forked from M-Labs/nalgebra
Make matrix power work for non-owned matrices.
This commit is contained in:
parent
24d546d3b6
commit
cc4427e52b
@ -140,9 +140,9 @@ where
|
||||
}
|
||||
|
||||
/// Computes the determinant of the decomposed matrix.
|
||||
pub fn determinant(&self) -> N::SimdRealField {
|
||||
pub fn determinant(&self) -> T::SimdRealField {
|
||||
let dim = self.chol.nrows();
|
||||
let mut prod_diag = N::one();
|
||||
let mut prod_diag = T::one();
|
||||
for i in 0..dim {
|
||||
prod_diag *= unsafe { *self.chol.get_unchecked((i, i)) };
|
||||
}
|
||||
|
@ -2,23 +2,27 @@
|
||||
|
||||
use std::ops::DivAssign;
|
||||
|
||||
use crate::{allocator::Allocator, DefaultAllocator, DimMin, MatrixN};
|
||||
use crate::{
|
||||
allocator::Allocator,
|
||||
storage::{Storage, StorageMut},
|
||||
DefaultAllocator, DimMin, Matrix, OMatrix,
|
||||
};
|
||||
use num::PrimInt;
|
||||
use simba::scalar::ComplexField;
|
||||
|
||||
impl<N: ComplexField, D> MatrixN<N, D>
|
||||
impl<T: ComplexField, D, S> Matrix<T, D, D, S>
|
||||
where
|
||||
D: DimMin<D, Output = D>,
|
||||
DefaultAllocator: Allocator<N, D, D>,
|
||||
DefaultAllocator: Allocator<N, D>,
|
||||
S: StorageMut<T, D, D>,
|
||||
DefaultAllocator: Allocator<T, D, D> + Allocator<T, D>,
|
||||
{
|
||||
/// Attempts to raise this matrix to an integral power `e` in-place. If this
|
||||
/// matrix is non-invertible and `e` is negative, it leaves this matrix
|
||||
/// untouched and returns `Err(())`. Otherwise, it returns `Ok(())` and
|
||||
/// overwrites this matrix with the result.
|
||||
#[must_use]
|
||||
pub fn pow_mut<T: PrimInt + DivAssign>(&mut self, mut e: T) -> Result<(), ()> {
|
||||
let zero = T::zero();
|
||||
pub fn pow_mut<I: PrimInt + DivAssign>(&mut self, mut e: I) -> Result<(), ()> {
|
||||
let zero = I::zero();
|
||||
|
||||
// A matrix raised to the zeroth power is just the identity.
|
||||
if e == zero {
|
||||
@ -34,18 +38,19 @@ where
|
||||
}
|
||||
}
|
||||
|
||||
let one = T::one();
|
||||
let two = T::from(2u8).unwrap();
|
||||
let one = I::one();
|
||||
let two = I::from(2u8).unwrap();
|
||||
|
||||
// We use the buffer to hold the result of multiplier ^ 2, thus avoiding
|
||||
// extra allocations.
|
||||
let mut multiplier = self.clone();
|
||||
let mut buf = self.clone();
|
||||
let mut multiplier = self.clone_owned();
|
||||
let mut buf = self.clone_owned();
|
||||
|
||||
// Exponentiation by squares.
|
||||
loop {
|
||||
if e % two == one {
|
||||
*self *= &multiplier;
|
||||
self.mul_to(&multiplier, &mut buf);
|
||||
self.copy_from(&buf);
|
||||
}
|
||||
|
||||
e /= two;
|
||||
@ -57,12 +62,20 @@ where
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: ComplexField, D, S: Storage<T, D, D>> Matrix<T, D, D, S>
|
||||
where
|
||||
D: DimMin<D, Output = D>,
|
||||
S: StorageMut<T, D, D>,
|
||||
DefaultAllocator: Allocator<T, D, D> + Allocator<T, D>,
|
||||
{
|
||||
/// Attempts to raise this matrix to an integral power `e`. If this matrix
|
||||
/// is non-invertible and `e` is negative, it returns `None`. Otherwise, it
|
||||
/// returns the result as a new matrix. Uses exponentiation by squares.
|
||||
pub fn pow<T: PrimInt + DivAssign>(&self, e: T) -> Option<Self> {
|
||||
let mut clone = self.clone();
|
||||
#[must_use]
|
||||
pub fn pow<I: PrimInt + DivAssign>(&self, e: I) -> Option<OMatrix<T, D, D>> {
|
||||
let mut clone = self.clone_owned();
|
||||
|
||||
match clone.pow_mut(e) {
|
||||
Ok(()) => Some(clone),
|
||||
|
@ -92,7 +92,7 @@ macro_rules! gen_tests(
|
||||
|
||||
#[test]
|
||||
fn cholesky_determinant_static(_n in PROPTEST_MATRIX_DIM) {
|
||||
let m = RandomSDP::new(U4, || random::<$scalar>().0).unwrap();
|
||||
let m = RandomSDP::new(Const::<4>, || random::<$scalar>().0).unwrap();
|
||||
let lu_det = m.clone().lu().determinant();
|
||||
assert_relative_eq!(lu_det.imaginary(), 0., epsilon = 1.0e-7);
|
||||
let chol_det = m.cholesky().unwrap().determinant();
|
||||
|
Loading…
Reference in New Issue
Block a user