5432: formatting

This commit is contained in:
architeuthis 2025-01-31 16:31:02 +01:00
parent 47ce969445
commit 4cb6226570

211
5432.tex
View File

@ -1,5 +1,5 @@
\input{preamble.tex} \input{preamble.tex}
\graphicspath{{images/5432}{images}} \graphicspath{{images/5432}, {images}}
\title{5432 DAC Zotino} \title{5432 DAC Zotino}
\author{M-Labs Limited} \author{M-Labs Limited}
@ -12,27 +12,28 @@
\section{Features} \section{Features}
\begin{itemize} \begin{itemize}
\item{32-channel DAC} \item{32-channel DAC}
\item{16-bits resolution} \item{16-bits resolution}
\item{1 MSPS shared between all channels} \item{1 MSPS shared between all channels}
\item{Output voltage $\pm$10V} \item{Output voltage $\pm$10V}
\item{HD68 connector} \item{HD68 connector}
\item{Can be broken out to BNC/SMA/MCX} \item{Can be broken out to BNC/SMA/MCX}
\end{itemize} \end{itemize}
\section{Applications} \section{Applications}
\begin{itemize} \begin{itemize}
\item{Controlling setpoints of PID controllers for laser power stabilization} \item{Controlling setpoints of PID controllers for laser power stabilization}
\item{Low-frequency arbitrary waveform generation} \item{Low-frequency arbitrary waveform generation}
\item{Driving DC electrodes in ion traps} \item{Driving DC electrodes in ion traps}
\end{itemize} \end{itemize}
\section{General Description} \section{General Description}
The 5432 Zotino is a 4hp EEM module and part of the ARTIQ/Sinara family. It adds digital-analog conversion capabilities to carrier cards such as 1124 Kasli and 1125 Kasli-SoC.
It provides four groups of eight analog channels each, exposed by one HD68 connector. Each channel supports output voltage from -10 V to 10 V. All channels can be updated simultaneously. Channels can broken out to BNC, SMA or MCX by adding external 5518 BNC-IDC, 5528 SMA-IDC or 5538 MCX-IDC cards. The 5432 Zotino is a 4hp EEM module and part of the ARTIQ/Sinara family. It adds digital-analog conversion capabilities to carrier cards such as 1124 Kasli and 1125 Kasli-SoC.
It provides four groups of eight analog channels each, exposed by one HD68 connector. Each channel supports output voltage from -10 V to 10 V. All channels can be updated simultaneously. Channels can broken out to BNC, SMA or MCX by adding external 5518 BNC-IDC, 5528 SMA-IDC or 5538 MCX-IDC cards.
% Switch to next column % Switch to next column
\vfill\break \vfill\break
@ -133,114 +134,116 @@ It provides four groups of eight analog channels each, exposed by one HD68 conne
\section{Electrical Specifications} \section{Electrical Specifications}
% \hypersetup{hidelinks} % \hypersetup{hidelinks}
% \urlstyle{same} % \urlstyle{same}
These specifications are based on the datasheet of the DAC IC These specifications are based on the datasheet of the DAC IC
(AD5372BCPZ\footnote{\label{dac}\url{https://www.analog.com/media/en/technical-documentation/data-sheets/AD5372\_5373.pdf}}), (AD5372BCPZ\footnote{\label{dac}\url{https://www.analog.com/media/en/technical-documentation/data-sheets/AD5372\_5373.pdf}}),
and various information from the Sinara wiki\footnote{\label{zotino_wiki}\url{https://github.com/sinara-hw/Zotino/wiki}}. and various information from the Sinara wiki\footnote{\label{zotino_wiki}\url{https://github.com/sinara-hw/Zotino/wiki}}.
\begin{table}[h] \begin{table}[h]
\centering \centering
\begin{threeparttable} \begin{threeparttable}
\caption{Output Specifications} \caption{Output Specifications}
\begin{tabularx}{0.8\textwidth}{l | c c c | c | X} \begin{tabularx}{0.8\textwidth}{l | c c c | c | X}
\thickhline \thickhline
\textbf{Parameter} & \textbf{Min.} & \textbf{Typ.} & \textbf{Max.} & \textbf{Parameter} & \textbf{Min.} & \textbf{Typ.} & \textbf{Max.} &
\textbf{Unit} & \textbf{Conditions} \\ \textbf{Unit} & \textbf{Conditions} \\
\hline \hline
Output voltage & -10 & & 10 & V & \\ Output voltage & -10 & & 10 & V & \\
\hline \hline
Output impedance\repeatfootnote{zotino_wiki} & \multicolumn{4}{c|}{470 $\Omega$ $||$ 2.2nF} & \\ Output impedance\repeatfootnote{zotino_wiki} & \multicolumn{4}{c|}{470 $\Omega$ $||$ 2.2nF} & \\
\hline \hline
Resolution\repeatfootnote{dac} & & 16 & & bits & \\ Resolution\repeatfootnote{dac} & & 16 & & bits & \\
\hline \hline
3dB bandwidth\repeatfootnote{zotino_wiki} & & 75 & & kHz & \\ 3dB bandwidth\repeatfootnote{zotino_wiki} & & 75 & & kHz & \\
\hline \hline
Power consumption\repeatfootnote{zotino_wiki} & 3 & & 8.7 & W & \\ Power consumption\repeatfootnote{zotino_wiki} & 3 & & 8.7 & W & \\
\thickhline \thickhline
\end{tabularx} \end{tabularx}
\end{threeparttable} \end{threeparttable}
\end{table} \end{table}
The following table records the cross-talk and transient behavior of Zotino\footnote{\label{zotino21}\url{https://github.com/sinara-hw/Zotino/issues/21}}. In terms of output noise, measurements were made after a 15-cm IDC cable, IDC-SMA, 100 cm coax ($\sim$50 pF), and 500 k$\Omega$ $||$ 150 pF\footnote{\label{zotino27}\url{https://github.com/sinara-hw/Zotino/issues/27}}. DAC output during noise measurement was 3.5 V. The following table records the cross-talk and transient behavior of Zotino\footnote{\label{zotino21}\url{https://github.com/sinara-hw/Zotino/issues/21}}. In terms of output noise, measurements were made after a 15-cm IDC cable, IDC-SMA, 100 cm coax ($\sim$50 pF), and 500 k$\Omega$ $||$ 150 pF\footnote{\label{zotino27}\url{https://github.com/sinara-hw/Zotino/issues/27}}. DAC output during noise measurement was 3.5 V.
\begin{table}[h] \begin{table}[h]
\centering \centering
\begin{threeparttable} \begin{threeparttable}
\caption{Electrical Characteristics} \caption{Electrical Characteristics}
\begin{tabularx}{0.8\textwidth}{l | c c c | c | X} \begin{tabularx}{0.8\textwidth}{l | c c c | c | X}
\thickhline \thickhline
\textbf{Parameter} & \textbf{Min.} & \textbf{Typ.} & \textbf{Max.} & \textbf{Parameter} & \textbf{Min.} & \textbf{Typ.} & \textbf{Max.} &
\textbf{Unit} & \textbf{Conditions / Comments} \\ \textbf{Unit} & \textbf{Conditions / Comments} \\
\hline \hline
DC cross-talk\repeatfootnote{zotino21} & & -116 & & dB & \\ DC cross-talk\repeatfootnote{zotino21} & & -116 & & dB & \\
\hline \hline
Fall-time\repeatfootnote{zotino21} & & 18.5 & & $\mu$s & 10\% to 90\% fall-time \\ Fall-time\repeatfootnote{zotino21} & & 18.5 & & $\mu$s & 10\% to 90\% fall-time \\
& & 25 & & $\mu$s & 1\% to 99\% fall-time \\ & & 25 & & $\mu$s & 1\% to 99\% fall-time \\
\hline \hline
Negative overshoot\repeatfootnote{zotino21} & & 0.5\% & & - & \\ Negative overshoot\repeatfootnote{zotino21} & & 0.5\% & & - & \\
\hline \hline
Rise-time\repeatfootnote{zotino21} & & 30 & & $\mu$s & 1\% to 99\% rise-time \\ Rise-time\repeatfootnote{zotino21} & & 30 & & $\mu$s & 1\% to 99\% rise-time \\
\hline \hline
Positive overshoot\repeatfootnote{zotino21} & & 0.65\% & & - & \\ Positive overshoot\repeatfootnote{zotino21} & & 0.65\% & & - & \\
\hline \hline
Output noise\repeatfootnote{zotino27} & & & & & \\ Output noise\repeatfootnote{zotino27} & & & & & \\
\hspace{18mm} @ 100 Hz & & 500 & & nV/rtHz & 6.9 Hz bandwidth \\ \hspace{18mm} @ 100 Hz & & 500 & & nV/rtHz & 6.9 Hz bandwidth \\
\hspace{18mm} @ 300 Hz & & 300 & & nV/rtHz & 6.9 Hz bandwidth \\ \hspace{18mm} @ 300 Hz & & 300 & & nV/rtHz & 6.9 Hz bandwidth \\
\hspace{18mm} @ 50 kHz & & 210 & & nV/rtHz & 6.9 kHz bandwidth \\ \hspace{18mm} @ 50 kHz & & 210 & & nV/rtHz & 6.9 kHz bandwidth \\
\hspace{18mm} @ 1 MHz & & 4.6 & & nV/rtHz & 6.9 kHz bandwidth \\ \hspace{18mm} @ 1 MHz & & 4.6 & & nV/rtHz & 6.9 kHz bandwidth \\
\hspace{18mm} $>$ 4 MHz & & & 1 & nV/rtHz & 6.9 kHz bandwidth \\ \hspace{18mm} $>$ 4 MHz & & & 1 & nV/rtHz & 6.9 kHz bandwidth \\
\thickhline \thickhline
\end{tabularx} \end{tabularx}
\end{threeparttable} \end{threeparttable}
\end{table} \end{table}
\newpage \newpage
Step response was found by setting the DAC register to 0x0000 (-10V) or 0xFFFF (10V) and observing the waveform\repeatfootnote{zotino21}. Step response was found by setting the DAC register to 0x0000 (-10V) or 0xFFFF (10V) and observing the waveform\repeatfootnote{zotino21}.
\begin{figure}[hbt!] \begin{figure}[hbt!]
\centering \centering
\subfloat[\centering Switching from -10V to +10V]{{ \subfloat[\centering Switching from -10V to +10V]{{
\includegraphics[height=1.8in]{zotino_step_response_rising.png} \includegraphics[height=1.8in]{zotino_step_response_rising.png}
}}% }}%
\subfloat[\centering Switching from +10V to -10V]{{ \subfloat[\centering Switching from +10V to -10V]{{
\includegraphics[height=1.8in]{zotino_step_response_falling.png} \includegraphics[height=1.8in]{zotino_step_response_falling.png}
}}% }}%
\caption{Step response}% \caption{Step response}%
\end{figure} \end{figure}
Far-end crosstalk was measured using the following setup\repeatfootnote{zotino21}: Far-end crosstalk was measured using the following setup\repeatfootnote{zotino21}:
\begin{enumerate} \begin{enumerate}
\item CH1 as aggressor, CH0 as victim \item CH1 as aggressor, CH0 as victim
\item CH0, 2-7 terminated, CH 8-31 open \item CH0, 2-7 terminated, CH 8-31 open
\item Aggressor signal from BNC passed through 15cm IDC26, 2m HD68-HD68 SCSI-3 shielded twisted pair, 15cm IDC26, converted back to BNC with adapters between all different cables and connectors. \item Aggressor signal from BNC passed through 15cm IDC26, 2m HD68-HD68 SCSI-3 shielded twisted pair, 15cm IDC26, converted back to BNC with adapters between all different cables and connectors.
\end{enumerate} \end{enumerate}
\begin{figure}[hbt!] \begin{figure}[hbt!]
\centering \centering
\includegraphics[width=3.3in]{zotino_fext.png} \includegraphics[width=3.3in]{zotino_fext.png}
\caption{Step crosstalk} \caption{Step crosstalk}
\end{figure} \end{figure}
\newpage \newpage
\codesection{5432 DAC Zotino} \codesection{5432 DAC Zotino}
\subsection{Setting output voltage} \subsection{Setting output voltage}
The following example initializes the Zotino card, then emits 1.0 V, 2.0 V, 3.0 V and 4.0 V at channels 0, 1, 2, and 3 respectively. Voltages of all 4 channels are updated simultaneously with the use of \texttt{set\char`_dac()}.
\inputcolorboxminted{firstline=11,lastline=22}{examples/zotino.py} The following example initializes the Zotino card, then emits 1.0 V, 2.0 V, 3.0 V and 4.0 V at channels 0, 1, 2, and 3 respectively. Voltages of all 4 channels are updated simultaneously with the use of \texttt{set\char`_dac()}.
\inputcolorboxminted{firstline=11,lastline=22}{examples/zotino.py}
\newpage \newpage
\subsection{Triangular wave} \subsection{Triangular wave}
Generates a triangular waveform at 10 Hz, 16 V peak-to-peak. Timing accuracy of the RTIO system can be demonstrated by the precision of the frequency.
Import \texttt{scipy.signal} and \texttt{numpy} modules to run this example. Generates a triangular waveform at 10 Hz, 16 V peak-to-peak. Timing accuracy of the RTIO system can be demonstrated by the precision of the frequency.
\inputcolorboxminted{firstline=30,lastline=49}{examples/zotino.py} Import \texttt{scipy.signal} and \texttt{numpy} modules to run this example.
\inputcolorboxminted{firstline=30,lastline=49}{examples/zotino.py}
\ordersection{5432 DAC Zotino} \ordersection{5432 DAC Zotino}