_slice_mut::<D, U1>(0, 2).neg_mut();
|
||
|
scale = -scale;
|
||
|
}
|
||
|
|
||
|
let t = m.fixed_slice::<D, U1>(0, D::dim()).into_owned();
|
||
|
let t = TranslationBase::from_vector(::convert_unchecked(t));
|
||
|
|
||
|
Self::from_parts(t, ::convert_unchecked(mm), ::convert_unchecked(scale))
|
||
|
}
|
||
|
}
|