use crate::{ DualQuaternion, Quaternion, UnitDualQuaternion, SimdRealField, Isometry3, Translation3, UnitQuaternion }; use num::{One, Zero}; impl DualQuaternion { /// Creates a dual quaternion from its rotation and translation components. /// /// # Example /// ``` /// # use nalgebra::{DualQuaternion, Quaternion}; /// let rot = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// let trans = Quaternion::new(5.0, 6.0, 7.0, 8.0); /// /// let dq = DualQuaternion::from_real_and_dual(rot, trans); /// assert_eq!(dq.real.w, 1.0); /// ``` #[inline] pub fn from_real_and_dual(real: Quaternion, dual: Quaternion) -> Self { Self { real, dual } } /// The dual quaternion multiplicative identity. /// /// # Example /// /// ``` /// # use nalgebra::{DualQuaternion, Quaternion}; /// /// let dq1 = DualQuaternion::identity(); /// let dq2 = DualQuaternion::from_real_and_dual( /// Quaternion::new(1.,2.,3.,4.), /// Quaternion::new(5.,6.,7.,8.) /// ); /// /// assert_eq!(dq1 * dq2, dq2); /// assert_eq!(dq2 * dq1, dq2); /// ``` #[inline] pub fn identity() -> Self { Self::from_real_and_dual( Quaternion::from_real(N::one()), Quaternion::from_real(N::zero()), ) } } impl DualQuaternion where N::Element: SimdRealField { /// Creates a dual quaternion from only its real part, with no translation /// component. /// /// # Example /// ``` /// # use nalgebra::{DualQuaternion, Quaternion}; /// let rot = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// /// let dq = DualQuaternion::from_real(rot); /// assert_eq!(dq.real.w, 1.0); /// assert_eq!(dq.dual.w, 0.0); /// ``` #[inline] pub fn from_real(real: Quaternion) -> Self { Self { real, dual: Quaternion::zero() } } } impl One for DualQuaternion where N::Element: SimdRealField, { #[inline] fn one() -> Self { Self::identity() } } impl Zero for DualQuaternion where N::Element: SimdRealField, { #[inline] fn zero() -> Self { DualQuaternion::from_real_and_dual( Quaternion::zero(), Quaternion::zero() ) } #[inline] fn is_zero(&self) -> bool { self.real.is_zero() && self.dual.is_zero() } } impl UnitDualQuaternion { /// The unit dual quaternion multiplicative identity, which also represents /// the identity transformation as an isometry. /// /// ``` /// # use nalgebra::{UnitDualQuaternion, UnitQuaternion, Vector3, Point3}; /// let ident = UnitDualQuaternion::identity(); /// let point = Point3::new(1.0, -4.3, 3.33); /// /// assert_eq!(ident * point, point); /// assert_eq!(ident, ident.inverse()); /// ``` #[inline] pub fn identity() -> Self { Self::new_unchecked(DualQuaternion::identity()) } } impl UnitDualQuaternion where N::Element: SimdRealField, { /// Return a dual quaternion representing the translation and orientation /// given by the provided rotation quaternion and translation vector. /// /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::{UnitDualQuaternion, UnitQuaternion, Vector3, Point3}; /// let dq = UnitDualQuaternion::from_parts( /// Vector3::new(0.0, 3.0, 0.0).into(), /// UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_2, 0.0, 0.0) /// ); /// let point = Point3::new(1.0, 2.0, 3.0); /// /// assert_relative_eq!(dq * point, Point3::new(1.0, 0.0, 2.0), epsilon = 1.0e-6); /// ``` #[inline] pub fn from_parts( translation: Translation3, rotation: UnitQuaternion ) -> Self { let half: N = crate::convert(0.5f64); UnitDualQuaternion::new_unchecked(DualQuaternion { real: rotation.clone().into_inner(), dual: Quaternion::from_parts(N::zero(), translation.vector) * rotation.clone().into_inner() * half, }) } /// Return a unit dual quaternion representing the translation and orientation /// given by the provided isometry. /// /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::{Isometry3, UnitDualQuaternion, UnitQuaternion, Vector3, Point3}; /// let iso = Isometry3::from_parts( /// Vector3::new(0.0, 3.0, 0.0).into(), /// UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_2, 0.0, 0.0) /// ); /// let dq = UnitDualQuaternion::from_isometry(&iso); /// let point = Point3::new(1.0, 2.0, 3.0); /// /// assert_relative_eq!(dq * point, iso * point, epsilon = 1.0e-6); /// ``` #[inline] pub fn from_isometry(isometry: &Isometry3) -> Self { UnitDualQuaternion::from_parts(isometry.translation, isometry.rotation) } /// Creates a dual quaternion from a unit quaternion rotation. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::{UnitQuaternion, UnitDualQuaternion, Quaternion}; /// let q = Quaternion::new(1.0, 2.0, 3.0, 4.0); /// let rot = UnitQuaternion::new_normalize(q); /// /// let dq = UnitDualQuaternion::from_rotation(rot); /// assert_relative_eq!(dq.as_ref().real.norm(), 1.0, epsilon = 1.0e-6); /// assert_eq!(dq.as_ref().dual.norm(), 0.0); /// ``` #[inline] pub fn from_rotation(rotation: UnitQuaternion) -> Self { Self::new_unchecked(DualQuaternion::from_real(rotation.into_inner())) } } impl One for UnitDualQuaternion where N::Element: SimdRealField, { #[inline] fn one() -> Self { Self::identity() } }