2021-01-29 06:25:32 +08:00
|
|
|
use crate::{
|
|
|
|
DualQuaternion, Quaternion, UnitDualQuaternion, SimdRealField, Isometry3,
|
|
|
|
Translation3, UnitQuaternion
|
|
|
|
};
|
|
|
|
use num::{One, Zero};
|
2020-12-16 22:02:02 +08:00
|
|
|
|
|
|
|
impl<N: SimdRealField> DualQuaternion<N> {
|
|
|
|
/// Creates a dual quaternion from its rotation and translation components.
|
|
|
|
///
|
|
|
|
/// # Example
|
|
|
|
/// ```
|
|
|
|
/// # use nalgebra::{DualQuaternion, Quaternion};
|
|
|
|
/// let rot = Quaternion::new(1.0, 2.0, 3.0, 4.0);
|
|
|
|
/// let trans = Quaternion::new(5.0, 6.0, 7.0, 8.0);
|
|
|
|
///
|
|
|
|
/// let dq = DualQuaternion::from_real_and_dual(rot, trans);
|
2020-12-18 23:09:56 +08:00
|
|
|
/// assert_eq!(dq.real.w, 1.0);
|
2020-12-16 22:02:02 +08:00
|
|
|
/// ```
|
|
|
|
#[inline]
|
|
|
|
pub fn from_real_and_dual(real: Quaternion<N>, dual: Quaternion<N>) -> Self {
|
2020-12-18 23:09:56 +08:00
|
|
|
Self { real, dual }
|
2020-12-16 22:02:02 +08:00
|
|
|
}
|
2021-01-29 06:25:32 +08:00
|
|
|
|
|
|
|
/// The dual quaternion multiplicative identity.
|
2020-12-16 22:02:02 +08:00
|
|
|
///
|
|
|
|
/// # Example
|
|
|
|
///
|
|
|
|
/// ```
|
|
|
|
/// # use nalgebra::{DualQuaternion, Quaternion};
|
|
|
|
///
|
|
|
|
/// let dq1 = DualQuaternion::identity();
|
|
|
|
/// let dq2 = DualQuaternion::from_real_and_dual(
|
|
|
|
/// Quaternion::new(1.,2.,3.,4.),
|
|
|
|
/// Quaternion::new(5.,6.,7.,8.)
|
|
|
|
/// );
|
|
|
|
///
|
|
|
|
/// assert_eq!(dq1 * dq2, dq2);
|
|
|
|
/// assert_eq!(dq2 * dq1, dq2);
|
|
|
|
/// ```
|
|
|
|
#[inline]
|
|
|
|
pub fn identity() -> Self {
|
|
|
|
Self::from_real_and_dual(
|
|
|
|
Quaternion::from_real(N::one()),
|
|
|
|
Quaternion::from_real(N::zero()),
|
|
|
|
)
|
|
|
|
}
|
|
|
|
}
|
2021-01-29 06:25:32 +08:00
|
|
|
|
|
|
|
impl<N: SimdRealField> DualQuaternion<N>
|
|
|
|
where
|
|
|
|
N::Element: SimdRealField
|
|
|
|
{
|
|
|
|
|
|
|
|
/// Creates a dual quaternion from only its real part, with no translation
|
|
|
|
/// component.
|
|
|
|
///
|
|
|
|
/// # Example
|
|
|
|
/// ```
|
|
|
|
/// # use nalgebra::{DualQuaternion, Quaternion};
|
|
|
|
/// let rot = Quaternion::new(1.0, 2.0, 3.0, 4.0);
|
|
|
|
///
|
|
|
|
/// let dq = DualQuaternion::from_real(rot);
|
|
|
|
/// assert_eq!(dq.real.w, 1.0);
|
|
|
|
/// assert_eq!(dq.dual.w, 0.0);
|
|
|
|
/// ```
|
|
|
|
#[inline]
|
|
|
|
pub fn from_real(real: Quaternion<N>) -> Self {
|
|
|
|
Self { real, dual: Quaternion::zero() }
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<N: SimdRealField> One for DualQuaternion<N>
|
|
|
|
where
|
|
|
|
N::Element: SimdRealField,
|
|
|
|
{
|
|
|
|
#[inline]
|
|
|
|
fn one() -> Self {
|
|
|
|
Self::identity()
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<N: SimdRealField> Zero for DualQuaternion<N>
|
|
|
|
where
|
|
|
|
N::Element: SimdRealField,
|
|
|
|
{
|
|
|
|
#[inline]
|
|
|
|
fn zero() -> Self {
|
|
|
|
DualQuaternion::from_real_and_dual(
|
|
|
|
Quaternion::zero(),
|
|
|
|
Quaternion::zero()
|
|
|
|
)
|
|
|
|
}
|
|
|
|
|
|
|
|
#[inline]
|
|
|
|
fn is_zero(&self) -> bool {
|
|
|
|
self.real.is_zero() && self.dual.is_zero()
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<N: SimdRealField> UnitDualQuaternion<N> {
|
|
|
|
/// The unit dual quaternion multiplicative identity, which also represents
|
|
|
|
/// the identity transformation as an isometry.
|
|
|
|
///
|
|
|
|
/// ```
|
|
|
|
/// # use nalgebra::{UnitDualQuaternion, UnitQuaternion, Vector3, Point3};
|
|
|
|
/// let ident = UnitDualQuaternion::identity();
|
|
|
|
/// let point = Point3::new(1.0, -4.3, 3.33);
|
|
|
|
///
|
|
|
|
/// assert_eq!(ident * point, point);
|
|
|
|
/// assert_eq!(ident, ident.inverse());
|
|
|
|
/// ```
|
|
|
|
#[inline]
|
|
|
|
pub fn identity() -> Self {
|
|
|
|
Self::new_unchecked(DualQuaternion::identity())
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<N: SimdRealField> UnitDualQuaternion<N>
|
|
|
|
where
|
|
|
|
N::Element: SimdRealField,
|
|
|
|
{
|
|
|
|
/// Return a dual quaternion representing the translation and orientation
|
|
|
|
/// given by the provided rotation quaternion and translation vector.
|
|
|
|
///
|
|
|
|
/// ```
|
|
|
|
/// # #[macro_use] extern crate approx;
|
|
|
|
/// # use nalgebra::{UnitDualQuaternion, UnitQuaternion, Vector3, Point3};
|
|
|
|
/// let dq = UnitDualQuaternion::from_parts(
|
|
|
|
/// Vector3::new(0.0, 3.0, 0.0).into(),
|
|
|
|
/// UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_2, 0.0, 0.0)
|
|
|
|
/// );
|
|
|
|
/// let point = Point3::new(1.0, 2.0, 3.0);
|
|
|
|
///
|
|
|
|
/// assert_relative_eq!(dq * point, Point3::new(1.0, 0.0, 2.0), epsilon = 1.0e-6);
|
|
|
|
/// ```
|
|
|
|
#[inline]
|
|
|
|
pub fn from_parts(
|
|
|
|
translation: Translation3<N>,
|
|
|
|
rotation: UnitQuaternion<N>
|
|
|
|
) -> Self {
|
|
|
|
let half: N = crate::convert(0.5f64);
|
|
|
|
UnitDualQuaternion::new_unchecked(DualQuaternion {
|
|
|
|
real: rotation.clone().into_inner(),
|
|
|
|
dual: Quaternion::from_parts(N::zero(), translation.vector)
|
|
|
|
* rotation.clone().into_inner()
|
|
|
|
* half,
|
|
|
|
})
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Return a unit dual quaternion representing the translation and orientation
|
|
|
|
/// given by the provided isometry.
|
|
|
|
///
|
|
|
|
/// ```
|
|
|
|
/// # #[macro_use] extern crate approx;
|
|
|
|
/// # use nalgebra::{Isometry3, UnitDualQuaternion, UnitQuaternion, Vector3, Point3};
|
|
|
|
/// let iso = Isometry3::from_parts(
|
|
|
|
/// Vector3::new(0.0, 3.0, 0.0).into(),
|
|
|
|
/// UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_2, 0.0, 0.0)
|
|
|
|
/// );
|
|
|
|
/// let dq = UnitDualQuaternion::from_isometry(&iso);
|
|
|
|
/// let point = Point3::new(1.0, 2.0, 3.0);
|
|
|
|
///
|
|
|
|
/// assert_relative_eq!(dq * point, iso * point, epsilon = 1.0e-6);
|
|
|
|
/// ```
|
|
|
|
#[inline]
|
|
|
|
pub fn from_isometry(isometry: &Isometry3<N>) -> Self {
|
|
|
|
UnitDualQuaternion::from_parts(isometry.translation, isometry.rotation)
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Creates a dual quaternion from a unit quaternion rotation.
|
|
|
|
///
|
|
|
|
/// # Example
|
|
|
|
/// ```
|
|
|
|
/// # #[macro_use] extern crate approx;
|
|
|
|
/// # use nalgebra::{UnitQuaternion, UnitDualQuaternion, Quaternion};
|
|
|
|
/// let q = Quaternion::new(1.0, 2.0, 3.0, 4.0);
|
|
|
|
/// let rot = UnitQuaternion::new_normalize(q);
|
|
|
|
///
|
|
|
|
/// let dq = UnitDualQuaternion::from_rotation(rot);
|
|
|
|
/// assert_relative_eq!(dq.as_ref().real.norm(), 1.0, epsilon = 1.0e-6);
|
|
|
|
/// assert_eq!(dq.as_ref().dual.norm(), 0.0);
|
|
|
|
/// ```
|
|
|
|
#[inline]
|
|
|
|
pub fn from_rotation(rotation: UnitQuaternion<N>) -> Self {
|
|
|
|
Self::new_unchecked(DualQuaternion::from_real(rotation.into_inner()))
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<N: SimdRealField> One for UnitDualQuaternion<N>
|
|
|
|
where
|
|
|
|
N::Element: SimdRealField,
|
|
|
|
{
|
|
|
|
#[inline]
|
|
|
|
fn one() -> Self {
|
|
|
|
Self::identity()
|
|
|
|
}
|
|
|
|
}
|