4456 -> 4456-4457: add almazny #76
@ -1,10 +1,10 @@
|
||||
\input{preamble.tex}
|
||||
\graphicspath{{images/4456}{images}}
|
||||
\graphicspath{{images/4456-4457}{images}}
|
||||
|
||||
\title{4456 Synthesizer Mirny}
|
||||
\title{4456 Synthesizer Mirny / 4457 HF Synthesizer Mirny + Almazny}
|
||||
\author{M-Labs Limited}
|
||||
\date{January 2022}
|
||||
\revision{Revision 1}
|
||||
\date{January 2025}
|
||||
\revision{Revision 2}
|
||||
\companylogo{\includegraphics[height=0.73in]{artiq_sinara.pdf}}
|
||||
|
||||
\begin{document}
|
||||
@ -13,12 +13,11 @@
|
||||
\section{Features}
|
||||
|
||||
\begin{itemize}
|
||||
\item{4-channel VCO/PLL}
|
||||
\item{Output frequency ranges from 53 MHz to \textgreater 4 GHz}
|
||||
\item{Up to 13.6 GHz with Almazny mezzanine}
|
||||
\item{Higher frequency resolution than Urukul}
|
||||
\item{Lower jitter and phase noise}
|
||||
\item{Large frequency changes take several milliseconds}
|
||||
\item{4-channel wide-band PLL/VCO-based microwave frequency synthesiser}
|
||||
architeuthis marked this conversation as resolved
Outdated
|
||||
\item{Output frequency ranges from 53 MHz to \textgreater 4 GHz for 4456 Mirny only}
|
||||
\item{Up to 12 GHz with 4457 Almazny}
|
||||
\item{Higher frequency resolution than 4410/4412 Urukul}
|
||||
architeuthis marked this conversation as resolved
Outdated
morgan
commented
use "4410/4412 DDS Urukul" instead of just "Urukul", since most of our datasheet has the part number prefix use "4410/4412 DDS Urukul" instead of just "Urukul", since most of our datasheet has the part number prefix
|
||||
\item{Lower jitter, phase noise than 4410/4412 Urukul}
|
||||
architeuthis marked this conversation as resolved
Outdated
morgan
commented
Lower jitter and phase noise "than 4410/4412 DDS Urukul" (I think this is copied from the wiki) Lower jitter and phase noise "than 4410/4412 DDS Urukul" (I think this is copied from the [wiki](https://github.com/sinara-hw/mirny/wiki))
|
||||
\end{itemize}
|
||||
architeuthis marked this conversation as resolved
Outdated
morgan
commented
Perhaps this should be moved to "Electrical Specifications" section as "lock time". Last time I checked, the lock time for ADF5355 and ADF5356 are 3.5ms and 1.7ms respectively Perhaps this should be moved to "Electrical Specifications" section as "lock time". Last time I checked, the lock time for ADF5355 and ADF5356 are 3.5ms and 1.7ms respectively
|
||||
|
||||
\section{Applications}
|
||||
@ -30,12 +29,11 @@
|
||||
\end{itemize}
|
||||
|
||||
\section{General Description}
|
||||
The 4456 Synthesizer Mirny card is a 4hp EEM module, part of the ARTIQ/Sinara family. It adds microwave generation capabilities to carrier cards such as 1124 Kasli and 1125 Kasli-SoC.
|
||||
The 4456 Synthesizer Mirny card is a 4hp EEM module; the 4457 HF Synthesizer Mirny + Almazny card, consisting of 4456 Mirny plus the 4-channel Almazny HF mezzanine, is a 8hp EEM module. Both Synthesizer cards add microwave generation capabilities to carrier cards such as 1124 Kasli and 1125 Kasli-SoC.
|
||||
|
||||
It provides 4 channels of PLL frequency synthesis. Output frequencies from 53 MHz to \textgreater 4 GHz are supported.The range can be expanded up to 13.6 GHz with the Almazny mezzanine (4467 HF Synthesizer).
|
||||
|
||||
Each channel can be attenuated from 0 to -31.5 dB by a digital attenuator. RF switches on each channel provides at least 50 dB isolation.
|
||||
Both cards provide 4 channels of PLL frequency synthesis. 4456 Synthesizer Mirny supports output frequencies from 53 MHz to \textgreater 4GHz. As 4457 HF Synthesizer with Almazny mezzanine this range is expanded up to 12 GHz.
|
||||
|
||||
architeuthis marked this conversation as resolved
Outdated
mwojcik
commented
12GHz for Almazny as per hardware specs. 13.8 is theoretical max for ADF5356 but the whole RF path would have to support it, and it doesn't. 12GHz for Almazny as per [hardware specs](https://github.com/sinara-hw/Almazny/). 13.8 is theoretical max for ADF5356 but the whole RF path would have to support it, and it doesn't.
morgan
commented
hmmm, should we also mention mirny max frequency is 6GHz? (12GHz/2) but the loop filter for ADF5356 mirny said it only supports up to 4.4GHz hmmm, should we also mention mirny max frequency is 6GHz? (12GHz/2) but the loop filter for ADF5356 mirny said it only supports up to 4.4GHz
![image](/attachments/0db4f791-7e40-434e-9b66-4b2a89507d35)
mwojcik
commented
4.4GHz is the safe config w/ the loop filter, but with Almazny you can go higher also max max on Mirny output (regardless of the rest of the path) is 6.8 4.4GHz is the safe config w/ the loop filter, but with Almazny you can go higher
also max max on Mirny output (regardless of the rest of the path) is 6.8
|
||||
Each channel can be attenuated from 0 to -31.5 dB by a digital attenuator. RF switches on each channel provide at least 50 dB isolation.
|
||||
|
||||
% Switch to next column
|
||||
\vfill\break
|
||||
@ -275,21 +273,35 @@ Each channel can be attenuated from 0 to -31.5 dB by a digital attenuator. RF sw
|
||||
|
||||
\begin{figure}[hbt!]
|
||||
\centering
|
||||
\includegraphics[height=2in]{photo4456.jpg}
|
||||
\includegraphics[height=3in, angle=90]{Mirny_FP.pdf}
|
||||
\caption{Mirny card and front panel}
|
||||
\includegraphics[height=2in]{photo4457.jpg}
|
||||
\caption{Mirny + Almazny card}
|
||||
\end{figure}
|
||||
|
||||
% For wide tables, a single column layout is better. It can be switched
|
||||
% page-by-page.
|
||||
\onecolumn
|
||||
|
||||
\sourcesection{4456 Synthesizer Mirny}{https://github.com/sinara-hw/mirny}
|
||||
\begin{figure}[hbt!]
|
||||
\subfloat[\centering Mirny and Almazny front panels]{{
|
||||
\begin{minipage}[b]{0.5\linewidth}
|
||||
\centering
|
||||
\includegraphics[height=3in, angle=90]{fp4456.pdf} \\
|
||||
\vspace{0.2in}
|
||||
\includegraphics[height=3in, angle=90]{fp4457.pdf}
|
||||
\vspace{0.25in}
|
||||
\end{minipage}
|
||||
}}
|
||||
\subfloat[\centering Mirny, top-down view]{{
|
||||
\includegraphics[height=2.5in]{photo4456.jpg}
|
||||
}}
|
||||
\end{figure}
|
||||
|
||||
\sourcesectiond{4456 Synthesizer Mirny}{the 4457 Almazny mezzanine}{https://github.com/sinara-hw/mirny}{https://github.com/sinara-hw/Almazny}
|
||||
|
||||
\section{Electrical Specifications}
|
||||
|
||||
Specifications of parameters are based on the datasheets of the PLL IC
|
||||
(ADF5356\footnote{\label{adf5356}\url{https://www.analog.com/media/en/technical-documentation/data-sheets/ADF5356.pdf}}),
|
||||
(ADF5356\footnote{\label{adf5356}\url{https://www.analog.com/media/en/technical-documentation/data-sheets/ADF5356.pdf}} for 4456 Mirny, ADF5355\footnote{\label{adf5355}\url{https://www.analog.com/media/en/technical-documentation/data-sheets/ADF5355.pdf}}) for 4457 Almazny),
|
||||
clock buffer IC (Si53340-B-GM\footnote{\label{clock_buffer}\url{https://www.skyworksinc.com/-/media/Skyworks/SL/documents/public/data-sheets/si5334x-datasheet.pdf}}),
|
||||
and digital attenuator IC (HMC542BLP4E\footnote{\label{attenuator}\url{https://www.analog.com/media/en/technical-documentation/data-sheets/hmc542b.pdf}}).
|
||||
Test results are from Krzysztof Belewicz's thesis. "Microwave synthesizer for driving ion traps in quantum computing"\footnote{\label{mirny_thesis}\url{https://m-labs.hk/Krzysztof\_Belewicz\_V1.1.pdf}}.
|
||||
@ -326,28 +338,41 @@ Test results are from Krzysztof Belewicz's thesis. "Microwave synthesizer for dr
|
||||
\textbf{Parameter} & \textbf{Min.} & \textbf{Typ.} & \textbf{Max.} &
|
||||
\textbf{Unit} & \textbf{Conditions} \\
|
||||
\hline
|
||||
Frequency & 53.125 & & 4000 & MHz & \\
|
||||
Frequency & 53.125 & & 4000 & MHz & 4456 Mirny only \\
|
||||
& & & 12000 & MHz & With Almazny mezzanine \\
|
||||
\hline
|
||||
Digital attenuation\repeatfootnote{attenuator} & -31.5 & & 0 & dB & \\
|
||||
\hline
|
||||
Resolution & \multicolumn{4}{c|}{} & \\
|
||||
\hspace{3mm} Frequency\repeatfootnote{adf5356} & \multicolumn{4}{c|}{52 bits} & \\
|
||||
\hspace{3mm} Phase offset\repeatfootnote{adf5356} & \multicolumn{4}{c|}{24 bits} & \\
|
||||
\hspace{3mm} Digital attenuation\repeatfootnote{attenuator} & \multicolumn{4}{c|}{0.5 dB} & \\
|
||||
\thickhline
|
||||
\end{tabularx}
|
||||
\end{threeparttable}
|
||||
\end{table}
|
||||
|
||||
\newpage
|
||||
|
||||
Phase noise performance of Mirny was tested using the ADF4351 evaluation kit\repeatfootnote{mirny_thesis}. The SPI signal was driven by the evaluation kit, converted into LVDS signal by propagating through the DIO-tester card, finally arriving at the Mirny card. Mirny was then connected to the RSA5100A spectrum analyzer for measurement.
|
||||
\begin{table}[h]
|
||||
\centering
|
||||
\begin{threeparttable}
|
||||
\caption{Output Specifications, cont.}
|
||||
\begin{tabularx}{0.9\textwidth}{l | c c c | c | X}
|
||||
\thickhline
|
||||
\textbf{Parameter} & \textbf{Min.} & \textbf{Typ.} & \textbf{Max.} &
|
||||
\textbf{Unit} & \textbf{Conditions} \\
|
||||
\hline
|
||||
Lock time & & 1.7 & & ms & 4456 Mirny channels \\
|
||||
& & 3.5 & & ms & 4457 Almazny channels \\
|
||||
morgan
commented
the mirny & almazny are using the same ADF535X chips, so their lock time should be the same i.e. 1.7 ms when using ADF5356 the mirny & almazny are using the same ADF535X chips, so their lock time should be the same i.e. 1.7 ms when using ADF5356
mwojcik
commented
to be slightly more precise, Almazny is taking the output B (2x) of the ADF535X, there's no extra/duplicate chip on the mezzanine to be slightly more precise, Almazny is taking the output B (2x) of the ADF535X, there's no extra/duplicate chip on the mezzanine
|
||||
\hline
|
||||
Resolution & & & & \\
|
||||
\hspace{3mm} Frequency\repeatfootnote{adf5356} & \multicolumn{3}{c|}{52} & bits & \\
|
||||
\hspace{3mm} Phase offset\repeatfootnote{adf5356} & \multicolumn{3}{c|}{24} & bits & \\
|
||||
\hspace{3mm} Digital attenuation\repeatfootnote{attenuator} & \multicolumn{3}{c|}{0.5} & dB & \\
|
||||
\thickhline
|
||||
\end{tabularx}
|
||||
\end{threeparttable}
|
||||
\end{table}
|
||||
|
||||
Phase noise performance of 4456 Mirny was tested using the ADF4351 evaluation kit\repeatfootnote{mirny_thesis}. The SPI signal was driven by the evaluation kit, converted into LVDS signal by propagating through the DIO-tester card, finally arriving at the Mirny card. 4456 Mirny was then connected to the RSA5100A spectrum analyzer for measurement.
|
||||
|
||||
Noise response spike can be improved by inserting an additional common-mode choke between the power supply and Mirny; note that this common-mode choke is not present on the card itself. The following is a comparison between the two setups at 1 GHz output:
|
||||
\begin{itemize}
|
||||
\item Red: Before any modifications
|
||||
\item Blue: CM choke added with an 100 \textmu F capacitor after the CM choke
|
||||
\end{itemize}
|
||||
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
@ -355,6 +380,13 @@ Noise response spike can be improved by inserting an additional common-mode chok
|
||||
\caption{Phase noise measurement at 1 GHz}
|
||||
\end{figure}
|
||||
|
||||
\begin{itemize}
|
||||
\item Red: Before any modifications
|
||||
\item Blue: CM choke added with an 100 \textmu F capacitor after the CM choke
|
||||
\end{itemize}
|
||||
|
||||
\newpage
|
||||
|
||||
Phase noise at different output frequencies is then measured:
|
||||
|
||||
\newcolumntype{Y}{>{\centering\arraybackslash}X}
|
||||
@ -383,21 +415,59 @@ Phase noise at different output frequencies is then measured:
|
||||
\end{threeparttable}
|
||||
\end{table}
|
||||
|
||||
\newpage
|
||||
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[height=3in]{mirny_phase_noise_frequency.png}
|
||||
\caption{Phase noise measurement}
|
||||
\end{figure}
|
||||
|
||||
\codesection{4456 Synthesizer Mirny}
|
||||
\section{Programmable LEDs}
|
||||
|
||||
4456 Mirny features several status LEDs, including a two per output channel. One per channel displays RF switch status.
|
||||
|
||||
The 4457 Almazny mezzanine features an additional row of LEDs, one per output channel, without a fixed purpose. The associated ARTIQ module allows programming these directly through the channel \texttt{set} method.
|
||||
|
||||
\newpage
|
||||
\sysdescsection
|
||||
|
||||
4456 Synthesizer Mirny must be entered in the \texttt{peripherals} list of the corresponding core device in the following format:
|
||||
|
||||
\begin{tcolorbox}[colback=white]
|
||||
\begin{minted}{json}
|
||||
{
|
||||
"type": "mirny",
|
||||
"ports": 0,
|
||||
"clk_sel": "mmcx", // optional
|
||||
"refclk": 125e6 // optional
|
||||
}
|
||||
\end{minted}
|
||||
\end{tcolorbox}
|
||||
|
||||
Replace 0 with the EEM port number used on the core device. Any port can be used. The \texttt{clk\_sel} field is optional and may be specified as one of either \texttt{xo}, \texttt{mmcx}, or \texttt{sma}. The default is \texttt{xo}. The \texttt{refclk} field is optional and the default is \texttt{100e6}.
|
||||
|
||||
For 4457 Mirny + Almazny, one field must be added:
|
||||
|
||||
\begin{tcolorbox}[colback=white]
|
||||
\begin{minted}{json}
|
||||
{
|
||||
"type": "mirny",
|
||||
"almazny": true,
|
||||
"ports": 0
|
||||
}
|
||||
\end{minted}
|
||||
\end{tcolorbox}
|
||||
|
||||
\codesection{4456 Synthesizer Mirny and 4457 Mirny + Almazny}
|
||||
|
||||
\subsection{1 GHz sinusoidal wave}
|
||||
Generates a 1 GHz sinusoid from RF0 with full scale amplitude, attenuated by 12 dB. Both the CPLD and the PLL channels should be initialized.
|
||||
|
||||
\inputcolorboxminted{firstline=10,lastline=17}{examples/pll.py}
|
||||
|
||||
\subsection{Almazny paired output}
|
||||
|
||||
Mirny and Almazny output channels are paired, and Almazny output channels output twice the frequency of the main Mirny outputs. To set Almazny HF outputs for 4457 HF Synthesizer, set the Mirny outputs to one-half the desired frequency. The above code, run with 4457 HF Synthesizer, will also output 2GHz from Almazny HF0.
|
||||
|
||||
\subsection{ADF5356 power control}
|
||||
Output power can be controlled be configuring the PLL channels individually in addition to the digital attenuators. After initialization of the PLL channel (ADF5356), the following line of code can change the output power level:
|
||||
|
||||
@ -426,7 +496,7 @@ The output can be toggled on and off periodically using the RF switches. The fol
|
||||
|
||||
\inputcolorboxminted{firstline=42,lastline=44}{examples/pll.py}
|
||||
|
||||
\ordersection{4456 Synthesizer Mirny}
|
||||
\ordersection{4456 Synthesizer Mirny or 4457 HF Synthesizer Mirny + Almazny}
|
||||
|
||||
\finalfootnote
|
||||
|
BIN
images/4456-4457/fp4457.pdf
Normal file
Before Width: | Height: | Size: 62 KiB After Width: | Height: | Size: 62 KiB |
Before Width: | Height: | Size: 98 KiB After Width: | Height: | Size: 98 KiB |
Before Width: | Height: | Size: 140 KiB After Width: | Height: | Size: 140 KiB |
BIN
images/4456-4457/photo4457.jpg
Normal file
After Width: | Height: | Size: 179 KiB |
"4-channel Wide-band PLL/VCO-based microwave frequency synthesiser" like on our ordering site is better than just "VCO/PLL"