nalgebra/nalgebra-sparse/src/ops/impl_std_ops.rs

103 lines
3.2 KiB
Rust
Raw Normal View History

2020-12-10 20:30:37 +08:00
use crate::csr::CsrMatrix;
use std::ops::{Add, Mul};
use crate::ops::serial::{spadd_csr_prealloc, spadd_pattern, spmm_pattern, spmm_csr_prealloc};
2020-12-10 20:30:37 +08:00
use nalgebra::{ClosedAdd, ClosedMul, Scalar};
use num_traits::{Zero, One};
use std::sync::Arc;
use crate::ops::{Op};
2020-12-10 20:30:37 +08:00
impl<'a, T> Add<&'a CsrMatrix<T>> for &'a CsrMatrix<T>
where
// TODO: Consider introducing wrapper trait for these things? It's technically a "Ring",
// I guess...
T: Scalar + ClosedAdd + ClosedMul + Zero + One
{
type Output = CsrMatrix<T>;
fn add(self, rhs: &'a CsrMatrix<T>) -> Self::Output {
2020-12-17 00:30:48 +08:00
let pattern = spadd_pattern(self.pattern(), rhs.pattern());
2020-12-10 20:30:37 +08:00
let values = vec![T::zero(); pattern.nnz()];
// We are giving data that is valid by definition, so it is safe to unwrap below
let mut result = CsrMatrix::try_from_pattern_and_values(Arc::new(pattern), values)
.unwrap();
spadd_csr_prealloc(T::zero(), &mut result, T::one(), Op::NoOp(&self)).unwrap();
spadd_csr_prealloc(T::one(), &mut result, T::one(), Op::NoOp(&rhs)).unwrap();
2020-12-10 20:30:37 +08:00
result
}
}
impl<'a, T> Add<&'a CsrMatrix<T>> for CsrMatrix<T>
where
T: Scalar + ClosedAdd + ClosedMul + Zero + One
{
type Output = CsrMatrix<T>;
fn add(mut self, rhs: &'a CsrMatrix<T>) -> Self::Output {
if Arc::ptr_eq(self.pattern(), rhs.pattern()) {
spadd_csr_prealloc(T::one(), &mut self, T::one(), Op::NoOp(rhs)).unwrap();
2020-12-10 20:30:37 +08:00
self
} else {
&self + rhs
}
}
}
impl<'a, T> Add<CsrMatrix<T>> for &'a CsrMatrix<T>
where
T: Scalar + ClosedAdd + ClosedMul + Zero + One
{
type Output = CsrMatrix<T>;
fn add(self, rhs: CsrMatrix<T>) -> Self::Output {
rhs + self
}
}
impl<T> Add<CsrMatrix<T>> for CsrMatrix<T>
where
T: Scalar + ClosedAdd + ClosedMul + Zero + One
{
type Output = Self;
fn add(self, rhs: CsrMatrix<T>) -> Self::Output {
self + &rhs
}
}
/// Helper macro for implementing matrix multiplication for different matrix types
/// See below for usage.
macro_rules! impl_matrix_mul {
(<$($life:lifetime),*>($a_name:ident : $a:ty, $b_name:ident : $b:ty) -> $ret:ty $body:block)
=>
{
impl<$($life,)* T> Mul<$b> for $a
where
T: Scalar + ClosedAdd + ClosedMul + Zero + One
{
type Output = $ret;
fn mul(self, rhs: $b) -> Self::Output {
let $a_name = self;
let $b_name = rhs;
$body
}
}
}
}
impl_matrix_mul!(<'a>(a: &'a CsrMatrix<T>, b: &'a CsrMatrix<T>) -> CsrMatrix<T> {
let pattern = spmm_pattern(a.pattern(), b.pattern());
let values = vec![T::zero(); pattern.nnz()];
let mut result = CsrMatrix::try_from_pattern_and_values(Arc::new(pattern), values)
.unwrap();
spmm_csr_prealloc(T::zero(),
&mut result,
T::one(),
Op::NoOp(a),
Op::NoOp(b))
.expect("Internal error: spmm failed (please debug).");
result
});
impl_matrix_mul!(<'a>(a: &'a CsrMatrix<T>, b: CsrMatrix<T>) -> CsrMatrix<T> { a * &b});
impl_matrix_mul!(<'a>(a: CsrMatrix<T>, b: &'a CsrMatrix<T>) -> CsrMatrix<T> { &a * b});
impl_matrix_mul!(<>(a: CsrMatrix<T>, b: CsrMatrix<T>) -> CsrMatrix<T> { &a * &b});