2020-12-10 20:30:37 +08:00
|
|
|
use crate::csr::CsrMatrix;
|
|
|
|
|
2020-12-16 23:17:42 +08:00
|
|
|
use std::ops::{Add, Mul};
|
|
|
|
use crate::ops::serial::{spadd_csr, spadd_build_pattern, spmm_pattern, spmm_csr};
|
2020-12-10 20:30:37 +08:00
|
|
|
use nalgebra::{ClosedAdd, ClosedMul, Scalar};
|
|
|
|
use num_traits::{Zero, One};
|
|
|
|
use std::sync::Arc;
|
|
|
|
use crate::ops::Transpose;
|
|
|
|
use crate::pattern::SparsityPattern;
|
|
|
|
|
|
|
|
impl<'a, T> Add<&'a CsrMatrix<T>> for &'a CsrMatrix<T>
|
|
|
|
where
|
|
|
|
// TODO: Consider introducing wrapper trait for these things? It's technically a "Ring",
|
|
|
|
// I guess...
|
|
|
|
T: Scalar + ClosedAdd + ClosedMul + Zero + One
|
|
|
|
{
|
|
|
|
type Output = CsrMatrix<T>;
|
|
|
|
|
|
|
|
fn add(self, rhs: &'a CsrMatrix<T>) -> Self::Output {
|
|
|
|
let mut pattern = SparsityPattern::new(self.nrows(), self.ncols());
|
|
|
|
spadd_build_pattern(&mut pattern, self.pattern(), rhs.pattern());
|
|
|
|
let values = vec![T::zero(); pattern.nnz()];
|
|
|
|
// We are giving data that is valid by definition, so it is safe to unwrap below
|
|
|
|
let mut result = CsrMatrix::try_from_pattern_and_values(Arc::new(pattern), values)
|
|
|
|
.unwrap();
|
|
|
|
spadd_csr(&mut result, T::zero(), T::one(), Transpose(false), &self).unwrap();
|
|
|
|
spadd_csr(&mut result, T::one(), T::one(), Transpose(false), &rhs).unwrap();
|
|
|
|
result
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<'a, T> Add<&'a CsrMatrix<T>> for CsrMatrix<T>
|
|
|
|
where
|
|
|
|
T: Scalar + ClosedAdd + ClosedMul + Zero + One
|
|
|
|
{
|
|
|
|
type Output = CsrMatrix<T>;
|
|
|
|
|
|
|
|
fn add(mut self, rhs: &'a CsrMatrix<T>) -> Self::Output {
|
|
|
|
if Arc::ptr_eq(self.pattern(), rhs.pattern()) {
|
|
|
|
spadd_csr(&mut self, T::one(), T::one(), Transpose(false), &rhs).unwrap();
|
|
|
|
self
|
|
|
|
} else {
|
|
|
|
&self + rhs
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<'a, T> Add<CsrMatrix<T>> for &'a CsrMatrix<T>
|
|
|
|
where
|
|
|
|
T: Scalar + ClosedAdd + ClosedMul + Zero + One
|
|
|
|
{
|
|
|
|
type Output = CsrMatrix<T>;
|
|
|
|
|
|
|
|
fn add(self, rhs: CsrMatrix<T>) -> Self::Output {
|
|
|
|
rhs + self
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<T> Add<CsrMatrix<T>> for CsrMatrix<T>
|
|
|
|
where
|
|
|
|
T: Scalar + ClosedAdd + ClosedMul + Zero + One
|
|
|
|
{
|
|
|
|
type Output = Self;
|
|
|
|
|
|
|
|
fn add(self, rhs: CsrMatrix<T>) -> Self::Output {
|
|
|
|
self + &rhs
|
|
|
|
}
|
2020-12-16 23:17:42 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/// Helper macro for implementing matrix multiplication for different matrix types
|
|
|
|
/// See below for usage.
|
|
|
|
macro_rules! impl_matrix_mul {
|
|
|
|
(<$($life:lifetime),*>($a_name:ident : $a:ty, $b_name:ident : $b:ty) -> $ret:ty $body:block)
|
|
|
|
=>
|
|
|
|
{
|
|
|
|
impl<$($life,)* T> Mul<$b> for $a
|
|
|
|
where
|
|
|
|
T: Scalar + ClosedAdd + ClosedMul + Zero + One
|
|
|
|
{
|
|
|
|
type Output = $ret;
|
|
|
|
fn mul(self, rhs: $b) -> Self::Output {
|
|
|
|
let $a_name = self;
|
|
|
|
let $b_name = rhs;
|
|
|
|
$body
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
impl_matrix_mul!(<'a>(a: &'a CsrMatrix<T>, b: &'a CsrMatrix<T>) -> CsrMatrix<T> {
|
|
|
|
let pattern = spmm_pattern(a.pattern(), b.pattern());
|
|
|
|
let values = vec![T::zero(); pattern.nnz()];
|
|
|
|
let mut result = CsrMatrix::try_from_pattern_and_values(Arc::new(pattern), values)
|
|
|
|
.unwrap();
|
|
|
|
spmm_csr(&mut result,
|
|
|
|
T::zero(),
|
|
|
|
T::one(),
|
|
|
|
Transpose(false),
|
|
|
|
a,
|
|
|
|
Transpose(false),
|
|
|
|
b)
|
|
|
|
.expect("Internal error: spmm failed (please debug).");
|
|
|
|
result
|
|
|
|
});
|
|
|
|
impl_matrix_mul!(<'a>(a: &'a CsrMatrix<T>, b: CsrMatrix<T>) -> CsrMatrix<T> { a * &b});
|
|
|
|
impl_matrix_mul!(<'a>(a: CsrMatrix<T>, b: &'a CsrMatrix<T>) -> CsrMatrix<T> { &a * b});
|
|
|
|
impl_matrix_mul!(<>(a: CsrMatrix<T>, b: CsrMatrix<T>) -> CsrMatrix<T> { &a * &b});
|