nalgebra/src/dvec.rs

456 lines
11 KiB
Rust
Raw Normal View History

//! Vector with dimensions unknown at compile-time.
#[doc(hidden)]; // we hide doc to not have to document the $trhs double dispatch trait.
use std::num::{Zero, One, Algebraic};
use std::rand::Rand;
use std::rand;
use std::vec;
use std::vec::{VecIterator, VecMutIterator};
use std::cmp::ApproxEq;
2013-09-09 17:19:54 +08:00
use std::iter::FromIterator;
use traits::geometry::{Dot, Norm, Translation};
use traits::structure::{Iterable, IterableMut};
2013-05-31 17:01:07 +08:00
#[doc(hidden)]
mod metal;
2013-07-24 22:50:40 +08:00
/// Vector with a dimension unknown at compile-time.
#[deriving(Eq, ToStr, Clone)]
2013-08-05 16:13:44 +08:00
pub struct DVec<N> {
2013-08-05 15:44:56 +08:00
/// Components of the vector. Contains as much elements as the vector dimension.
at: ~[N]
2013-05-31 17:01:07 +08:00
}
double_dispatch_binop_decl_trait!(DVec, DVecMulRhs)
double_dispatch_binop_decl_trait!(DVec, DVecDivRhs)
double_dispatch_binop_decl_trait!(DVec, DVecAddRhs)
double_dispatch_binop_decl_trait!(DVec, DVecSubRhs)
mul_redispatch_impl!(DVec, DVecMulRhs)
div_redispatch_impl!(DVec, DVecDivRhs)
add_redispatch_impl!(DVec, DVecAddRhs)
sub_redispatch_impl!(DVec, DVecSubRhs)
impl<N: Zero + Clone> DVec<N> {
/// Builds a vector filled with zeros.
///
/// # Arguments
/// * `dim` - The dimension of the vector.
#[inline]
pub fn new_zeros(dim: uint) -> DVec<N> {
DVec::from_elem(dim, Zero::zero())
}
2013-05-31 17:01:07 +08:00
/// Tests if all components of the vector are zeroes.
#[inline]
pub fn is_zero(&self) -> bool {
self.at.iter().all(|e| e.is_zero())
}
2013-08-05 16:13:44 +08:00
}
2013-05-31 17:01:07 +08:00
impl<N: Clone> DVec<N> {
/// Indexing without bounds checking.
pub unsafe fn at_fast(&self, i: uint) -> N {
vec::raw::get(self.at, i)
}
}
impl<N: One + Clone> DVec<N> {
/// Builds a vector filled with ones.
///
/// # Arguments
/// * `dim` - The dimension of the vector.
#[inline]
pub fn new_ones(dim: uint) -> DVec<N> {
DVec::from_elem(dim, One::one())
}
}
impl<N: Rand> DVec<N> {
/// Builds a vector filled with random values.
#[inline]
pub fn new_random(dim: uint) -> DVec<N> {
DVec::from_fn(dim, |_| rand::random())
}
}
impl<N> DVec<N> {
/// Creates an uninitialized vec.
#[inline]
pub unsafe fn new_uninitialized(dim: uint) -> DVec<N> {
let mut vec = vec::with_capacity(dim);
vec::raw::set_len(&mut vec, dim);
DVec {
at: vec
}
}
#[inline]
pub unsafe fn set_fast(&mut self, i: uint, val: N) {
*self.at.unsafe_mut_ref(i) = val
}
#[inline]
pub fn to_vec(self) -> ~[N] {
self.at
}
}
impl<N: Clone> DVec<N> {
/// Builds a vector filled with a constant.
#[inline]
pub fn from_elem(dim: uint, elem: N) -> DVec<N> {
DVec { at: vec::from_elem(dim, elem) }
}
/// Builds a vector filled with the components provided by a vector.
///
/// The vector must have at least `dim` elements.
#[inline]
pub fn from_vec(dim: uint, vec: &[N]) -> DVec<N> {
assert!(dim <= vec.len());
DVec {
at: vec.slice_to(dim).to_owned()
}
}
}
impl<N> DVec<N> {
/// Builds a vector filled with the result of a function.
#[inline(always)]
pub fn from_fn(dim: uint, f: &fn(uint) -> N) -> DVec<N> {
DVec { at: vec::from_fn(dim, |i| f(i)) }
}
}
impl<N> Container for DVec<N> {
#[inline]
fn len(&self) -> uint {
self.at.len()
}
}
2013-08-05 16:13:44 +08:00
impl<N> Iterable<N> for DVec<N> {
#[inline]
2013-08-05 16:13:44 +08:00
fn iter<'l>(&'l self) -> VecIterator<'l, N> {
self.at.iter()
}
}
2013-08-05 16:13:44 +08:00
impl<N> IterableMut<N> for DVec<N> {
#[inline]
2013-08-05 16:13:44 +08:00
fn mut_iter<'l>(&'l mut self) -> VecMutIterator<'l, N> {
self.at.mut_iter()
}
}
2013-08-16 16:14:01 +08:00
impl<N> FromIterator<N> for DVec<N> {
#[inline]
2013-08-16 16:14:01 +08:00
fn from_iterator<I: Iterator<N>>(mut param: &mut I) -> DVec<N> {
2013-08-05 15:44:56 +08:00
let mut res = DVec { at: ~[] };
2013-08-05 16:13:44 +08:00
for e in param {
res.at.push(e)
}
2013-08-05 15:44:56 +08:00
res
}
}
impl<N: Clone + Num + Algebraic + ApproxEq<N> + DVecMulRhs<N, DVec<N>>> DVec<N> {
2013-08-05 15:44:56 +08:00
/// Computes the canonical basis for the given dimension. A canonical basis is a set of
/// vectors, mutually orthogonal, with all its component equal to 0.0 exept one which is equal
/// to 1.0.
2013-08-05 16:13:44 +08:00
pub fn canonical_basis_with_dim(dim: uint) -> ~[DVec<N>] {
2013-08-05 15:44:56 +08:00
let mut res : ~[DVec<N>] = ~[];
2013-05-31 17:01:07 +08:00
2013-08-05 16:13:44 +08:00
for i in range(0u, dim) {
let mut basis_element : DVec<N> = DVec::new_zeros(dim);
2013-05-31 17:01:07 +08:00
2013-08-05 15:44:56 +08:00
basis_element.at[i] = One::one();
2013-05-31 17:01:07 +08:00
2013-08-05 15:44:56 +08:00
res.push(basis_element);
}
2013-05-31 17:01:07 +08:00
2013-08-05 15:44:56 +08:00
res
}
2013-05-31 17:01:07 +08:00
2013-08-05 15:44:56 +08:00
/// Computes a basis of the space orthogonal to the vector. If the input vector is of dimension
/// `n`, this will return `n - 1` vectors.
2013-08-05 16:13:44 +08:00
pub fn orthogonal_subspace_basis(&self) -> ~[DVec<N>] {
2013-08-05 15:44:56 +08:00
// compute the basis of the orthogonal subspace using Gram-Schmidt
// orthogonalization algorithm
let dim = self.at.len();
let mut res : ~[DVec<N>] = ~[];
2013-05-31 17:01:07 +08:00
2013-08-05 16:13:44 +08:00
for i in range(0u, dim) {
let mut basis_element : DVec<N> = DVec::new_zeros(self.at.len());
2013-05-31 17:01:07 +08:00
2013-08-05 15:44:56 +08:00
basis_element.at[i] = One::one();
2013-05-31 17:01:07 +08:00
2013-08-05 16:13:44 +08:00
if res.len() == dim - 1 {
break;
}
2013-05-31 17:01:07 +08:00
2013-08-05 15:44:56 +08:00
let mut elt = basis_element.clone();
2013-05-31 17:01:07 +08:00
elt = elt - self * basis_element.dot(self);
2013-05-31 17:01:07 +08:00
2013-08-05 16:13:44 +08:00
for v in res.iter() {
elt = elt - v * elt.dot(v)
2013-08-05 16:13:44 +08:00
};
2013-08-05 15:44:56 +08:00
2013-08-05 16:13:44 +08:00
if !elt.sqnorm().approx_eq(&Zero::zero()) {
res.push(elt.normalized());
}
2013-08-05 15:44:56 +08:00
}
2013-05-31 17:01:07 +08:00
2013-08-05 15:44:56 +08:00
assert!(res.len() == dim - 1);
2013-05-31 17:01:07 +08:00
2013-08-05 15:44:56 +08:00
res
}
2013-05-31 17:01:07 +08:00
}
impl<N: Add<N, N>> DVecAddRhs<N, DVec<N>> for DVec<N> {
2013-08-05 15:44:56 +08:00
#[inline]
fn binop(left: &DVec<N>, right: &DVec<N>) -> DVec<N> {
assert!(left.at.len() == right.at.len());
2013-08-05 15:44:56 +08:00
DVec {
at: left.at.iter().zip(right.at.iter()).map(|(a, b)| *a + *b).collect()
2013-08-05 15:44:56 +08:00
}
2013-07-02 18:00:55 +08:00
}
2013-05-31 17:01:07 +08:00
}
impl<N: Sub<N, N>> DVecSubRhs<N, DVec<N>> for DVec<N> {
2013-08-05 15:44:56 +08:00
#[inline]
fn binop(left: &DVec<N>, right: &DVec<N>) -> DVec<N> {
assert!(left.at.len() == right.at.len());
2013-08-05 15:44:56 +08:00
DVec {
at: left.at.iter().zip(right.at.iter()).map(|(a, b)| *a - *b).collect()
2013-08-05 15:44:56 +08:00
}
2013-07-02 18:00:55 +08:00
}
2013-05-31 17:01:07 +08:00
}
2013-08-05 16:13:44 +08:00
impl<N: Neg<N>> Neg<DVec<N>> for DVec<N> {
2013-08-05 15:44:56 +08:00
#[inline]
2013-08-05 16:13:44 +08:00
fn neg(&self) -> DVec<N> {
2013-08-11 22:07:34 +08:00
DVec { at: self.at.iter().map(|a| -a).collect() }
2013-08-05 16:13:44 +08:00
}
2013-05-31 17:01:07 +08:00
}
2013-09-09 00:29:51 +08:00
impl<N: Num> Dot<N> for DVec<N> {
2013-08-05 15:44:56 +08:00
#[inline]
2013-09-09 00:29:51 +08:00
fn dot(&self, other: &DVec<N>) -> N {
2013-08-05 15:44:56 +08:00
assert!(self.at.len() == other.at.len());
2013-05-31 17:01:07 +08:00
let mut res: N = Zero::zero();
2013-05-31 17:01:07 +08:00
2013-08-05 16:13:44 +08:00
for i in range(0u, self.at.len()) {
res = res + self.at[i] * other.at[i];
}
2013-05-31 17:01:07 +08:00
2013-08-05 15:44:56 +08:00
res
}
2013-05-31 17:01:07 +08:00
2013-08-05 15:44:56 +08:00
#[inline]
2013-09-09 00:29:51 +08:00
fn sub_dot(&self, a: &DVec<N>, b: &DVec<N>) -> N {
let mut res: N = Zero::zero();
2013-05-31 17:01:07 +08:00
2013-08-05 16:13:44 +08:00
for i in range(0u, self.at.len()) {
res = res + (self.at[i] - a.at[i]) * b.at[i];
}
2013-05-31 17:01:07 +08:00
2013-08-05 15:44:56 +08:00
res
}
2013-05-31 17:01:07 +08:00
}
2013-08-05 16:13:44 +08:00
impl<N: Add<N, N> + Neg<N> + Clone> Translation<DVec<N>> for DVec<N> {
2013-08-05 15:44:56 +08:00
#[inline]
2013-08-05 16:13:44 +08:00
fn translation(&self) -> DVec<N> {
self.clone()
}
2013-05-31 17:01:07 +08:00
2013-08-05 15:44:56 +08:00
#[inline]
2013-08-05 16:13:44 +08:00
fn inv_translation(&self) -> DVec<N> {
-self
}
2013-08-05 15:44:56 +08:00
#[inline]
2013-08-05 16:13:44 +08:00
fn translate_by(&mut self, t: &DVec<N>) {
*self = *self + *t;
}
2013-05-31 17:01:07 +08:00
2013-08-05 15:44:56 +08:00
#[inline]
2013-08-05 16:13:44 +08:00
fn translated(&self, t: &DVec<N>) -> DVec<N> {
self + *t
}
#[inline]
fn set_translation(&mut self, t: DVec<N>) {
*self = t
}
}
2013-09-09 00:29:51 +08:00
impl<N: Num + Algebraic + Clone> Norm<N> for DVec<N> {
2013-08-05 15:44:56 +08:00
#[inline]
2013-09-09 00:29:51 +08:00
fn sqnorm(&self) -> N {
2013-08-05 16:13:44 +08:00
self.dot(self)
}
2013-05-31 17:01:07 +08:00
2013-08-05 15:44:56 +08:00
#[inline]
2013-09-09 00:29:51 +08:00
fn norm(&self) -> N {
2013-08-05 16:13:44 +08:00
self.sqnorm().sqrt()
}
2013-05-31 17:01:07 +08:00
2013-08-05 15:44:56 +08:00
#[inline]
2013-09-09 00:29:51 +08:00
fn normalized(&self) -> DVec<N> {
2013-08-05 15:44:56 +08:00
let mut res : DVec<N> = self.clone();
2013-05-31 17:01:07 +08:00
2013-08-05 15:44:56 +08:00
res.normalize();
2013-05-31 17:01:07 +08:00
2013-08-05 15:44:56 +08:00
res
}
2013-05-31 17:01:07 +08:00
2013-08-05 15:44:56 +08:00
#[inline]
2013-09-09 00:29:51 +08:00
fn normalize(&mut self) -> N {
2013-08-05 15:44:56 +08:00
let l = self.norm();
2013-05-31 17:01:07 +08:00
2013-08-05 16:13:44 +08:00
for i in range(0u, self.at.len()) {
self.at[i] = self.at[i] / l;
}
2013-05-31 17:01:07 +08:00
2013-08-05 15:44:56 +08:00
l
}
2013-05-31 17:01:07 +08:00
}
2013-08-05 16:13:44 +08:00
impl<N: ApproxEq<N>> ApproxEq<N> for DVec<N> {
2013-08-05 15:44:56 +08:00
#[inline]
2013-08-05 16:13:44 +08:00
fn approx_epsilon() -> N {
fail!("Fix me.")
// let res: N = ApproxEq::<N>::approx_epsilon();
// res
2013-08-05 16:13:44 +08:00
}
2013-05-31 17:01:07 +08:00
2013-08-05 15:44:56 +08:00
#[inline]
2013-08-05 16:13:44 +08:00
fn approx_eq(&self, other: &DVec<N>) -> bool {
2013-08-05 15:44:56 +08:00
let mut zip = self.at.iter().zip(other.at.iter());
2013-06-09 20:09:22 +08:00
2013-08-05 16:13:44 +08:00
do zip.all |(a, b)| {
a.approx_eq(b)
}
2013-08-05 15:44:56 +08:00
}
2013-05-31 17:01:07 +08:00
2013-08-05 15:44:56 +08:00
#[inline]
2013-08-05 16:13:44 +08:00
fn approx_eq_eps(&self, other: &DVec<N>, epsilon: &N) -> bool {
2013-08-05 15:44:56 +08:00
let mut zip = self.at.iter().zip(other.at.iter());
2013-06-09 20:09:22 +08:00
2013-08-05 16:13:44 +08:00
do zip.all |(a, b)| {
a.approx_eq_eps(b, epsilon)
}
2013-08-05 15:44:56 +08:00
}
2013-05-31 17:01:07 +08:00
}
macro_rules! scalar_mul_impl (
($n: ident) => (
impl DVecMulRhs<$n, DVec<$n>> for $n {
#[inline]
fn binop(left: &DVec<$n>, right: &$n) -> DVec<$n> {
DVec { at: left.at.iter().map(|a| a * *right).collect() }
}
}
)
)
macro_rules! scalar_div_impl (
($n: ident) => (
impl DVecDivRhs<$n, DVec<$n>> for $n {
#[inline]
fn binop(left: &DVec<$n>, right: &$n) -> DVec<$n> {
DVec { at: left.at.iter().map(|a| a / *right).collect() }
}
}
)
)
macro_rules! scalar_add_impl (
($n: ident) => (
impl DVecAddRhs<$n, DVec<$n>> for $n {
#[inline]
fn binop(left: &DVec<$n>, right: &$n) -> DVec<$n> {
DVec { at: left.at.iter().map(|a| a + *right).collect() }
}
}
)
)
macro_rules! scalar_sub_impl (
($n: ident) => (
impl DVecSubRhs<$n, DVec<$n>> for $n {
#[inline]
fn binop(left: &DVec<$n>, right: &$n) -> DVec<$n> {
DVec { at: left.at.iter().map(|a| a - *right).collect() }
}
}
)
)
scalar_mul_impl!(f64)
scalar_mul_impl!(f32)
scalar_mul_impl!(u64)
scalar_mul_impl!(u32)
scalar_mul_impl!(u16)
scalar_mul_impl!(u8)
scalar_mul_impl!(i64)
scalar_mul_impl!(i32)
scalar_mul_impl!(i16)
scalar_mul_impl!(i8)
scalar_mul_impl!(float)
scalar_mul_impl!(uint)
scalar_mul_impl!(int)
scalar_div_impl!(f64)
scalar_div_impl!(f32)
scalar_div_impl!(u64)
scalar_div_impl!(u32)
scalar_div_impl!(u16)
scalar_div_impl!(u8)
scalar_div_impl!(i64)
scalar_div_impl!(i32)
scalar_div_impl!(i16)
scalar_div_impl!(i8)
scalar_div_impl!(float)
scalar_div_impl!(uint)
scalar_div_impl!(int)
scalar_add_impl!(f64)
scalar_add_impl!(f32)
scalar_add_impl!(u64)
scalar_add_impl!(u32)
scalar_add_impl!(u16)
scalar_add_impl!(u8)
scalar_add_impl!(i64)
scalar_add_impl!(i32)
scalar_add_impl!(i16)
scalar_add_impl!(i8)
scalar_add_impl!(float)
scalar_add_impl!(uint)
scalar_add_impl!(int)
scalar_sub_impl!(f64)
scalar_sub_impl!(f32)
scalar_sub_impl!(u64)
scalar_sub_impl!(u32)
scalar_sub_impl!(u16)
scalar_sub_impl!(u8)
scalar_sub_impl!(i64)
scalar_sub_impl!(i32)
scalar_sub_impl!(i16)
scalar_sub_impl!(i8)
scalar_sub_impl!(float)
scalar_sub_impl!(uint)
scalar_sub_impl!(int)