2021-04-06 01:17:49 +08:00
|
|
|
//! This module provides the matrix exponential (pow) function to square matrices.
|
|
|
|
|
|
|
|
use std::ops::DivAssign;
|
|
|
|
|
2021-04-11 20:07:06 +08:00
|
|
|
use crate::{
|
|
|
|
allocator::Allocator,
|
|
|
|
storage::{Storage, StorageMut},
|
|
|
|
DefaultAllocator, DimMin, Matrix, OMatrix,
|
|
|
|
};
|
2021-04-06 01:17:49 +08:00
|
|
|
use num::PrimInt;
|
|
|
|
use simba::scalar::ComplexField;
|
|
|
|
|
2021-04-11 20:07:06 +08:00
|
|
|
impl<T: ComplexField, D, S> Matrix<T, D, D, S>
|
2021-04-06 01:17:49 +08:00
|
|
|
where
|
|
|
|
D: DimMin<D, Output = D>,
|
2021-04-11 20:07:06 +08:00
|
|
|
S: StorageMut<T, D, D>,
|
|
|
|
DefaultAllocator: Allocator<T, D, D> + Allocator<T, D>,
|
2021-04-06 01:17:49 +08:00
|
|
|
{
|
2021-04-10 12:43:59 +08:00
|
|
|
/// Attempts to raise this matrix to an integral power `e` in-place. If this
|
|
|
|
/// matrix is non-invertible and `e` is negative, it leaves this matrix
|
2021-04-10 13:12:26 +08:00
|
|
|
/// untouched and returns `Err(())`. Otherwise, it returns `Ok(())` and
|
2021-04-10 12:43:59 +08:00
|
|
|
/// overwrites this matrix with the result.
|
2021-04-10 13:12:26 +08:00
|
|
|
#[must_use]
|
2021-04-11 20:07:06 +08:00
|
|
|
pub fn pow_mut<I: PrimInt + DivAssign>(&mut self, mut e: I) -> Result<(), ()> {
|
|
|
|
let zero = I::zero();
|
2021-04-06 01:17:49 +08:00
|
|
|
|
2021-04-10 12:43:59 +08:00
|
|
|
// A matrix raised to the zeroth power is just the identity.
|
2021-04-06 01:17:49 +08:00
|
|
|
if e == zero {
|
2021-04-06 01:32:12 +08:00
|
|
|
self.fill_with_identity();
|
2021-04-10 13:12:26 +08:00
|
|
|
return Ok(());
|
2021-04-06 01:17:49 +08:00
|
|
|
}
|
|
|
|
|
2021-04-10 12:43:59 +08:00
|
|
|
// If e is negative, we compute the inverse matrix, then raise it to the
|
|
|
|
// power of -e.
|
2021-04-06 01:17:49 +08:00
|
|
|
if e < zero {
|
2021-04-06 01:32:12 +08:00
|
|
|
if !self.try_inverse_mut() {
|
2021-04-10 13:12:26 +08:00
|
|
|
return Err(());
|
2021-04-06 01:32:12 +08:00
|
|
|
}
|
2021-04-06 01:17:49 +08:00
|
|
|
}
|
|
|
|
|
2021-04-11 20:07:06 +08:00
|
|
|
let one = I::one();
|
|
|
|
let two = I::from(2u8).unwrap();
|
2021-04-10 12:43:59 +08:00
|
|
|
|
|
|
|
// We use the buffer to hold the result of multiplier ^ 2, thus avoiding
|
|
|
|
// extra allocations.
|
2021-04-11 20:07:06 +08:00
|
|
|
let mut multiplier = self.clone_owned();
|
|
|
|
let mut buf = self.clone_owned();
|
2021-04-06 01:17:49 +08:00
|
|
|
|
2021-04-10 12:43:59 +08:00
|
|
|
// Exponentiation by squares.
|
|
|
|
loop {
|
2021-04-06 01:17:49 +08:00
|
|
|
if e % two == one {
|
2021-04-11 20:07:06 +08:00
|
|
|
self.mul_to(&multiplier, &mut buf);
|
|
|
|
self.copy_from(&buf);
|
2021-04-06 01:17:49 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
e /= two;
|
2021-04-10 12:59:22 +08:00
|
|
|
multiplier.mul_to(&multiplier, &mut buf);
|
2021-04-10 12:43:59 +08:00
|
|
|
multiplier.copy_from(&buf);
|
2021-04-06 01:17:49 +08:00
|
|
|
|
2021-04-10 12:43:59 +08:00
|
|
|
if e == zero {
|
2021-04-10 13:12:26 +08:00
|
|
|
return Ok(());
|
2021-04-10 12:43:59 +08:00
|
|
|
}
|
|
|
|
}
|
2021-04-06 01:32:12 +08:00
|
|
|
}
|
2021-04-11 20:07:06 +08:00
|
|
|
}
|
2021-04-06 01:32:12 +08:00
|
|
|
|
2021-04-11 20:07:06 +08:00
|
|
|
impl<T: ComplexField, D, S: Storage<T, D, D>> Matrix<T, D, D, S>
|
|
|
|
where
|
|
|
|
D: DimMin<D, Output = D>,
|
|
|
|
S: StorageMut<T, D, D>,
|
|
|
|
DefaultAllocator: Allocator<T, D, D> + Allocator<T, D>,
|
|
|
|
{
|
2021-04-10 12:43:59 +08:00
|
|
|
/// Attempts to raise this matrix to an integral power `e`. If this matrix
|
|
|
|
/// is non-invertible and `e` is negative, it returns `None`. Otherwise, it
|
|
|
|
/// returns the result as a new matrix. Uses exponentiation by squares.
|
2021-04-11 20:07:06 +08:00
|
|
|
#[must_use]
|
|
|
|
pub fn pow<I: PrimInt + DivAssign>(&self, e: I) -> Option<OMatrix<T, D, D>> {
|
|
|
|
let mut clone = self.clone_owned();
|
2021-04-06 01:32:12 +08:00
|
|
|
|
2021-04-10 13:12:26 +08:00
|
|
|
match clone.pow_mut(e) {
|
|
|
|
Ok(()) => Some(clone),
|
|
|
|
Err(()) => None,
|
2021-04-06 01:32:12 +08:00
|
|
|
}
|
2021-04-06 01:17:49 +08:00
|
|
|
}
|
|
|
|
}
|