nalgebra/src/mat_impl.rs

398 lines
8.2 KiB
Rust
Raw Normal View History

2013-06-29 08:34:45 +08:00
#[macro_escape];
macro_rules! mat_impl(
($t: ident, $dim: expr) => (
impl<N> $t<N>
{
#[inline]
pub fn new(mij: [N, ..$dim * $dim]) -> $t<N>
{ $t { mij: mij } }
#[inline]
pub fn offset(&self, i: uint, j: uint) -> uint
{ i * $dim + j }
2013-06-29 08:34:45 +08:00
}
)
)
macro_rules! one_impl(
($t: ident, [ $($value: ident)|+ ] ) => (
impl<N: Copy + One + Zero> One for $t<N>
{
#[inline]
fn one() -> $t<N>
{
let (_0, _1) = (Zero::zero::<N>(), One::one::<N>());
return $t::new( [ $( copy $value, )+ ] )
}
}
)
)
macro_rules! zero_impl(
($t: ident, [ $($value: ident)|+ ] ) => (
impl<N: Copy + Zero> Zero for $t<N>
{
#[inline]
fn zero() -> $t<N>
{
let _0 = Zero::zero();
return $t::new( [ $( copy $value, )+ ] )
}
#[inline]
fn is_zero(&self) -> bool
{ self.mij.iter().all(|e| e.is_zero()) }
}
)
)
macro_rules! dim_impl(
($t: ident, $dim: expr) => (
impl<N> Dim for $t<N>
{
#[inline]
fn dim() -> uint
{ $dim }
}
)
)
macro_rules! mat_indexable_impl(
2013-06-29 08:34:45 +08:00
($t: ident, $dim: expr) => (
impl<N: Copy> Indexable<(uint, uint), N> for $t<N>
2013-06-29 08:34:45 +08:00
{
#[inline]
pub fn at(&self, (i, j): (uint, uint)) -> N
{ copy self.mij[self.offset(i, j)] }
2013-06-29 08:34:45 +08:00
#[inline]
pub fn set(&mut self, (i, j): (uint, uint), t: N)
{ self.mij[self.offset(i, j)] = t }
}
)
)
macro_rules! column_impl(
($t: ident, $dim: expr) => (
impl<N: Copy, V: Zero + Iterable<N> + IterableMut<N>> Column<V> for $t<N>
{
fn set_column(&mut self, col: uint, v: V)
2013-06-29 08:34:45 +08:00
{
for v.iter().enumerate().advance |(i, e)|
{
if i == Dim::dim::<$t<N>>()
{ break }
self.set((i, col), copy *e);
}
2013-06-29 08:34:45 +08:00
}
fn column(&self, col: uint) -> V
2013-06-29 08:34:45 +08:00
{
let mut res = Zero::zero::<V>();
for res.mut_iter().enumerate().advance |(i, e)|
{
if i >= Dim::dim::<$t<N>>()
{ break }
*e = self.at((i, col));
}
res
2013-06-29 08:34:45 +08:00
}
}
)
)
macro_rules! mul_impl(
($t: ident, $dim: expr) => (
impl<N: Copy + Ring>
Mul<$t<N>, $t<N>> for $t<N>
{
fn mul(&self, other: &$t<N>) -> $t<N>
{
let mut res: $t<N> = Zero::zero();
for iterate(0u, $dim) |i|
{
for iterate(0u, $dim) |j|
{
let mut acc = Zero::zero::<N>();
for iterate(0u, $dim) |k|
{ acc = acc + self.at((i, k)) * other.at((k, j)); }
2013-06-29 08:34:45 +08:00
res.set((i, j), acc);
2013-06-29 08:34:45 +08:00
}
}
res
}
}
)
)
macro_rules! rmul_impl(
($t: ident, $v: ident, $dim: expr) => (
impl<N: Copy + Ring>
RMul<$v<N>> for $t<N>
{
fn rmul(&self, other: &$v<N>) -> $v<N>
{
let mut res : $v<N> = Zero::zero();
for iterate(0u, $dim) |i|
{
for iterate(0u, $dim) |j|
{ res.at[i] = res.at[i] + other.at[j] * self.at((i, j)); }
2013-06-29 08:34:45 +08:00
}
res
}
}
)
)
macro_rules! lmul_impl(
($t: ident, $v: ident, $dim: expr) => (
impl<N: Copy + Ring>
LMul<$v<N>> for $t<N>
{
fn lmul(&self, other: &$v<N>) -> $v<N>
{
let mut res : $v<N> = Zero::zero();
for iterate(0u, $dim) |i|
{
for iterate(0u, $dim) |j|
{ res.at[i] = res.at[i] + other.at[j] * self.at((j, i)); }
2013-06-29 08:34:45 +08:00
}
res
}
}
)
)
macro_rules! transform_impl(
($t: ident, $v: ident) => (
impl<N: Copy + DivisionRing + Eq>
Transform<$v<N>> for $t<N>
{
#[inline]
fn transform_vec(&self, v: &$v<N>) -> $v<N>
{ self.rmul(v) }
#[inline]
fn inv_transform(&self, v: &$v<N>) -> $v<N>
{ self.inverse().transform_vec(v) }
}
)
)
macro_rules! inv_impl(
($t: ident, $dim: expr) => (
impl<N: Copy + Eq + DivisionRing>
Inv for $t<N>
{
#[inline]
fn inverse(&self) -> $t<N>
{
let mut res : $t<N> = copy *self;
res.invert();
res
}
fn invert(&mut self)
{
let mut res: $t<N> = One::one();
let _0N: N = Zero::zero();
// inversion using Gauss-Jordan elimination
for iterate(0u, $dim) |k|
{
// search a non-zero value on the k-th column
// FIXME: would it be worth it to spend some more time searching for the
// max instead?
let mut n0 = k; // index of a non-zero entry
while (n0 != $dim)
{
if self.at((n0, k)) != _0N
2013-06-29 08:34:45 +08:00
{ break; }
n0 = n0 + 1;
}
// swap pivot line
if n0 != k
{
for iterate(0u, $dim) |j|
{
let off_n0_j = self.offset(n0, j);
let off_k_j = self.offset(k, j);
2013-07-02 18:00:55 +08:00
self.mij.swap(off_n0_j, off_k_j);
res.mij.swap(off_n0_j, off_k_j);
2013-06-29 08:34:45 +08:00
}
}
let pivot = self.at((k, k));
2013-06-29 08:34:45 +08:00
for iterate(k, $dim) |j|
{
let selfval = self.at((k, j)) / pivot;
self.set((k, j), selfval);
2013-06-29 08:34:45 +08:00
}
for iterate(0u, $dim) |j|
{
let resval = res.at((k, j)) / pivot;
res.set((k, j), resval);
2013-06-29 08:34:45 +08:00
}
for iterate(0u, $dim) |l|
{
if l != k
{
let normalizer = self.at((l, k));
2013-06-29 08:34:45 +08:00
for iterate(k, $dim) |j|
{
let selfval = self.at((l, j)) - self.at((k, j)) * normalizer;
self.set((l, j), selfval);
2013-06-29 08:34:45 +08:00
}
for iterate(0u, $dim) |j|
{
let resval = res.at((l, j)) - res.at((k, j)) * normalizer;
res.set((l, j), resval);
2013-06-29 08:34:45 +08:00
}
}
}
}
*self = res;
}
}
)
)
macro_rules! transpose_impl(
($t: ident, $dim: expr) => (
impl<N: Copy> Transpose for $t<N>
{
#[inline]
fn transposed(&self) -> $t<N>
{
let mut res = copy *self;
res.transpose();
res
}
fn transpose(&mut self)
{
for iterate(1u, $dim) |i|
{
for iterate(0u, $dim - 1) |j|
{
let off_i_j = self.offset(i, j);
let off_j_i = self.offset(j, i);
2013-07-02 18:00:55 +08:00
self.mij.swap(off_i_j, off_j_i);
2013-06-29 08:34:45 +08:00
}
}
}
}
)
)
macro_rules! approx_eq_impl(
($t: ident) => (
impl<N: ApproxEq<N>> ApproxEq<N> for $t<N>
{
#[inline]
fn approx_epsilon() -> N
{ ApproxEq::approx_epsilon::<N, N>() }
#[inline]
fn approx_eq(&self, other: &$t<N>) -> bool
{
let mut zip = self.mij.iter().zip(other.mij.iter());
do zip.all |(a, b)| { a.approx_eq(b) }
}
#[inline]
fn approx_eq_eps(&self, other: &$t<N>, epsilon: &N) -> bool
{
let mut zip = self.mij.iter().zip(other.mij.iter());
do zip.all |(a, b)| { a.approx_eq_eps(b, epsilon) }
}
}
)
)
macro_rules! rand_impl(
($t: ident, $param: ident, [ $($elem: ident)|+ ]) => (
impl<N: Rand> Rand for $t<N>
{
#[inline]
fn rand<R: Rng>($param: &mut R) -> $t<N>
{ $t::new([ $( $elem.gen(), )+ ]) }
}
)
)
macro_rules! to_homogeneous_impl(
($t: ident, $t2: ident, $dim: expr) => (
impl<N: One + Zero + Copy> ToHomogeneous<$t2<N>> for $t<N>
{
fn to_homogeneous(&self) -> $t2<N>
{
let mut res: $t2<N> = One::one();
for iterate(0, $dim) |i|
{
for iterate(0, $dim) |j|
{ res.set((i, j), self.at((i, j))) }
}
res
}
}
)
)
macro_rules! from_homogeneous_impl(
($t: ident, $t2: ident, $dim2: expr) => (
impl<N: One + Zero + Copy> FromHomogeneous<$t2<N>> for $t<N>
{
fn from_homogeneous(m: &$t2<N>) -> $t<N>
{
let mut res: $t<N> = One::one();
for iterate(0, $dim2) |i|
{
for iterate(0, $dim2) |j|
{ res.set((i, j), m.at((i, j))) }
}
// FIXME: do we have to deal the lost components
// (like if the 1 is not a 1… do we have to divide?)
res
}
}
)
)