Compare commits

...

2 Commits

Author SHA1 Message Date
occheung c1388a53a8 4410: remove dead titles 2022-06-24 11:31:39 +08:00
occheung af0fca61e2 4410: replot voltage measured vs expected 2022-06-24 11:29:40 +08:00
1 changed files with 43 additions and 47 deletions

View File

@ -589,7 +589,6 @@ The reported values are obtained from the oscilloscope.
\begin{figure}[H]
\begin{tikzpicture}
\begin{axis}[
% title={RMS Voltage with 50\textOmega~termination \& 0dB attenuation},
xlabel={AD9910 Amplitude Scale Factor},
ylabel={DDS RMS Voltage ($V_{rms}$)},
xmin=0, xmax=1,
@ -643,10 +642,11 @@ The reported values are obtained from the oscilloscope.
\caption{RMS voltage, 0dB attenuation}
\end{figure}
\columnbreak
\begin{figure}[H]
\begin{tikzpicture}
\begin{axis}[
% title={RMS Voltage with 50\textOmega~termination \& 15dB attenuation},
xlabel={AD9910 Amplitude Scale Factor},
ylabel={DDS RMS Voltage ($mV_{rms}$)},
xmin=0, xmax=1,
@ -700,83 +700,79 @@ The reported values are obtained from the oscilloscope.
\caption{RMS voltage, 15dB attenuation}
\end{figure}
\columnbreak
\end{multicols}
The expected RMS voltage is described by the linear function $V_\mathrm{rms,exp}(\mathrm{ASF})=\frac{V_\mathrm{rms}(0.1)}{0.1}*\mathrm{ASF}$.
The measured RMS voltage divided by the full scale expected RMS voltage (i.e. $V_\mathrm{rms,exp}(1)$) is shown below.
\begin{figure}[H]
\centering
\begin{tikzpicture}
\begin{axis}[
% title={RMS Voltage with 50\textOmega~termination \& 0dB attenuation},
xlabel={AD9910 Amplitude Scale Factor},
ylabel={DDS RMS Voltage ($V_{rms}$)},
ylabel={Scaled RMS Voltage},
xmin=0, xmax=1,
ymin=0, ymax=1,
ymin=0, ymax=1.1,
xtick={0, 0.2, 0.4, 0.6, 0.8, 1},
ytick={0, 0.2, 0.4, 0.6, 0.8, 1},
legend pos=north west,
ymajorgrids=true,
grid style=dashed,
width=0.7\textwidth
]
\addplot[
color=black,
samples=2,
ultra thick,
dotted
] {x};
\addplot[
color=blue,
mark=square,
samples=11
samples=11,
y filter/.code={\pgfmathparse{\pgfmathresult/0.089807*0.1}\pgfmathresult}
] coordinates {
(0.0, 0) (0.1, 0.089807) (0.2, 0.179723) (0.3, 0.268852) (0.4, 0.354310) (0.5, 0.441055)
(0.6, 0.526386) (0.7, 0.61233) (0.8, 0.69044) (0.9, 0.75856) (1.0, 0.81703)
};
\addplot[
color=blue,
samples=2,
very thick,
dotted
] {0.089807*10*x};
\legend{Measured, Linear Model}
\end{axis}
\end{tikzpicture}
\caption{RMS voltage at 100 MHz, 0dB attenuation}
\end{figure}
\begin{figure}[H]
\begin{tikzpicture}
\begin{axis}[
% title={RMS Voltage with 50\textOmega~termination \& 15dB attenuation},
xlabel={AD9910 Amplitude Scale Factor},
ylabel={DDS RMS Voltage ($mV_{rms}$)},
xmin=0, xmax=1,
ymin=0, ymax=200,
xtick={0, 0.2, 0.4, 0.6, 0.8, 1},
ytick={0, 40, 80, 120, 160, 200},
legend pos=north west,
ymajorgrids=true,
grid style=dashed,
]
color=orange,
mark=square,
samples=11,
y filter/.code={\pgfmathparse{\pgfmathresult/50.0729*0.1}\pgfmathresult}
] coordinates {
(0, 0) (0.1, 50.0729) (0.2, 100.309) (0.3, 150.996) (0.4, 200.905) (0.5, 250.004)
(0.6, 297.000) (0.7, 345.980) (0.8, 394.391) (0.9, 442.869) (1.0, 490.651)
};
\addplot[
color=blue,
color=green,
mark=square,
samples=11
samples=11,
y filter/.code={\pgfmathparse{\pgfmathresult/28.4696*0.1}\pgfmathresult}
] coordinates {
(0, 0) (0.1, 28.4696) (0.2, 57.143) (0.3, 85.776) (0.4, 114.694) (0.5, 143.302)
(0.6, 171.911) (0.7, 200.098) (0.8, 227.816) (0.9, 256.321) (1.0, 281.930)
};
\addplot[
color=red,
mark=square,
samples=11,
y filter/.code={\pgfmathparse{\pgfmathresult/16.6691*0.1}\pgfmathresult}
] coordinates {
(0, 0) (0.1, 16.6691) (0.2, 33.3762) (0.3, 49.8844) (0.4, 67.055) (0.5, 83.652)
(0.6, 99.970) (0.7, 116.906) (0.8, 133.368) (0.9, 150.839) (1.0, 167.033)
};
\addplot[
color=blue,
samples=2,
very thick,
dotted
] {16.6691*10*x};
\legend{Measured, Linear Model}
\legend{Expected response, 0dB attenuation, 5dB attenuation, 10dB attenuation, 15dB attenuation}
\end{axis}
\end{tikzpicture}
\caption{RMS voltage at 100 MHz, 15dB attenuation}
\end{figure}
\end{multicols}
\caption{RMS voltage scaled by expected voltage at ASF=1, 100 MHz}
\end{figure}
\newpage