Compare commits

...

6 Commits

Author SHA1 Message Date
Harry Ho 232a08f110 nal: Fix comments & styling 2021-03-17 10:21:18 +08:00
Harry Ho 2eadb652ff nal: Fix infinite loop when TX buffer is full
* For example, if the PHY linkup is down, instead of looping until resumption of the linkup, a write operation now closes the socket for re-connection in the future
2021-03-16 10:25:23 +08:00
Harry Ho 6de19f43cc nal: Prevent pushing duplicate handles for the same TcpSocket 2021-03-12 12:36:30 +08:00
Harry Ho 66c3aa534f nal: socket (TcpSocket) → handle; internal_socket → socket 2021-03-12 11:26:07 +08:00
Harry Ho 99899e6657 nal: Fix read/write not pushing erroneous socket back to the stack
* Based on quartiq's minimq as of 933687c2e4
* In minimq applications, a socket is expected to be returned when `nal::TcpStack::open()` is called
  * `MqttClient::read()`/`write()` takes away the TCP socket handle (wrapped as an `Option`) from its `RefCell`, and then calls `nal::TcpStack::read()`/`write()`; if NAL returns `nb::Error`, then the MQTT client will propagate and return the error, leaving `None` behind
  * Afterwards, when `MqttClient::socket_is_connected()` gets called (e.g. while polling the interface), it will detect that the socket handle is `None`, and attempt to call `nal::TcpStack::open()`
  * Since `open()` pops a socket from the array (`unused_handles`), when implementing this NAL the socket should have been pushed back to the stack, i.e. by `close()`; this prevents any future calls of `open()` from returning `NetworkError::NoSocket` due to emptiness of the array of socket handles
2021-03-11 17:32:44 +08:00
Harry Ho d9e50bbcb6 nal: Prevent looping until the stack successfully connects to remote
* `NetworkStack::connect()`:
  * Add timeout for connection attempt
  * Now returns the socket at TCP ESTABLISHED or CLOSED states, or after connection timeout
* Split `NetworkStack::update()` into `update()` (for controlling the clock) and `poll()` (for polling the smoltcp EthernetInterface)
* Also remove option `auto_time_update`; the main application is responsible for what values `embedded_time::clock::Clock::try_now()` should return
2021-03-05 14:52:57 +08:00
1 changed files with 150 additions and 81 deletions

View File

@ -1,5 +1,5 @@
use core::cell::RefCell; use core::cell::RefCell;
use core::convert::TryFrom; use core::convert::TryInto;
use heapless::{consts, Vec}; use heapless::{consts, Vec};
use embedded_nal as nal; use embedded_nal as nal;
use nal::nb; use nal::nb;
@ -40,7 +40,8 @@ where
unused_handles: RefCell<Vec<net::socket::SocketHandle, consts::U16>>, unused_handles: RefCell<Vec<net::socket::SocketHandle, consts::U16>>,
time_ms: RefCell<u32>, time_ms: RefCell<u32>,
last_update_instant: RefCell<Option<time::Instant<IntClock>>>, last_update_instant: RefCell<Option<time::Instant<IntClock>>>,
clock: IntClock clock: IntClock,
connection_timeout_ms: u32,
} }
impl<'a, SPI, NSS, IntClock> NetworkStack<'a, SPI, NSS, IntClock> impl<'a, SPI, NSS, IntClock> NetworkStack<'a, SPI, NSS, IntClock>
@ -49,7 +50,12 @@ where
NSS: OutputPin, NSS: OutputPin,
IntClock: time::Clock<T = u32>, IntClock: time::Clock<T = u32>,
{ {
pub fn new(interface: NetworkInterface<SPI, NSS>, sockets: net::socket::SocketSet<'a>, clock: IntClock) -> Self { pub fn new(
interface: NetworkInterface<SPI, NSS>,
sockets: net::socket::SocketSet<'a>,
clock: IntClock,
connection_timeout_ms: u32,
) -> Self {
let mut unused_handles: Vec<net::socket::SocketHandle, consts::U16> = Vec::new(); let mut unused_handles: Vec<net::socket::SocketHandle, consts::U16> = Vec::new();
for socket in sockets.iter() { for socket in sockets.iter() {
unused_handles.push(socket.handle()).unwrap(); unused_handles.push(socket.handle()).unwrap();
@ -62,13 +68,13 @@ where
time_ms: RefCell::new(0), time_ms: RefCell::new(0),
last_update_instant: RefCell::new(None), last_update_instant: RefCell::new(None),
clock, clock,
connection_timeout_ms,
} }
} }
// Include auto_time_update to allow Instant::now() to not be called // Initiate or advance the timer, and return the duration in ms as u32.
// Instant::now() is not safe to call in `init()` context fn update(&self) -> Result<u32, NetworkError> {
pub fn update(&self, auto_time_update: bool) -> Result<bool, NetworkError> { let mut duration_ms: u32 = 0;
if auto_time_update {
// Check if it is the first time the stack has updated the time itself // Check if it is the first time the stack has updated the time itself
let now = match *self.last_update_instant.borrow() { let now = match *self.last_update_instant.borrow() {
// If it is the first time, do not advance time // If it is the first time, do not advance time
@ -78,18 +84,39 @@ where
Some(instant) => { Some(instant) => {
// Calculate elapsed time // Calculate elapsed time
let now = self.clock.try_now().map_err(|_| NetworkError::TimeFault)?; let now = self.clock.try_now().map_err(|_| NetworkError::TimeFault)?;
let duration = now.checked_duration_since(&instant).ok_or(NetworkError::TimeFault)?; let mut duration = now.checked_duration_since(&instant);
let duration_ms = time::duration::Milliseconds::<u32>::try_from(duration).map_err(|_| NetworkError::TimeFault)?; // Normally, the wrapping clock should produce a valid duration.
// However, if `now` is earlier than `instant` (e.g. because the main
// application cannot get a valid epoch time during initialisation,
// we should still produce a duration that is just 1ms.
if duration.is_none() {
self.time_ms.replace(0);
duration = Some(Milliseconds(1_u32)
.to_generic::<u32>(IntClock::SCALING_FACTOR)
.map_err(|_| NetworkError::TimeFault)?);
}
let duration_ms_time: Milliseconds<u32> = duration.unwrap().try_into()
.map_err(|_| NetworkError::TimeFault)?;
duration_ms = *duration_ms_time.integer();
// Adjust duration into ms (note: decimal point truncated) // Adjust duration into ms (note: decimal point truncated)
self.advance_time(*duration_ms.integer()); self.advance_time(duration_ms);
now now
} }
}; };
self.last_update_instant.replace(Some(now)); self.last_update_instant.replace(Some(now));
Ok(duration_ms)
} }
fn advance_time(&self, duration_ms: u32) {
let time = self.time_ms.borrow().wrapping_add(duration_ms);
self.time_ms.replace(time);
}
// Poll on the smoltcp interface
fn poll(&self) -> Result<bool, NetworkError> {
match self.network_interface.borrow_mut().poll( match self.network_interface.borrow_mut().poll(
&mut self.sockets.borrow_mut(), &mut self.sockets.borrow_mut(),
net::time::Instant::from_millis(*self.time_ms.borrow() as i64), net::time::Instant::from_millis(*self.time_ms.borrow() as u32),
) { ) {
Ok(changed) => Ok(!changed), Ok(changed) => Ok(!changed),
Err(_e) => { Err(_e) => {
@ -98,11 +125,6 @@ where
} }
} }
pub fn advance_time(&self, duration: u32) {
let time = self.time_ms.try_borrow().unwrap().wrapping_add(duration);
self.time_ms.replace(time);
}
fn get_ephemeral_port(&self) -> u16 { fn get_ephemeral_port(&self) -> u16 {
// Get the next ephemeral port // Get the next ephemeral port
let current_port = self.next_port.borrow().clone(); let current_port = self.next_port.borrow().clone();
@ -124,122 +146,169 @@ where
Some(handle) => { Some(handle) => {
// Abort any active connections on the handle. // Abort any active connections on the handle.
let mut sockets = self.sockets.borrow_mut(); let mut sockets = self.sockets.borrow_mut();
let internal_socket: &mut net::socket::TcpSocket = &mut *sockets.get(handle); let socket: &mut net::socket::TcpSocket = &mut *sockets.get(handle);
internal_socket.abort(); socket.abort();
Ok(handle) Ok(handle)
} }
None => Err(NetworkError::NoSocket), None => Err(NetworkError::NoSocket),
} }
} }
// Ideally connect is only to be performed in `init()` of `main.rs`
// Calling `Instant::now()` of `rtic::cyccnt` would face correctness issue during `init()`
fn connect( fn connect(
&self, &self,
socket: Self::TcpSocket, handle: Self::TcpSocket,
remote: nal::SocketAddr, remote: nal::SocketAddr,
) -> Result<Self::TcpSocket, Self::Error> { ) -> Result<Self::TcpSocket, Self::Error> {
let address = { {
// If the socket has already been connected, ignore the connection
// request silently.
let mut sockets = self.sockets.borrow_mut(); let mut sockets = self.sockets.borrow_mut();
let internal_socket: &mut net::socket::TcpSocket = &mut *sockets.get(socket); let socket: &mut net::socket::TcpSocket = &mut *sockets.get(handle);
// If we're already in the process of connecting, ignore the request silently. if socket.state() == net::socket::TcpState::Established {
if internal_socket.is_open() { return Ok(handle)
return Ok(socket);
} }
}
{
let mut sockets = self.sockets.borrow_mut();
let socket: &mut net::socket::TcpSocket = &mut *sockets.get(handle);
// abort() instead of close() prevents TcpSocket::connect() from
// raising an error
socket.abort();
match remote.ip() { match remote.ip() {
nal::IpAddr::V4(addr) => { nal::IpAddr::V4(addr) => {
let address = let address =
net::wire::Ipv4Address::from_bytes(&addr.octets()[..]); net::wire::Ipv4Address::from_bytes(&addr.octets()[..]);
internal_socket socket
.connect((address, remote.port()), self.get_ephemeral_port()) .connect((address, remote.port()), self.get_ephemeral_port())
.map_err(|_| NetworkError::ConnectionFailure)?; .map_err(|_| NetworkError::ConnectionFailure)?;
net::wire::IpAddress::Ipv4(address) net::wire::IpAddress::Ipv4(address)
} },
nal::IpAddr::V6(addr) => { nal::IpAddr::V6(addr) => {
let address = net::wire::Ipv6Address::from_parts(&addr.segments()[..]); let address =
internal_socket.connect((address, remote.port()), self.get_ephemeral_port()) net::wire::Ipv6Address::from_parts(&addr.segments()[..]);
socket
.connect((address, remote.port()), self.get_ephemeral_port())
.map_err(|_| NetworkError::ConnectionFailure)?; .map_err(|_| NetworkError::ConnectionFailure)?;
net::wire::IpAddress::Ipv6(address) net::wire::IpAddress::Ipv6(address)
} }
} }
}; };
// Blocking connect // Blocking connect
// Loop to wait until the socket is staying established or closed,
// or the connection attempt has timed out.
let mut timeout_ms: u32 = 0;
loop { loop {
match self.is_connected(&socket) {
Ok(true) => break,
_ => {
let mut sockets = self.sockets.borrow_mut();
let internal_socket: &mut net::socket::TcpSocket = &mut *sockets.get(socket);
// If the connect got ACK->RST, it will end up in Closed TCP state
// Perform reconnection in this case
if internal_socket.state() == net::socket::TcpState::Closed {
internal_socket.close();
internal_socket
.connect((address, remote.port()), self.get_ephemeral_port())
.map_err(|_| NetworkError::ConnectionFailure)?;
}
}
}
// Avoid using Instant::now() and Advance time manually
self.update(false)?;
{ {
self.advance_time(1);
}
}
Ok(socket)
}
fn is_connected(&self, socket: &Self::TcpSocket) -> Result<bool, Self::Error> {
let mut sockets = self.sockets.borrow_mut(); let mut sockets = self.sockets.borrow_mut();
let socket: &mut net::socket::TcpSocket = &mut *sockets.get(*socket); let socket: &mut net::socket::TcpSocket = &mut *sockets.get(handle);
Ok(socket.may_send() && socket.may_recv()) // TCP state at ESTABLISHED means there is connection, so
// simply return the socket.
if socket.state() == net::socket::TcpState::Established {
return Ok(handle)
}
// TCP state at CLOSED implies that the remote rejected connection;
// In this case, abort the connection, and then return the socket
// for re-connection in the future.
if socket.state() == net::socket::TcpState::Closed {
socket.abort();
// TODO: Return Err(), but would require changes in quartiq/minimq
return Ok(handle)
}
} }
fn write(&self, socket: &mut Self::TcpSocket, buffer: &[u8]) -> nb::Result<usize, Self::Error> { // Any TCP states other than CLOSED and ESTABLISHED are considered
// "transient", so this function should keep waiting and let smoltcp poll
// (e.g. for handling echo reqeust/reply) at the same time.
timeout_ms += self.update()?;
self.poll()?;
// Time out, and return the socket for re-connection in the future.
if timeout_ms > self.connection_timeout_ms {
// TODO: Return Err(), but would require changes in quartiq/minimq
return Ok(handle)
}
}
}
fn is_connected(&self, handle: &Self::TcpSocket) -> Result<bool, Self::Error> {
let mut sockets = self.sockets.borrow_mut();
let socket: &mut net::socket::TcpSocket = &mut *sockets.get(*handle);
Ok(socket.state() == net::socket::TcpState::Established)
}
fn write(&self, handle: &mut Self::TcpSocket, buffer: &[u8]) -> nb::Result<usize, Self::Error> {
let mut write_error = false;
let mut non_queued_bytes = &buffer[..]; let mut non_queued_bytes = &buffer[..];
while non_queued_bytes.len() != 0 { while non_queued_bytes.len() != 0 {
let result = { let result = {
let mut sockets = self.sockets.borrow_mut(); let mut sockets = self.sockets.borrow_mut();
let socket: &mut net::socket::TcpSocket = &mut *sockets.get(*socket); let socket: &mut net::socket::TcpSocket = &mut *sockets.get(*handle);
let result = socket.send_slice(non_queued_bytes); let result = socket.send_slice(non_queued_bytes);
result result
}; };
match result { match result {
Ok(num_bytes) => { Ok(num_bytes) => {
// If the buffer is completely filled, close the socket and
// return an error
if num_bytes == 0 {
write_error = true;
break;
}
// In case the buffer is filled up, push bytes into ethernet driver // In case the buffer is filled up, push bytes into ethernet driver
if num_bytes != non_queued_bytes.len() { if num_bytes != non_queued_bytes.len() {
self.update(true)?; self.update()?;
self.poll()?;
} }
// Process the unwritten bytes again, if any // Process the unwritten bytes again, if any
non_queued_bytes = &non_queued_bytes[num_bytes..] non_queued_bytes = &non_queued_bytes[num_bytes..]
} }
Err(_) => return Err(nb::Error::Other(NetworkError::WriteFailure)), Err(_) => {
write_error = true;
break;
} }
} }
}
if write_error {
// Close the socket to push it back to the array, for
// re-opening the socket in the future
self.close(*handle)?;
return Err(nb::Error::Other(NetworkError::WriteFailure))
}
Ok(buffer.len()) Ok(buffer.len())
} }
fn read( fn read(
&self, &self,
socket: &mut Self::TcpSocket, handle: &mut Self::TcpSocket,
buffer: &mut [u8], buffer: &mut [u8],
) -> nb::Result<usize, Self::Error> { ) -> nb::Result<usize, Self::Error> {
// Enqueue received bytes into the TCP socket buffer // Enqueue received bytes into the TCP socket buffer
self.update(true)?; self.update()?;
self.poll()?;
{
let mut sockets = self.sockets.borrow_mut(); let mut sockets = self.sockets.borrow_mut();
let socket: &mut net::socket::TcpSocket = &mut *sockets.get(*socket); let socket: &mut net::socket::TcpSocket = &mut *sockets.get(*handle);
let result = socket.recv_slice(buffer); let result = socket.recv_slice(buffer);
match result { match result {
Ok(num_bytes) => Ok(num_bytes), Ok(num_bytes) => { return Ok(num_bytes) },
Err(_) => Err(nb::Error::Other(NetworkError::ReadFailure)), Err(_) => {},
} }
} }
// Close the socket to push it back to the array, for
// re-opening the socket in the future
self.close(*handle)?;
Err(nb::Error::Other(NetworkError::ReadFailure))
}
fn close(&self, socket: Self::TcpSocket) -> Result<(), Self::Error> { fn close(&self, handle: Self::TcpSocket) -> Result<(), Self::Error> {
let mut sockets = self.sockets.borrow_mut(); let mut sockets = self.sockets.borrow_mut();
let internal_socket: &mut net::socket::TcpSocket = &mut *sockets.get(socket); let socket: &mut net::socket::TcpSocket = &mut *sockets.get(handle);
internal_socket.close(); socket.close();
self.unused_handles.borrow_mut().push(socket).unwrap(); let mut unused_handles = self.unused_handles.borrow_mut();
if unused_handles.iter().find(|&x| *x == handle).is_none() {
unused_handles.push(handle).unwrap();
}
Ok(()) Ok(())
} }
} }