1
0
forked from M-Labs/nac3

Compare commits

..

200 Commits

Author SHA1 Message Date
ram
c3bcf101d4 Merge remote-tracking branch 'upstream/master' 2025-01-10 04:00:40 +00:00
8baf111734 [meta] Apply clippy suggestions 2025-01-06 17:11:31 +08:00
eaaa194a87 [artiq] symbol_resolver: Cast ndarray.{shape,strides} globals to usize*
This is needed as ndarray.{shapes,strides} are ArrayValues, and so a GEP
operation is required to convert them into pointers to their first
elements.
2025-01-06 16:53:33 +08:00
352c7c880b [artiq] symbol_resolver: Fix incorrect global type for ndarray.strides 2025-01-06 16:53:33 +08:00
3c5e247195 [artiq] symbol_resolver: Use TargetData to get size of dtype
dtype.size_of() may not return a constant value.
2025-01-06 16:53:33 +08:00
4e21def1a0 [artiq] symbol_resolver: Add missing promotion for host compilation
Shape tuple is always in i32, so a zero-extension to i64 is
necessary when assigning the shape tuple into the shape field of the
ndarray.
2025-01-06 16:53:33 +08:00
2271b46b96 [core] codegen/values/ndarray: Fix Vec allocation 2025-01-06 16:53:33 +08:00
d9c180ed13 [artiq] symbol_resolver: Fix support for np.bool_ -> bool decay 2025-01-06 16:53:33 +08:00
8322d457c6 standalone/demo: numpy2 compatibility 2025-01-04 15:30:24 +08:00
e480081e4b update dependencies 2025-01-04 10:28:41 +08:00
12fddc3533 [core] codegen/ndarray: Make ndims non-optional
Now that everything is ported to use strided impl, dynamic-ndim ndarray
instances do not exist anymore.
2025-01-03 15:43:08 +08:00
3ac1083734 [core] codegen: Reimplement np_dot() for scalars and 1D
Based on 693b7f37: core/ndstrides: implement np_dot() for scalars and 1D
2025-01-03 15:43:08 +08:00
66b8a5e01d [core] codegen/ndarray: Reimplement matmul
Based on 73c2203b: core/ndstrides: implement general matmul
2025-01-03 15:43:06 +08:00
ebbadc2d74 [core] codegen: Reimplement ndarray cmpop
Based on 56cccce1: core/ndstrides: implement cmpop
2025-01-03 15:15:13 +08:00
a2f1b25fd8 [core] codegen: Reimplement ndarray unary op
Based on bb992704: core/ndstrides: implement unary op
2025-01-03 15:15:12 +08:00
59f19e29df [core] codegen: Reimplement ndarray binop
Based on 9e40c834: core/ndstrides: implement binop
2025-01-03 15:15:12 +08:00
6cbba8fdde [core] codegen: Reimplement builtin funcs to support strided ndarrays
Based on 7f3c4530: core/ndstrides: update builtin_fns to use ndarray
with strides
2025-01-03 15:15:12 +08:00
e6dab25a57 [core] codegen/ndarray: Add NDArrayOut, broadcast_map, map
Based on fbfc0b29: core/ndstrides: add NDArrayOut, broadcast_map and map
2025-01-03 15:15:11 +08:00
2dc5e79a23 [core] codegen/ndarray: Implement subscript assignment
Based on 5bed394e: core/ndstrides: implement subscript assignment

Overlapping is not handled. Currently it has undefined behavior.
2025-01-03 15:15:11 +08:00
dcde1d9c87 [core] codegen/values/ndarray: Add more ScalarOrNDArray utils
Based on f731e604: core/ndstrides: add more ScalarOrNDArray and
NDArrayObject utils
2025-01-03 15:15:10 +08:00
7375983e0c [core] codegen/ndarray: Implement np_transpose without axes argument
Based on 052b67c8: core/ndstrides: implement np_transpose() (no axes
argument)

The IRRT implementation knows how to handle axes. But the argument is
not in NAC3 yet.
2025-01-03 15:15:08 +08:00
43e440d2fd [core] codegen/ndarray: Reimplement broadcasting
Based on 9359ed96: core/ndstrides: implement broadcasting &
np_broadcast_to()
2025-01-03 15:14:59 +08:00
8d975b5ff3 [core] codegen/ndarray: Implement np_reshape
Based on 926e7e93: core/ndstrides: implement np_reshape()
2025-01-03 14:56:16 +08:00
aae41eef6a [core] toplevel: Add view functions category
Based on 9e0f636d: core: categorize np_{transpose,reshape} as 'view
functions'
2025-01-03 14:47:59 +08:00
132ba1942f [core] toplevel: Implement np_size
Based on 2c1030d1: core/ndstrides: implement np_size()
2025-01-03 14:16:29 +08:00
12358c57b1 [core] codegen/ndarray: Implement np_{shape,strides}
Based on 40c24486: core/ndstrides: implement np_shape() and np_strides()

These functions are not important, but they are handy for debugging.

`np.strides()` is not an actual NumPy function, but `ndarray.strides` is
used.
2025-01-03 13:58:47 +08:00
9ffa2d6552 [core] codegen/ndarray: Reimplement np_{copy,fill}
Based on 18db85fa: core/ndstrides: implement ndarray.fill() and .copy()
2025-01-03 13:58:47 +08:00
acb437919d [core] codegen/ndarray: Reimplement np_{eye,identity}
Based on fa047d50: core/ndstrides: implement np_identity() and np_eye()
2025-01-03 13:58:47 +08:00
fadadd7505 [core] codegen/ndarray: Reimplement np_array()
Based on 8f0084ac: core/ndstrides: implement np_array()

It also checks for inconsistent dimensions if the input is a list.
e.g., rejecting `[[1.0, 2.0], [3.0]]`.

However, currently only `np_array(<input>, copy=False)` and `np_array
(<input>, copy=True)` are supported. In NumPy, copy could be false,
true, or None. Right now, NAC3's `np_array(<input>, copy=False)` behaves
like NumPy's `np.array(<input>, copy=None)`.
2025-01-03 13:58:47 +08:00
26f1428739 [core] codegen: Refactor len()
Based on 54a842a9: core/ndstrides: implement len(ndarray) & refactor
len()
2025-01-03 13:58:47 +08:00
5880f964bb [core] codegen/ndarray: Reimplement np_{zeros,ones,full,empty}
Based on 792374fa: core/ndstrides: implement np_{zeros,ones,full,empty}.
2025-01-03 13:58:47 +08:00
7d02f5833d [core] codegen: Implement Tuple{Type,Value} 2025-01-03 13:58:47 +08:00
822f9d33f8 [core] codegen: Refactor ListType to use derive(StructFields) 2025-01-03 13:58:47 +08:00
805a9d23b3 [core] codegen: Add derive(Copy, Clone) to TypedArrayLikeAdapter 2025-01-03 13:58:46 +08:00
1ffe2fcc7f [core] irrt: Minor reformat 2025-01-03 13:26:51 +08:00
2f0847d77b [core] codegen/types: Refactor ProxyType
- Add alloca_type() function to obtain the type that should be passed
into a `build_alloca` call
- Provide default implementations for raw_alloca and array_alloca
- Add raw_alloca_var and array_alloca_var to distinguish alloca
instructions placed at the front of the function vs at the current
builder location
2024-12-30 17:00:17 +08:00
dc9efa9e8c [core] codegen/ndarray: Use IRRT for size() and indexing operations
Also refactor some usages of call_ndarray_calc_size with ndarray.size().
2024-12-30 16:58:33 +08:00
3c0ce3031f [core] codegen: Update raw_alloca to return PointerValue
Better match the expected behavior of alloca.
2024-12-30 16:51:34 +08:00
d5e8df070a [core] Minor improvements to IRRT and add missing documentation 2024-12-30 16:51:17 +08:00
dc413dfa43 [core] codegen: Refactor TypedArrayLikeAdapter to use fn
Allows for greater flexibility when TypedArrayLikeAdapter is used with
custom value types.
2024-12-30 16:50:22 +08:00
19122e2905 [core] codegen: Rename classes/functions for consistency
- ContiguousNDArrayFields -> ContiguousNDArrayStructFields
- ndarray/nditer: Add _field suffix to field accessors
2024-12-30 16:50:18 +08:00
318371a509 [core] irrt: Minor cleanup 2024-12-30 14:13:48 +08:00
35e3042435 [core] Refactor/Remove redundant and unused constructs
- Use ProxyValue.name where necessary
- Remove NDArrayValue::ptr_to_{shape,strides}
- Remove functions made obsolete by ndstrides
- Remove use statement for ndarray::views as it only contain an impl
block.
- Remove class_names field in Resolvers of test sources
2024-12-30 14:13:48 +08:00
0e5940c49d [meta] Refactor itertools::{chain,enumerate,repeat_n} with std equiv 2024-12-30 14:13:48 +08:00
fbf0053c24 [core] irrt/string: Minor cleanup
- Refactor __nac3_str_eq to always return bool
- Use `get_usize_dependent_function_name` to get IRRT func name
2024-12-30 14:04:42 +08:00
456aefa6ee clean up duplicate include 2024-12-30 13:03:31 +08:00
ram
49a7469b4a use memcmp for string comparison
Co-authored-by: ram <RAMTEJ001@e.ntu.edu.sg>
Co-committed-by: ram <RAMTEJ001@e.ntu.edu.sg>
2024-12-30 13:02:09 +08:00
ram
0d5be81ef4 Merge branch 2024-12-30 04:11:31 +00:00
ram
dd8bf1a35e Resolve merge conflicts 2024-12-30 04:09:18 +00:00
ram
cc18586363 Use llvm_usize for first GEP index, llvm_i32 for second GEP index 2024-12-16 14:35:09 +00:00
ram
e1a2f1239d Implement 64 bit function call 2024-12-16 09:48:51 +00:00
ram
0b6a9bd89b Updated to use memcmp instead of strncmp 2024-12-13 15:43:50 +00:00
1531b6cc98 cargo: update dependencies 2024-12-13 19:42:01 +08:00
9bbc40bbfa flake: update dependencies 2024-12-13 19:41:52 +08:00
790e56d106 msys2: update 2024-12-13 19:39:39 +08:00
a00eb7969e [core] codegen: Implement matrix_power
Last of the functions that need to be ported over to strided-ndarray.
2024-12-13 15:23:31 +08:00
27a6f47330 [core] codegen: Implement construction of unsized ndarrays
Partially based on f731e604: core/ndstrides: add more ScalarOrNDArray
and NDArrayObject utils.
2024-12-13 15:23:31 +08:00
061747c67b [core] codegen: Implement NDArrayValue::atleast_nd
Based on 9cfa2622: core/ndstrides: add NDArrayObject::atleast_nd.
2024-12-13 15:23:31 +08:00
dc91d9e35a [core] codegen: Implement ScalarOrNDArray and use it in indexing
Based on 8f9d2d82: core/ndstrides: implement ndarray indexing.
2024-12-13 15:23:31 +08:00
438943ac6f [core] codegen: Implement indexing for NDArray
Based on 8f9d2d82: core/ndstrides: implement ndarray indexing

The functionality for `...` and `np.newaxis` is there in IRRT, but there
is no implementation of them for @kernel Python expressions because of
M-Labs/nac3#486.
2024-12-13 15:23:31 +08:00
678e56c95d [core] irrt: rename NDIndex to NDIndexInt
Unfortunately the name `NDIndex` is used in later commits. Renaming this
typedef to `NDIndexInt` to avoid amending. `NDIndexInt` will be removed
anyway when ndarray strides is completed.
2024-12-13 15:23:31 +08:00
fdfc80ca5f [core] codegen: Implement Slice{Type,Value}, RustSlice
Based on 01c96396: core/irrt: add Slice and Range and part of
8f9d2d82: core/ndstrides: implement ndarray indexing.

Needed for implementing general ndarray indexing.

Currently IRRT slice and range have nothing to do with NAC3's slice
and range. The IRRT slice and range are currently there to implement
ndarray specific features. However, in the future their definitions may
be used to replace that of NAC3's. (NAC3's range is a [i32 x 3], IRRT's
range is a proper struct. NAC3 does not have a slice struct).
2024-12-13 15:23:31 +08:00
8b3429d62a [artiq] Reimplement get_obj_value for strided ndarray
Based on 7ef93472: artiq: reimplement get_obj_value to use ndarray with
strides
2024-12-13 15:23:31 +08:00
f4c5038b95 [artiq] codegen: Reimplement polymorphic_print for strided ndarray
Based on 2a6ee503: artiq: reimplement polymorphic_print for ndarray
2024-12-13 15:23:31 +08:00
ddd16738a6 [core] codegen: implement ndarray iterator NDIter
Based on 50f960ab: core/ndstrides: implement ndarray iterator NDIter

A necessary utility to iterate through all elements in a possibly
strided ndarray.
2024-12-13 15:23:31 +08:00
44c49dc102 [artiq] codegen: Reimplement polymorphic_print for strided ndarray
Based on 2a6ee503: artiq: reimplement polymorphic_print for ndarray
2024-12-13 15:23:31 +08:00
e4bd376587 [core] codegen: Implement ContiguousNDArray
Fixes compatibility with linalg algorithms. matrix_power is missing due
to the need for indexing support.
2024-12-13 15:23:29 +08:00
44498f22f6 [core] codegen: Implement NDArray functions from a0a1f35b 2024-12-13 15:22:11 +08:00
110416d07a [core] codegen/irrt: Add IRRT functions for strided-ndarray 2024-12-13 15:22:11 +08:00
08a7d01a13 [core] Add itemsize and strides to NDArray struct
Temporarily disable linalg ndarray tests as they are not ported to work
with strided-ndarray.
2024-12-13 15:22:09 +08:00
ram
9b0d37b1f0 Amend to follow formatting of other C++ files 2024-12-12 10:35:47 +00:00
ram
543a648af8 Edit function call to support 32-bit and 64-bit str 2024-12-12 10:10:39 +00:00
ram
780d33c8a7 Edit function call to support 32-bit and 64-bit str 2024-12-12 10:05:11 +00:00
3cd36fddc3 [core] codegen/types: Add check_struct_type_matches_fields
Shorthand for checking if a type is representable by a StructFields
instance.
2024-12-12 11:40:44 +08:00
56a7a9e03d [core] codegen: Add helper functions for create+call functions
Replacement for various FnCall methods from legacy ndstrides
implementation.
2024-12-12 11:30:36 +08:00
574ae40f97 [core] codegen: Add call_memcpy_generic_array
Replacement for Instance<Ptr>::copy_from from legacy ndstrides
implementation.
2024-12-12 11:30:36 +08:00
aa293b6bea [core] codegen: Add type_aligned_alloca 2024-12-12 11:30:35 +08:00
eb4b881690 [core] Expose {types,values}::ndarray modules
Allows better encapsulation of members in these modules rather than
allowing them to leak into types/values mod.
2024-12-12 11:30:14 +08:00
ram
e13d753329 Implement string equality operator using IRRT and optimise LLVM implementation 2024-12-11 17:14:11 +00:00
3d0a1d281c [core] Expose irrt::ndarray 2024-12-10 12:49:49 +08:00
ad67a99c8f [core] codegen: Cleanup builtin_fns.rs
- Unpack tuples directly in function argument
- Replace Vec parameters with slices
- Replace unwrap-transform with map-unwrap
2024-12-10 12:49:49 +08:00
8e2b50df21 [core] codegen/ndarray: Cleanup
- Remove redundant size param
- Add *_fields functions and docs
2024-12-09 13:01:08 +08:00
06092ad29b [core] Move alloca and map_value of ProxyType to implementations
These functions may not be invokable by the same set of parameters as
some classes has associated states.
2024-12-09 12:51:50 +08:00
d62c6b95fd [core] codegen/types: Rename StructField::set_from_value 2024-12-09 12:51:50 +08:00
95e29d9997 [core] codegen: Move ndarray type/value as a separate module 2024-12-09 12:51:46 +08:00
536ed2146c [meta] Remove all mentions of build_int_cast
build_int_cast performs signed extension or truncation depending on the
source and target int lengths. This is usually not what we want - We
want zero-extension instead.

Replace all instances of build_int_cast with
build_int_z_extend_or_bit_cast to fix this issue.
2024-12-09 12:51:39 +08:00
d484d44d95 [standalone] linalg: Fix function name in error message 2024-12-09 12:09:57 +08:00
ac978864f2 [meta] Apply clippy suggestions 2024-12-09 12:08:41 +08:00
95254f8464 [meta] Update Cargo dependencies 2024-12-09 12:08:41 +08:00
964945d244 string_store: update embedding map after compilation 2024-12-03 16:45:46 +08:00
ae09a0d444 exceptions: preallocate in NAC3 instead 2024-12-03 16:45:05 +08:00
01edd5af67 [meta] Apply rustfmt changes 2024-11-29 15:43:34 +08:00
015714eee1 copy constructor -> clone 2024-11-28 18:52:53 +08:00
71dec251e3 ld/dwarf: remove reader resets
DWARF reader never had to reverse. Readers are already copied to achieve this effect.
Plus the position that it reverses to might be questionable.
2024-11-28 18:52:53 +08:00
fce61f7b8c ld: fix dwarf sections offset calculations 2024-11-28 18:52:53 +08:00
babc081dbd core/toplevel: update tests 2024-11-27 14:31:57 +08:00
5337dbe23b core/toplevel: add python-like error messages for class definition 2024-11-27 14:31:57 +08:00
f862c01412 core/toplevel: refactor composer 2024-11-27 14:31:53 +08:00
0c9705f5f1 [meta] Apply clippy changes 2024-11-25 16:05:12 +08:00
5f940f86d9 [artiq] Fix obtaining ndarray struct from NDArrayType 2024-11-25 15:01:39 +08:00
5651e00688 flake: add platformdirs artiq dependency 2024-11-22 20:30:30 +08:00
f6745b987f bump sipyco and artiq used for profiling 2024-11-22 19:43:03 +08:00
e0dedc6580 nac3artiq: support kernels sent by content 2024-11-22 19:38:52 +08:00
28f574282c [core_derive] Ignore doctest in example
Causes linker errors for unknown reasons.
2024-11-22 00:00:05 +08:00
144f0922db [core] coregen/types: Implement StructFields for NDArray
Also rename some fields to better align with their naming in numpy.
2024-11-21 14:27:00 +08:00
c58ce9c3a9 [core] codegen/types: Implement NDArray in terms of i8*
Better aligns with the future implementation of ndstrides.
2024-11-21 14:27:00 +08:00
f7e296da53 [core] irrt: Break IRRT into several impl files
Each IRRT file is now mapped to one Rust file.
2024-11-21 14:27:00 +08:00
b58c99369e [core] irrt: Update some IRRT implementation
- Change CSlice to use `void*` for better pointer compatibility
- Only include impl *.hpp files in irrt.cpp
- Refactor typedef to using declaration
- Add missing ``// namespace`
2024-11-21 14:26:58 +08:00
1a535db558 [core] codegen: Add dtype to NDArrayType
We won't have this once NDArray is refactored to strided impl.
2024-11-20 15:35:57 +08:00
1ba2e287a6 [core] codegen: Add Self::llvm_type to all type abstractions 2024-11-20 15:35:57 +08:00
f95f979ad3 core/irrt: fix exception.hpp C++ castings 2024-11-20 15:35:57 +08:00
48e2148c0f core/toplevel/helper: add {extract,create}_ndims 2024-11-20 15:35:57 +08:00
88e57f7120 [core_derive] Initial implementation 2024-11-20 15:35:55 +08:00
d7633c42bc [core] codegen/types: Implement StructField{,s}
Loosely based on FieldTraversal by lyken.
2024-11-19 13:46:25 +08:00
a4f53b6e6b [core] codegen: Refactor ProxyType and ProxyValue
Accepts generator+context object for generic type checking. Also
implements more default trait impl for easier delegation.
2024-11-19 13:46:25 +08:00
9d9ead211e [core] Move Proxies to their own modules 2024-11-19 13:46:23 +08:00
26a1b85206 [core] codegen/classes: Remove Underlying type
This is confusing and we want a better abstraction than this.
2024-11-19 13:45:55 +08:00
2822074b2d [meta] Cleanup from upgrading Rust version
- Remove rust_2024_edition warnings, since it wouldn't be released for
another 3 months
- Fix new clippy warnings
2024-11-19 13:43:57 +08:00
fe67ed076c [meta] Update pre-commit configuration 2024-11-19 13:20:27 +08:00
94e2414df0 [meta] Update cargo dependencies 2024-11-19 13:20:26 +08:00
2cee760404 turn rust_2024_compatibility lints into warnings 2024-11-16 13:41:49 +08:00
230982dc84 update dependencies 2024-11-16 12:40:11 +08:00
2bd3f63991 boolop: terminate both branches with *_end_bb 2024-11-16 12:06:20 +08:00
b53266e9e6 artiq: use async RPC for attributes writeback 2024-11-12 12:04:01 +08:00
86eb22bbf3 artiq: main is always the last module 2024-11-12 12:03:38 +08:00
beaa38047d artiq: suppress main module debug warning 2024-11-12 12:03:08 +08:00
705dc4ff1c artiq: lump return value into attributes writeback RPC 2024-11-12 12:02:35 +08:00
979209a526 binop: expand not operator as loglcal not 2024-11-08 17:12:01 +08:00
c3927d0ef6 [ast] Refactor lazy_static to LazyLock
It is available in Rust 1.80 and reduces a dependency.
2024-10-30 12:29:51 +08:00
202a902cd0 [meta] Update dependencies 2024-10-30 12:29:51 +08:00
b6e2644391 [meta] Update cargo dependencies 2024-10-18 14:17:16 +08:00
45cd01556b [meta] Apply cargo fmt 2024-10-18 14:16:42 +08:00
b6cd2a6993 [meta] Reorganize order of use declarations - Phase 3 2024-10-17 16:25:52 +08:00
a98f33e6d1 [meta] Reorganize order of use declarations - Phase 2
Some more rules:

- For module-level imports, prefer no prefix > super > crate.
- Use crate instead of super if super refers to the crate-level module
2024-10-17 15:57:33 +08:00
5839badadd [standalone] Update globals.py with type-inferred global var 2024-10-07 20:44:08 +08:00
56c845aac4 [standalone] Add support for registering globals without type decl 2024-10-07 20:44:06 +08:00
65a12d9ab3 [core] Refactor registration of top-level variables 2024-10-07 17:05:48 +08:00
9c6685fa8f [core] typecheck/function_check: Fix lookup of defined ids in scope 2024-10-07 16:51:37 +08:00
2bb788e4bb [core] codegen/expr: Materialize implicit globals
Required for when globals are read without the use of a global
declaration.
2024-10-07 13:13:20 +08:00
42a2f243b5 [core] typecheck: Disallow redeclaration of var shadowing global 2024-10-07 13:11:00 +08:00
3ce2eddcdc [core] typecheck/type_inferencer: Infer whether variables are global 2024-10-07 13:10:46 +08:00
51bf126a32 [core] typecheck/type_inferencer: Differentiate global symbols
Required for analyzing use of global symbols before global declaration.
2024-10-07 12:25:00 +08:00
1a197c67f6 [core] toplevel/composer: Reduce lock scope while analyzing function 2024-10-05 15:53:20 +08:00
581b2f7bb2 [standalone] Add demo for global variables 2024-10-04 13:24:30 +08:00
746329ec5d [standalone] Implement symbol resolution for globals 2024-10-04 13:24:30 +08:00
e60e8e837f [core] Add support for global statements 2024-10-04 13:24:27 +08:00
9fdbe9695d [core] Add generator to SymbolResolver::get_symbol_value
Needed in a future commit.
2024-10-04 13:20:29 +08:00
8065e73598 [core] toplevel/composer: Add type analysis for global variables 2024-10-04 13:20:29 +08:00
192290889b [core] Add IdentifierInfo
Keeps track of whether an identifier refers to a global or local
variable.
2024-10-04 13:20:24 +08:00
1407553a2f [core] Implement parsing of global variables
Globals are now parsed into symbol resolver and top level definitions.
2024-10-04 13:18:29 +08:00
c7697606e1 [core] Add TopLevelDef::Variable 2024-10-04 13:09:25 +08:00
88d0ccbf69 [standalone] Explicit panic when encountering a compilation error
Otherwise scripts will continue to execute.
2024-10-04 13:00:16 +08:00
a43b59539c [meta] Move variables declarations closer to where they are first used 2024-10-04 13:00:16 +08:00
fe06b2806f [meta] Reorganize order of use declarations
Use declarations are now grouped into 4 groups:

- Declarations from the standard library
- Declarations from external crates
- Declarations from other crates in this project
- Declarations from within this module

Furthermore, all use declarations are grouped together to enhance
readability. super::super is also replaced by an equivalent crate::
declaration.
2024-10-04 12:52:01 +08:00
7f6c9a25ac [meta] Update Cargo dependencies 2024-10-04 12:52:01 +08:00
6c8382219f msys2: get python via numpy dependencies 2024-09-30 14:27:30 +08:00
9274a7b96b flake: update nixpkgs 2024-09-30 14:22:40 +08:00
d1c0fe2900 cargo: update dependencies 2024-09-30 14:14:43 +08:00
f2c047ba57 artiq: support async rpcs
Co-authored-by: mwojcik <mw@m-labs.hk>
Co-committed-by: mwojcik <mw@m-labs.hk>
2024-09-13 12:12:13 +08:00
5e2e77a500 [meta] Bump inkwell to v0.5 2024-09-13 11:11:14 +08:00
f3cc4702b9 [meta] Update dependencies 2024-09-13 11:11:14 +08:00
3e92c491f5 [standalone] Add tests creating ndarrays with tuple dims 2024-09-11 15:52:43 +08:00
7f629f1579 core: fix comment in unify_call 2024-09-11 15:46:19 +08:00
5640a793e2 core: allow np_full to take tuple shapes 2024-09-11 15:46:19 +08:00
abbaa506ad [standalone] Remove redundant recreation of TargetMachine 2024-09-09 14:27:10 +08:00
f3dc02d646 [meta] Apply cargo fmt 2024-09-09 14:24:52 +08:00
ea217eaea1 [meta] Update pre-commit config
Directly invoke cargo using nix develop to avoid using the system cargo.
2024-09-09 14:24:38 +08:00
5a34551905 allow the use of the LLVM shared library
Which in turns allows working around the incompatibility of the LLVM static library
with Rust link-args=-rdynamic, which produces binaries that either fail to link (OpenBSD)
or segfault on startup (Linux).

The year is 2024 and compiler toolchains are still a trash fire like this.
2024-09-09 11:17:31 +08:00
6098b1b853 fix previous commit 2024-09-06 11:32:08 +08:00
668ccb1c95 nac3core: expose inkwell and nac3parser 2024-09-06 11:06:26 +08:00
a3c624d69d update all dependencies 2024-09-06 10:21:58 +08:00
bd06155f34 irrt: compatibility with pre-C23 compilers 2024-09-05 18:54:55 +08:00
9c33c4209c [core] Fix type of ndarray.element_type
Should be the element type of the NDArray itself, not the pointer to its
type.
2024-08-30 22:47:38 +08:00
122983f11c flake: update dependencies 2024-08-30 14:45:38 +08:00
71c3a65a31 [core] codegen/stmt: Fix obtaining return type of sret functions 2024-08-29 19:15:30 +08:00
8c540d1033 [core] codegen/stmt: Add more casts for boolean types 2024-08-29 16:36:32 +08:00
0cc60a3d33 [core] codegen/expr: Fix missing cast to i1 2024-08-29 16:36:32 +08:00
a59c26aa99 [artiq] Fix RPC of ndarrays from host 2024-08-29 16:08:45 +08:00
02d93b11d1 [meta] Update dependencies 2024-08-29 14:32:21 +08:00
59cad5bfe1
standalone: clang-format demo.c 2024-08-29 10:37:24 +08:00
4318f8de84
standalone: improve src/assignment.py 2024-08-29 10:33:58 +08:00
15ac00708a [core] Use quoted include paths instead of angled brackets
This is preferred for user-defined headers.
2024-08-28 16:37:03 +08:00
c8dfdcfdea
standalone & artiq: remove class_names from resolver 2024-08-27 23:43:40 +08:00
600a5c8679 Revert "standalone: reformat demo.c"
This reverts commit 308edb8237.
2024-08-27 23:06:49 +08:00
22c4d25802 core/typecheck: add missing typecheck in matmul 2024-08-27 22:59:39 +08:00
308edb8237 standalone: reformat demo.c 2024-08-27 22:55:22 +08:00
9848795dcc core/irrt: add exceptions and debug utils 2024-08-27 22:55:22 +08:00
58222feed4 core/irrt: split into headers 2024-08-27 22:55:22 +08:00
518f21d174 core/irrt: build.rs capture IR defined constants 2024-08-27 22:55:22 +08:00
e8e49684bf core/irrt: build.rs capture IR defined types 2024-08-27 22:55:22 +08:00
b2900b4883 core/irrt: use +std=c++20 to compile
To explicitly set the C++ variant and avoid inconsistencies.
2024-08-27 22:55:22 +08:00
c6dade1394 core/irrt: reformat 2024-08-27 22:55:22 +08:00
7e3fcc0845 add .clang-format 2024-08-27 22:55:22 +08:00
d3b4c60d7f core/irrt: comment build.rs & move irrt to nac3core/irrt 2024-08-27 22:55:22 +08:00
5b2b6db7ed core: improve error messages 2024-08-26 18:37:55 +08:00
15e62f467e standalone: add tests for polymorphism 2024-08-26 18:37:55 +08:00
2c88924ff7 core: add support for simple polymorphism 2024-08-26 18:37:55 +08:00
a744b139ba core: allow Call and AnnAssign in init block 2024-08-26 18:37:55 +08:00
2b2b2dbf8f [core] Fix resolution of exception names in raise short form
Previous implementation fails as `resolver.get_identifier_def` in ARTIQ
would return the exception __init__ function rather than the class.

We fix this by limiting the exception class resolution to only include
raise statements, and to force the exception name to always be treated
as a class.

Fixes #501.
2024-08-26 18:35:02 +08:00
d9f96dab33 [core] Add codegen_unreachable 2024-08-23 13:10:55 +08:00
182 changed files with 14651 additions and 10711 deletions

View File

@ -1,3 +1,32 @@
BasedOnStyle: Microsoft BasedOnStyle: LLVM
Language: Cpp
Standard: Cpp11
AccessModifierOffset: -1
AlignEscapedNewlines: Left
AlwaysBreakAfterReturnType: None
AlwaysBreakTemplateDeclarations: Yes
AllowAllParametersOfDeclarationOnNextLine: false
AllowShortFunctionsOnASingleLine: Inline
BinPackParameters: false
BreakBeforeBinaryOperators: NonAssignment
BreakBeforeTernaryOperators: true
BreakConstructorInitializers: AfterColon
BreakInheritanceList: AfterColon
ColumnLimit: 120
ConstructorInitializerAllOnOneLineOrOnePerLine: true
ContinuationIndentWidth: 4
DerivePointerAlignment: false
IndentCaseLabels: true
IndentPPDirectives: None
IndentWidth: 4 IndentWidth: 4
ReflowComments: false MaxEmptyLinesToKeep: 1
PointerAlignment: Left
ReflowComments: true
SortIncludes: false
SortUsingDeclarations: true
SpaceAfterTemplateKeyword: false
SpacesBeforeTrailingComments: 2
TabWidth: 4
UseTab: Never

View File

@ -1,24 +1,24 @@
# See https://pre-commit.com for more information # See https://pre-commit.com for more information
# See https://pre-commit.com/hooks.html for more hooks # See https://pre-commit.com/hooks.html for more hooks
default_stages: [commit] default_stages: [pre-commit]
repos: repos:
- repo: local - repo: local
hooks: hooks:
- id: nac3-cargo-fmt - id: nac3-cargo-fmt
name: nac3 cargo format name: nac3 cargo format
entry: cargo entry: nix
language: system language: system
types: [file, rust] types: [file, rust]
pass_filenames: false pass_filenames: false
description: Runs cargo fmt on the codebase. description: Runs cargo fmt on the codebase.
args: [fmt] args: [develop, -c, cargo, fmt, --all]
- id: nac3-cargo-clippy - id: nac3-cargo-clippy
name: nac3 cargo clippy name: nac3 cargo clippy
entry: cargo entry: nix
language: system language: system
types: [file, rust] types: [file, rust]
pass_filenames: false pass_filenames: false
description: Runs cargo clippy on the codebase. description: Runs cargo clippy on the codebase.
args: [clippy, --tests] args: [develop, -c, cargo, clippy, --tests]

558
Cargo.lock generated

File diff suppressed because it is too large Load Diff

View File

@ -4,6 +4,7 @@ members = [
"nac3ast", "nac3ast",
"nac3parser", "nac3parser",
"nac3core", "nac3core",
"nac3core/nac3core_derive",
"nac3standalone", "nac3standalone",
"nac3artiq", "nac3artiq",
"runkernel", "runkernel",

6
flake.lock generated
View File

@ -2,11 +2,11 @@
"nodes": { "nodes": {
"nixpkgs": { "nixpkgs": {
"locked": { "locked": {
"lastModified": 1723637854, "lastModified": 1735834308,
"narHash": "sha256-med8+5DSWa2UnOqtdICndjDAEjxr5D7zaIiK4pn0Q7c=", "narHash": "sha256-dklw3AXr3OGO4/XT1Tu3Xz9n/we8GctZZ75ZWVqAVhk=",
"owner": "NixOS", "owner": "NixOS",
"repo": "nixpkgs", "repo": "nixpkgs",
"rev": "c3aa7b8938b17aebd2deecf7be0636000d62a2b9", "rev": "6df24922a1400241dae323af55f30e4318a6ca65",
"type": "github" "type": "github"
}, },
"original": { "original": {

View File

@ -107,18 +107,18 @@
(pkgs.fetchFromGitHub { (pkgs.fetchFromGitHub {
owner = "m-labs"; owner = "m-labs";
repo = "sipyco"; repo = "sipyco";
rev = "939f84f9b5eef7efbf7423c735d1834783b6140e"; rev = "094a6cd63ffa980ef63698920170e50dc9ba77fd";
sha256 = "sha256-15Nun4EY35j+6SPZkjzZtyH/ncxLS60KuGJjFh5kSTc="; sha256 = "sha256-PPnAyDedUQ7Og/Cby9x5OT9wMkNGTP8GS53V6N/dk4w=";
}) })
(pkgs.fetchFromGitHub { (pkgs.fetchFromGitHub {
owner = "m-labs"; owner = "m-labs";
repo = "artiq"; repo = "artiq";
rev = "923ca3377d42c815f979983134ec549dc39d3ca0"; rev = "28c9de3e251daa89a8c9fd79d5ab64a3ec03bac6";
sha256 = "sha256-oJoEeNEeNFSUyh6jXG8Tzp6qHVikeHS0CzfE+mODPgw="; sha256 = "sha256-vAvpbHc5B+1wtG8zqN7j9dQE1ON+i22v+uqA+tw6Gak=";
}) })
]; ];
buildInputs = [ buildInputs = [
(python3-mimalloc.withPackages(ps: [ ps.numpy ps.scipy ps.jsonschema ps.lmdb nac3artiq-instrumented ])) (python3-mimalloc.withPackages(ps: [ ps.numpy ps.scipy ps.jsonschema ps.lmdb ps.platformdirs nac3artiq-instrumented ]))
pkgs.llvmPackages_14.llvm.out pkgs.llvmPackages_14.llvm.out
]; ];
phases = [ "buildPhase" "installPhase" ]; phases = [ "buildPhase" "installPhase" ];

View File

@ -12,16 +12,10 @@ crate-type = ["cdylib"]
itertools = "0.13" itertools = "0.13"
pyo3 = { version = "0.21", features = ["extension-module", "gil-refs"] } pyo3 = { version = "0.21", features = ["extension-module", "gil-refs"] }
parking_lot = "0.12" parking_lot = "0.12"
tempfile = "3.10" tempfile = "3.13"
nac3parser = { path = "../nac3parser" }
nac3core = { path = "../nac3core" } nac3core = { path = "../nac3core" }
nac3ld = { path = "../nac3ld" } nac3ld = { path = "../nac3ld" }
[dependencies.inkwell]
version = "0.4"
default-features = false
features = ["llvm14-0", "target-x86", "target-arm", "target-riscv", "no-libffi-linking"]
[features] [features]
init-llvm-profile = [] init-llvm-profile = []
no-escape-analysis = ["nac3core/no-escape-analysis"] no-escape-analysis = ["nac3core/no-escape-analysis"]

View File

@ -7,33 +7,6 @@ class EmbeddingMap:
self.function_map = {} self.function_map = {}
self.attributes_writeback = [] self.attributes_writeback = []
# preallocate exception names
self.preallocate_runtime_exception_names(["RuntimeError",
"RTIOUnderflow",
"RTIOOverflow",
"RTIODestinationUnreachable",
"DMAError",
"I2CError",
"CacheError",
"SPIError",
"0:ZeroDivisionError",
"0:IndexError",
"0:ValueError",
"0:RuntimeError",
"0:AssertionError",
"0:KeyError",
"0:NotImplementedError",
"0:OverflowError",
"0:IOError",
"0:UnwrapNoneError"])
def preallocate_runtime_exception_names(self, names):
for i, name in enumerate(names):
if ":" not in name:
name = "0:artiq.coredevice.exceptions." + name
exn_id = self.store_str(name)
assert exn_id == i
def store_function(self, key, fun): def store_function(self, key, fun):
self.function_map[key] = fun self.function_map[key] = fun
return key return key

View File

@ -112,10 +112,15 @@ def extern(function):
register_function(function) register_function(function)
return function return function
def rpc(function):
"""Decorates a function declaration defined by the core device runtime.""" def rpc(arg=None, flags={}):
register_function(function) """Decorates a function or method to be executed on the host interpreter."""
return function if arg is None:
def inner_decorator(function):
return rpc(function, flags)
return inner_decorator
register_function(arg)
return arg
def kernel(function_or_method): def kernel(function_or_method):
"""Decorates a function or method to be executed on the core device.""" """Decorates a function or method to be executed on the core device."""
@ -201,7 +206,7 @@ class Core:
embedding = EmbeddingMap() embedding = EmbeddingMap()
if allow_registration: if allow_registration:
compiler.analyze(registered_functions, registered_classes) compiler.analyze(registered_functions, registered_classes, set())
allow_registration = False allow_registration = False
if hasattr(method, "__self__"): if hasattr(method, "__self__"):

View File

@ -0,0 +1,29 @@
from min_artiq import *
import numpy
from numpy import int32
@nac3
class NumpyBoolDecay:
core: KernelInvariant[Core]
np_true: KernelInvariant[bool]
np_false: KernelInvariant[bool]
np_int: KernelInvariant[int32]
np_float: KernelInvariant[float]
np_str: KernelInvariant[str]
def __init__(self):
self.core = Core()
self.np_true = numpy.True_
self.np_false = numpy.False_
self.np_int = numpy.int32(0)
self.np_float = numpy.float64(0.0)
self.np_str = numpy.str_("")
@kernel
def run(self):
pass
if __name__ == "__main__":
NumpyBoolDecay().run()

View File

@ -1,36 +1,3 @@
use nac3core::{
codegen::{
classes::{ListValue, RangeValue, UntypedArrayLikeAccessor},
expr::{destructure_range, gen_call},
llvm_intrinsics::{call_int_smax, call_stackrestore, call_stacksave},
model::*,
object::{any::AnyObject, ndarray::NDArrayObject},
stmt::{gen_block, gen_for_callback_incrementing, gen_if_callback, gen_with},
CodeGenContext, CodeGenerator,
},
symbol_resolver::ValueEnum,
toplevel::{helper::PrimDef, numpy::unpack_ndarray_var_tys, DefinitionId, GenCall},
typecheck::typedef::{iter_type_vars, FunSignature, FuncArg, Type, TypeEnum, VarMap},
};
use nac3parser::ast::{Expr, ExprKind, Located, Stmt, StmtKind, StrRef};
use inkwell::{
context::Context,
module::Linkage,
types::IntType,
values::{BasicValueEnum, PointerValue, StructValue},
AddressSpace, IntPredicate,
};
use pyo3::{
types::{PyDict, PyList},
PyObject, PyResult, Python,
};
use crate::{symbol_resolver::InnerResolver, timeline::TimeFns};
use itertools::Itertools;
use std::{ use std::{
collections::{hash_map::DefaultHasher, HashMap}, collections::{hash_map::DefaultHasher, HashMap},
hash::{Hash, Hasher}, hash::{Hash, Hasher},
@ -39,6 +6,43 @@ use std::{
sync::Arc, sync::Arc,
}; };
use itertools::Itertools;
use pyo3::{
types::{PyDict, PyList},
PyObject, PyResult, Python,
};
use super::{symbol_resolver::InnerResolver, timeline::TimeFns};
use nac3core::{
codegen::{
expr::{destructure_range, gen_call},
llvm_intrinsics::{call_int_smax, call_memcpy, call_stackrestore, call_stacksave},
stmt::{gen_block, gen_for_callback_incrementing, gen_if_callback, gen_with},
type_aligned_alloca,
types::ndarray::NDArrayType,
values::{
ArrayLikeIndexer, ArrayLikeValue, ArraySliceValue, ListValue, ProxyValue, RangeValue,
UntypedArrayLikeAccessor,
},
CodeGenContext, CodeGenerator,
},
inkwell::{
context::Context,
module::Linkage,
types::{BasicType, IntType},
values::{BasicValueEnum, IntValue, PointerValue, StructValue},
AddressSpace, IntPredicate, OptimizationLevel,
},
nac3parser::ast::{Expr, ExprKind, Located, Stmt, StmtKind, StrRef},
symbol_resolver::ValueEnum,
toplevel::{
helper::{extract_ndims, PrimDef},
numpy::unpack_ndarray_var_tys,
DefinitionId, GenCall,
},
typecheck::typedef::{iter_type_vars, FunSignature, FuncArg, Type, TypeEnum, VarMap},
};
/// The parallelism mode within a block. /// The parallelism mode within a block.
#[derive(Copy, Clone, Eq, PartialEq)] #[derive(Copy, Clone, Eq, PartialEq)]
enum ParallelMode { enum ParallelMode {
@ -158,7 +162,7 @@ impl<'a> ArtiqCodeGenerator<'a> {
} }
} }
impl<'b> CodeGenerator for ArtiqCodeGenerator<'b> { impl CodeGenerator for ArtiqCodeGenerator<'_> {
fn get_name(&self) -> &str { fn get_name(&self) -> &str {
&self.name &self.name
} }
@ -454,41 +458,52 @@ fn format_rpc_arg<'ctx>(
// NAC3: NDArray = { usize, usize*, T* } // NAC3: NDArray = { usize, usize*, T* }
// libproto_artiq: NDArray = [data[..], dim_sz[..]] // libproto_artiq: NDArray = [data[..], dim_sz[..]]
let ndarray = AnyObject { ty: arg_ty, value: arg }; let llvm_i1 = ctx.ctx.bool_type();
let ndarray = NDArrayObject::from_object(generator, ctx, ndarray); let llvm_usize = generator.get_size_type(ctx.ctx);
let dtype = ctx.get_llvm_type(generator, ndarray.dtype); let (elem_ty, ndims) = unpack_ndarray_var_tys(&mut ctx.unifier, arg_ty);
let ndims = ndarray.ndims_llvm(generator, ctx.ctx); let ndims = extract_ndims(&ctx.unifier, ndims);
let dtype = ctx.get_llvm_type(generator, elem_ty);
let ndarray = NDArrayType::new(generator, ctx.ctx, dtype, ndims)
.map_value(arg.into_pointer_value(), None);
let ndims = llvm_usize.const_int(ndims, false);
// `ndarray.data` is possibly not contiguous, and we need it to be contiguous for // `ndarray.data` is possibly not contiguous, and we need it to be contiguous for
// the reader. // the reader.
let carray = ndarray.make_contiguous_ndarray(generator, ctx, Any(dtype)); // Turning it into a ContiguousNDArray to get a `data` that is contiguous.
let carray = ndarray.make_contiguous_ndarray(generator, ctx);
let sizeof_sizet = Int(SizeT).sizeof(generator, ctx.ctx); let sizeof_usize = llvm_usize.size_of();
let sizeof_sizet = Int(SizeT).truncate_or_bit_cast(generator, ctx, sizeof_sizet); let sizeof_usize =
ctx.builder.build_int_z_extend_or_bit_cast(sizeof_usize, llvm_usize, "").unwrap();
let sizeof_pdata = Ptr(Any(dtype)).sizeof(generator, ctx.ctx); let sizeof_pdata = dtype.ptr_type(AddressSpace::default()).size_of();
let sizeof_pdata = Int(SizeT).truncate_or_bit_cast(generator, ctx, sizeof_pdata); let sizeof_pdata =
ctx.builder.build_int_z_extend_or_bit_cast(sizeof_pdata, llvm_usize, "").unwrap();
let sizeof_buf_shape = sizeof_sizet.mul(ctx, ndims); let sizeof_buf_shape = ctx.builder.build_int_mul(sizeof_usize, ndims, "").unwrap();
let sizeof_buf = sizeof_buf_shape.add(ctx, sizeof_pdata); let sizeof_buf = ctx.builder.build_int_add(sizeof_buf_shape, sizeof_pdata, "").unwrap();
// buf = { data: void*, shape: [size_t; ndims]; } // buf = { data: void*, shape: [size_t; ndims]; }
let buf = Int(Byte).array_alloca(generator, ctx, sizeof_buf.value); let buf = ctx.builder.build_array_alloca(llvm_i8, sizeof_buf, "rpc.arg").unwrap();
let buf_data = buf; let buf = ArraySliceValue::from_ptr_val(buf, sizeof_buf, Some("rpc.arg"));
let buf_shape = buf_data.offset(ctx, sizeof_pdata.value); let buf_data = buf.base_ptr(ctx, generator);
let buf_shape =
unsafe { buf.ptr_offset_unchecked(ctx, generator, &sizeof_pdata, None) };
// Write to `buf->data` // Write to `buf->data`
let carray_data = carray.get(generator, ctx, |f| f.data); // has type Ptr<Any> let carray_data = carray.load_data(ctx);
let carray_data = carray_data.pointer_cast(generator, ctx, Int(Byte)); let carray_data = ctx.builder.build_pointer_cast(carray_data, llvm_pi8, "").unwrap();
buf_data.copy_from(generator, ctx, carray_data, sizeof_pdata.value); call_memcpy(ctx, buf_data, carray_data, sizeof_pdata, llvm_i1.const_zero());
// Write to `buf->shape` // Write to `buf->shape`
let carray_shape = ndarray.instance.get(generator, ctx, |f| f.shape); let carray_shape = ndarray.shape().base_ptr(ctx, generator);
let carray_shape_i8 = carray_shape.pointer_cast(generator, ctx, Int(Byte)); let carray_shape_i8 =
buf_shape.copy_from(generator, ctx, carray_shape_i8, sizeof_buf_shape.value); ctx.builder.build_pointer_cast(carray_shape, llvm_pi8, "").unwrap();
call_memcpy(ctx, buf_shape, carray_shape_i8, sizeof_buf_shape, llvm_i1.const_zero());
buf.value buf.base_ptr(ctx, generator)
} }
_ => { _ => {
@ -498,7 +513,7 @@ fn format_rpc_arg<'ctx>(
ctx.builder.build_store(arg_slot, arg).unwrap(); ctx.builder.build_store(arg_slot, arg).unwrap();
ctx.builder ctx.builder
.build_bitcast(arg_slot, llvm_pi8, "rpc.arg") .build_bit_cast(arg_slot, llvm_pi8, "rpc.arg")
.map(BasicValueEnum::into_pointer_value) .map(BasicValueEnum::into_pointer_value)
.unwrap() .unwrap()
} }
@ -509,12 +524,276 @@ fn format_rpc_arg<'ctx>(
arg_slot arg_slot
} }
/// Formats an RPC return value to conform to the expected format required by NAC3.
fn format_rpc_ret<'ctx>(
generator: &mut dyn CodeGenerator,
ctx: &mut CodeGenContext<'ctx, '_>,
ret_ty: Type,
) -> Option<BasicValueEnum<'ctx>> {
// -- receive value:
// T result = {
// void *ret_ptr = alloca(sizeof(T));
// void *ptr = ret_ptr;
// loop: int size = rpc_recv(ptr);
// // Non-zero: Provide `size` bytes of extra storage for variable-length data.
// if(size) { ptr = alloca(size); goto loop; }
// else *(T*)ret_ptr
// }
let llvm_i8 = ctx.ctx.i8_type();
let llvm_i32 = ctx.ctx.i32_type();
let llvm_i8_8 = ctx.ctx.struct_type(&[llvm_i8.array_type(8).into()], false);
let llvm_pi8 = llvm_i8.ptr_type(AddressSpace::default());
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
let rpc_recv = ctx.module.get_function("rpc_recv").unwrap_or_else(|| {
ctx.module.add_function("rpc_recv", llvm_i32.fn_type(&[llvm_pi8.into()], false), None)
});
if ctx.unifier.unioned(ret_ty, ctx.primitives.none) {
ctx.build_call_or_invoke(rpc_recv, &[llvm_pi8.const_null().into()], "rpc_recv");
return None;
}
let prehead_bb = ctx.builder.get_insert_block().unwrap();
let current_function = prehead_bb.get_parent().unwrap();
let head_bb = ctx.ctx.append_basic_block(current_function, "rpc.head");
let alloc_bb = ctx.ctx.append_basic_block(current_function, "rpc.continue");
let tail_bb = ctx.ctx.append_basic_block(current_function, "rpc.tail");
let llvm_ret_ty = ctx.get_llvm_abi_type(generator, ret_ty);
let result = match &*ctx.unifier.get_ty_immutable(ret_ty) {
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
let num_0 = llvm_usize.const_zero();
// Round `val` up to its modulo `power_of_two`
let round_up = |ctx: &mut CodeGenContext<'ctx, '_>,
val: IntValue<'ctx>,
power_of_two: IntValue<'ctx>| {
debug_assert_eq!(
val.get_type().get_bit_width(),
power_of_two.get_type().get_bit_width()
);
let llvm_val_t = val.get_type();
let max_rem = ctx
.builder
.build_int_sub(power_of_two, llvm_val_t.const_int(1, false), "")
.unwrap();
ctx.builder
.build_and(
ctx.builder.build_int_add(val, max_rem, "").unwrap(),
ctx.builder.build_not(max_rem, "").unwrap(),
"",
)
.unwrap()
};
// Allocate the resulting ndarray
// A condition after format_rpc_ret ensures this will not be popped this off.
let (dtype, ndims) = unpack_ndarray_var_tys(&mut ctx.unifier, ret_ty);
let dtype_llvm = ctx.get_llvm_type(generator, dtype);
let ndims = extract_ndims(&ctx.unifier, ndims);
let ndarray = NDArrayType::new(generator, ctx.ctx, dtype_llvm, ndims)
.construct_uninitialized(generator, ctx, None);
// NOTE: Current content of `ndarray`:
// - * `data` - **NOT YET** allocated.
// - * `itemsize` - initialized to be size_of(dtype).
// - * `ndims` - initialized.
// - * `shape` - allocated; has uninitialized values.
// - * `strides` - allocated; has uninitialized values.
let itemsize = ndarray.load_itemsize(ctx); // Same as doing a `ctx.get_llvm_type` on `dtype` and get its `size_of()`.
// Allocates a buffer for the initial RPC'ed object, which is guaranteed to be
// (4 + 4 * ndims) bytes with 8-byte alignment
let sizeof_usize = llvm_usize.size_of();
let sizeof_usize =
ctx.builder.build_int_truncate_or_bit_cast(sizeof_usize, llvm_usize, "").unwrap();
let sizeof_ptr = llvm_i8.ptr_type(AddressSpace::default()).size_of();
let sizeof_ptr =
ctx.builder.build_int_z_extend_or_bit_cast(sizeof_ptr, llvm_usize, "").unwrap();
let sizeof_shape =
ctx.builder.build_int_mul(ndarray.load_ndims(ctx), sizeof_usize, "").unwrap();
// Size of the buffer for the initial `rpc_recv()`.
let unaligned_buffer_size =
ctx.builder.build_int_add(sizeof_ptr, sizeof_shape, "").unwrap();
let stackptr = call_stacksave(ctx, None);
let buffer = type_aligned_alloca(
generator,
ctx,
llvm_i8_8,
unaligned_buffer_size,
Some("rpc.buffer"),
);
let buffer = ArraySliceValue::from_ptr_val(buffer, unaligned_buffer_size, None);
// The first call to `rpc_recv` reads the top-level ndarray object: [pdata, shape]
//
// The returned value is the number of bytes for `ndarray.data`.
let ndarray_nbytes = ctx
.build_call_or_invoke(
rpc_recv,
&[buffer.base_ptr(ctx, generator).into()], // Reads [usize; ndims]
"rpc.size.next",
)
.map(BasicValueEnum::into_int_value)
.unwrap();
// debug_assert(ndarray_nbytes > 0)
if ctx.registry.llvm_options.opt_level == OptimizationLevel::None {
let cmp = ctx
.builder
.build_int_compare(IntPredicate::UGT, ndarray_nbytes, num_0, "")
.unwrap();
ctx.make_assert(
generator,
cmp,
"0:AssertionError",
"Unexpected RPC termination for ndarray - Expected data buffer next",
[None, None, None],
ctx.current_loc,
);
}
// Copy shape from the buffer to `ndarray.shape`.
// We need to skip the first `sizeof(uint8_t*)` bytes to skip the `pdata` in `[pdata, shape]`.
let pbuffer_shape =
unsafe { buffer.ptr_offset_unchecked(ctx, generator, &sizeof_ptr, None) };
let pbuffer_shape =
ctx.builder.build_pointer_cast(pbuffer_shape, llvm_pusize, "").unwrap();
// Copy shape from buffer to `ndarray.shape`
ndarray.copy_shape_from_array(generator, ctx, pbuffer_shape);
// Restore stack from before allocation of buffer
call_stackrestore(ctx, stackptr);
// Allocate `ndarray.data`.
// `ndarray.shape` must be initialized beforehand in this implementation
// (for ndarray.create_data() to know how many elements to allocate)
unsafe { ndarray.create_data(generator, ctx) }; // NOTE: the strides of `ndarray` has also been set to contiguous in `create_data`.
// debug_assert(nelems * sizeof(T) >= ndarray_nbytes)
if ctx.registry.llvm_options.opt_level == OptimizationLevel::None {
let num_elements = ndarray.size(generator, ctx);
let expected_ndarray_nbytes =
ctx.builder.build_int_mul(num_elements, itemsize, "").unwrap();
let cmp = ctx
.builder
.build_int_compare(
IntPredicate::UGE,
expected_ndarray_nbytes,
ndarray_nbytes,
"",
)
.unwrap();
ctx.make_assert(
generator,
cmp,
"0:AssertionError",
"Unexpected allocation size request for ndarray data - Expected up to {0} bytes, got {1} bytes",
[Some(expected_ndarray_nbytes), Some(ndarray_nbytes), None],
ctx.current_loc,
);
}
let ndarray_data = ndarray.data().base_ptr(ctx, generator);
// NOTE: Currently on `prehead_bb`
ctx.builder.build_unconditional_branch(head_bb).unwrap();
// Inserting into `head_bb`. Do `rpc_recv` for `data` recursively.
ctx.builder.position_at_end(head_bb);
let phi = ctx.builder.build_phi(llvm_pi8, "rpc.ptr").unwrap();
phi.add_incoming(&[(&ndarray_data, prehead_bb)]);
let alloc_size = ctx
.build_call_or_invoke(rpc_recv, &[phi.as_basic_value()], "rpc.size.next")
.map(BasicValueEnum::into_int_value)
.unwrap();
let is_done = ctx
.builder
.build_int_compare(IntPredicate::EQ, llvm_i32.const_zero(), alloc_size, "rpc.done")
.unwrap();
ctx.builder.build_conditional_branch(is_done, tail_bb, alloc_bb).unwrap();
ctx.builder.position_at_end(alloc_bb);
// Align the allocation to sizeof(T)
let alloc_size = round_up(ctx, alloc_size, itemsize);
// TODO(Derppening): Candidate for refactor into type_aligned_alloca
let alloc_ptr = ctx
.builder
.build_array_alloca(
dtype_llvm,
ctx.builder.build_int_unsigned_div(alloc_size, itemsize, "").unwrap(),
"rpc.alloc",
)
.unwrap();
let alloc_ptr =
ctx.builder.build_pointer_cast(alloc_ptr, llvm_pi8, "rpc.alloc.ptr").unwrap();
phi.add_incoming(&[(&alloc_ptr, alloc_bb)]);
ctx.builder.build_unconditional_branch(head_bb).unwrap();
ctx.builder.position_at_end(tail_bb);
ndarray.as_base_value().into()
}
_ => {
let slot = ctx.builder.build_alloca(llvm_ret_ty, "rpc.ret.slot").unwrap();
let slotgen = ctx.builder.build_bit_cast(slot, llvm_pi8, "rpc.ret.ptr").unwrap();
ctx.builder.build_unconditional_branch(head_bb).unwrap();
ctx.builder.position_at_end(head_bb);
let phi = ctx.builder.build_phi(llvm_pi8, "rpc.ptr").unwrap();
phi.add_incoming(&[(&slotgen, prehead_bb)]);
let alloc_size = ctx
.build_call_or_invoke(rpc_recv, &[phi.as_basic_value()], "rpc.size.next")
.unwrap()
.into_int_value();
let is_done = ctx
.builder
.build_int_compare(IntPredicate::EQ, llvm_i32.const_zero(), alloc_size, "rpc.done")
.unwrap();
ctx.builder.build_conditional_branch(is_done, tail_bb, alloc_bb).unwrap();
ctx.builder.position_at_end(alloc_bb);
let alloc_ptr =
ctx.builder.build_array_alloca(llvm_pi8, alloc_size, "rpc.alloc").unwrap();
let alloc_ptr =
ctx.builder.build_bit_cast(alloc_ptr, llvm_pi8, "rpc.alloc.ptr").unwrap();
phi.add_incoming(&[(&alloc_ptr, alloc_bb)]);
ctx.builder.build_unconditional_branch(head_bb).unwrap();
ctx.builder.position_at_end(tail_bb);
ctx.builder.build_load(slot, "rpc.result").unwrap()
}
};
Some(result)
}
fn rpc_codegen_callback_fn<'ctx>( fn rpc_codegen_callback_fn<'ctx>(
ctx: &mut CodeGenContext<'ctx, '_>, ctx: &mut CodeGenContext<'ctx, '_>,
obj: Option<(Type, ValueEnum<'ctx>)>, obj: Option<(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId), fun: (&FunSignature, DefinitionId),
args: Vec<(Option<StrRef>, ValueEnum<'ctx>)>, args: Vec<(Option<StrRef>, ValueEnum<'ctx>)>,
generator: &mut dyn CodeGenerator, generator: &mut dyn CodeGenerator,
is_async: bool,
) -> Result<Option<BasicValueEnum<'ctx>>, String> { ) -> Result<Option<BasicValueEnum<'ctx>>, String> {
let int8 = ctx.ctx.i8_type(); let int8 = ctx.ctx.i8_type();
let int32 = ctx.ctx.i32_type(); let int32 = ctx.ctx.i32_type();
@ -623,91 +902,72 @@ fn rpc_codegen_callback_fn<'ctx>(
} }
// call // call
let rpc_send = ctx.module.get_function("rpc_send").unwrap_or_else(|| { if is_async {
ctx.module.add_function( let rpc_send_async = ctx.module.get_function("rpc_send_async").unwrap_or_else(|| {
"rpc_send", ctx.module.add_function(
ctx.ctx.void_type().fn_type( "rpc_send_async",
&[ ctx.ctx.void_type().fn_type(
int32.into(), &[
tag_ptr_type.ptr_type(AddressSpace::default()).into(), int32.into(),
ptr_type.ptr_type(AddressSpace::default()).into(), tag_ptr_type.ptr_type(AddressSpace::default()).into(),
], ptr_type.ptr_type(AddressSpace::default()).into(),
false, ],
), false,
None, ),
) None,
}); )
ctx.builder });
.build_call(rpc_send, &[service_id.into(), tag_ptr.into(), args_ptr.into()], "rpc.send") ctx.builder
.unwrap(); .build_call(
rpc_send_async,
&[service_id.into(), tag_ptr.into(), args_ptr.into()],
"rpc.send",
)
.unwrap();
} else {
let rpc_send = ctx.module.get_function("rpc_send").unwrap_or_else(|| {
ctx.module.add_function(
"rpc_send",
ctx.ctx.void_type().fn_type(
&[
int32.into(),
tag_ptr_type.ptr_type(AddressSpace::default()).into(),
ptr_type.ptr_type(AddressSpace::default()).into(),
],
false,
),
None,
)
});
ctx.builder
.build_call(rpc_send, &[service_id.into(), tag_ptr.into(), args_ptr.into()], "rpc.send")
.unwrap();
}
// reclaim stack space used by arguments // reclaim stack space used by arguments
call_stackrestore(ctx, stackptr); call_stackrestore(ctx, stackptr);
// -- receive value: if is_async {
// T result = { // async RPCs do not return any values
// void *ret_ptr = alloca(sizeof(T)); Ok(None)
// void *ptr = ret_ptr; } else {
// loop: int size = rpc_recv(ptr); let result = format_rpc_ret(generator, ctx, fun.0.ret);
// // Non-zero: Provide `size` bytes of extra storage for variable-length data.
// if(size) { ptr = alloca(size); goto loop; }
// else *(T*)ret_ptr
// }
let rpc_recv = ctx.module.get_function("rpc_recv").unwrap_or_else(|| {
ctx.module.add_function("rpc_recv", int32.fn_type(&[ptr_type.into()], false), None)
});
if ctx.unifier.unioned(fun.0.ret, ctx.primitives.none) { if !result.is_some_and(|res| res.get_type().is_pointer_type()) {
ctx.build_call_or_invoke(rpc_recv, &[ptr_type.const_null().into()], "rpc_recv"); // An RPC returning an NDArray would not touch here.
return Ok(None); call_stackrestore(ctx, stackptr);
}
Ok(result)
} }
let prehead_bb = ctx.builder.get_insert_block().unwrap();
let current_function = prehead_bb.get_parent().unwrap();
let head_bb = ctx.ctx.append_basic_block(current_function, "rpc.head");
let alloc_bb = ctx.ctx.append_basic_block(current_function, "rpc.continue");
let tail_bb = ctx.ctx.append_basic_block(current_function, "rpc.tail");
let ret_ty = ctx.get_llvm_abi_type(generator, fun.0.ret);
let need_load = !ret_ty.is_pointer_type();
let slot = ctx.builder.build_alloca(ret_ty, "rpc.ret.slot").unwrap();
let slotgen = ctx.builder.build_bitcast(slot, ptr_type, "rpc.ret.ptr").unwrap();
ctx.builder.build_unconditional_branch(head_bb).unwrap();
ctx.builder.position_at_end(head_bb);
let phi = ctx.builder.build_phi(ptr_type, "rpc.ptr").unwrap();
phi.add_incoming(&[(&slotgen, prehead_bb)]);
let alloc_size = ctx
.build_call_or_invoke(rpc_recv, &[phi.as_basic_value()], "rpc.size.next")
.unwrap()
.into_int_value();
let is_done = ctx
.builder
.build_int_compare(inkwell::IntPredicate::EQ, int32.const_zero(), alloc_size, "rpc.done")
.unwrap();
ctx.builder.build_conditional_branch(is_done, tail_bb, alloc_bb).unwrap();
ctx.builder.position_at_end(alloc_bb);
let alloc_ptr = ctx.builder.build_array_alloca(ptr_type, alloc_size, "rpc.alloc").unwrap();
let alloc_ptr = ctx.builder.build_bitcast(alloc_ptr, ptr_type, "rpc.alloc.ptr").unwrap();
phi.add_incoming(&[(&alloc_ptr, alloc_bb)]);
ctx.builder.build_unconditional_branch(head_bb).unwrap();
ctx.builder.position_at_end(tail_bb);
let result = ctx.builder.build_load(slot, "rpc.result").unwrap();
if need_load {
call_stackrestore(ctx, stackptr);
}
Ok(Some(result))
} }
pub fn attributes_writeback( pub fn attributes_writeback<'ctx>(
ctx: &mut CodeGenContext<'_, '_>, ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut dyn CodeGenerator, generator: &mut dyn CodeGenerator,
inner_resolver: &InnerResolver, inner_resolver: &InnerResolver,
host_attributes: &PyObject, host_attributes: &PyObject,
return_obj: Option<(Type, ValueEnum<'ctx>)>,
) -> Result<(), String> { ) -> Result<(), String> {
Python::with_gil(|py| -> PyResult<Result<(), String>> { Python::with_gil(|py| -> PyResult<Result<(), String>> {
let host_attributes: &PyList = host_attributes.downcast(py)?; let host_attributes: &PyList = host_attributes.downcast(py)?;
@ -717,6 +977,11 @@ pub fn attributes_writeback(
let zero = int32.const_zero(); let zero = int32.const_zero();
let mut values = Vec::new(); let mut values = Vec::new();
let mut scratch_buffer = Vec::new(); let mut scratch_buffer = Vec::new();
if let Some((ty, obj)) = return_obj {
values.push((ty, obj.to_basic_value_enum(ctx, generator, ty).unwrap()));
}
for val in (*globals).values() { for val in (*globals).values() {
let val = val.as_ref(py); let val = val.as_ref(py);
let ty = inner_resolver.get_obj_type( let ty = inner_resolver.get_obj_type(
@ -795,7 +1060,7 @@ pub fn attributes_writeback(
let args: Vec<_> = let args: Vec<_> =
values.into_iter().map(|(_, val)| (None, ValueEnum::Dynamic(val))).collect(); values.into_iter().map(|(_, val)| (None, ValueEnum::Dynamic(val))).collect();
if let Err(e) = if let Err(e) =
rpc_codegen_callback_fn(ctx, None, (&fun, PrimDef::Int32.id()), args, generator) rpc_codegen_callback_fn(ctx, None, (&fun, PrimDef::Int32.id()), args, generator, true)
{ {
return Ok(Err(e)); return Ok(Err(e));
} }
@ -805,9 +1070,9 @@ pub fn attributes_writeback(
Ok(()) Ok(())
} }
pub fn rpc_codegen_callback() -> Arc<GenCall> { pub fn rpc_codegen_callback(is_async: bool) -> Arc<GenCall> {
Arc::new(GenCall::new(Box::new(|ctx, obj, fun, args, generator| { Arc::new(GenCall::new(Box::new(move |ctx, obj, fun, args, generator| {
rpc_codegen_callback_fn(ctx, obj, fun, args, generator) rpc_codegen_callback_fn(ctx, obj, fun, args, generator, is_async)
}))) })))
} }
@ -1021,7 +1286,8 @@ fn polymorphic_print<'ctx>(
fmt.push('['); fmt.push('[');
flush(ctx, generator, &mut fmt, &mut args); flush(ctx, generator, &mut fmt, &mut args);
let val = ListValue::from_ptr_val(value.into_pointer_value(), llvm_usize, None); let val =
ListValue::from_pointer_value(value.into_pointer_value(), llvm_usize, None);
let len = val.load_size(ctx, None); let len = val.load_size(ctx, None);
let last = let last =
ctx.builder.build_int_sub(len, llvm_usize.const_int(1, false), "").unwrap(); ctx.builder.build_int_sub(len, llvm_usize.const_int(1, false), "").unwrap();
@ -1075,23 +1341,27 @@ fn polymorphic_print<'ctx>(
fmt.push_str("array(["); fmt.push_str("array([");
flush(ctx, generator, &mut fmt, &mut args); flush(ctx, generator, &mut fmt, &mut args);
let ndarray = AnyObject { ty, value }; let (dtype, _) = unpack_ndarray_var_tys(&mut ctx.unifier, ty);
let ndarray = NDArrayObject::from_object(generator, ctx, ndarray); let ndarray = NDArrayType::from_unifier_type(generator, ctx, ty)
.map_value(value.into_pointer_value(), None);
let num_0 = Int(SizeT).const_0(generator, ctx.ctx); let num_0 = llvm_usize.const_zero();
// Print `ndarray` as a flat list delimited by interspersed with ", \0" // Print `ndarray` as a flat list delimited by interspersed with ", \0"
ndarray.foreach(generator, ctx, |generator, ctx, _, hdl| { ndarray.foreach(generator, ctx, |generator, ctx, _, hdl| {
let i = hdl.get_index(generator, ctx); let i = hdl.get_index(ctx);
let scalar = hdl.get_scalar(generator, ctx); let scalar = hdl.get_scalar(ctx);
// if (i != 0) { puts(", "); } // if (i != 0) puts(", ");
gen_if_callback( gen_if_callback(
generator, generator,
ctx, ctx,
|_, ctx| { |_, ctx| {
let not_first = i.compare(ctx, IntPredicate::NE, num_0); let not_first = ctx
Ok(not_first.value) .builder
.build_int_compare(IntPredicate::NE, i, num_0, "")
.unwrap();
Ok(not_first)
}, },
|generator, ctx| { |generator, ctx| {
printf(ctx, generator, ", \0".into(), Vec::default()); printf(ctx, generator, ", \0".into(), Vec::default());
@ -1104,7 +1374,7 @@ fn polymorphic_print<'ctx>(
polymorphic_print( polymorphic_print(
ctx, ctx,
generator, generator,
&[(scalar.ty, scalar.value.into())], &[(dtype, scalar.into())],
"", "",
None, None,
true, true,
@ -1121,7 +1391,7 @@ fn polymorphic_print<'ctx>(
fmt.push_str("range("); fmt.push_str("range(");
flush(ctx, generator, &mut fmt, &mut args); flush(ctx, generator, &mut fmt, &mut args);
let val = RangeValue::from_ptr_val(value.into_pointer_value(), None); let val = RangeValue::from_pointer_value(value.into_pointer_value(), None);
let (start, stop, step) = destructure_range(ctx, val); let (start, stop, step) = destructure_range(ctx, val);
@ -1235,7 +1505,7 @@ pub fn call_rtio_log_impl<'ctx>(
/// Generates a call to `core_log`. /// Generates a call to `core_log`.
pub fn gen_core_log<'ctx>( pub fn gen_core_log<'ctx>(
ctx: &mut CodeGenContext<'ctx, '_>, ctx: &mut CodeGenContext<'ctx, '_>,
obj: &Option<(Type, ValueEnum<'ctx>)>, obj: Option<&(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId), fun: (&FunSignature, DefinitionId),
args: &[(Option<StrRef>, ValueEnum<'ctx>)], args: &[(Option<StrRef>, ValueEnum<'ctx>)],
generator: &mut dyn CodeGenerator, generator: &mut dyn CodeGenerator,
@ -1252,7 +1522,7 @@ pub fn gen_core_log<'ctx>(
/// Generates a call to `rtio_log`. /// Generates a call to `rtio_log`.
pub fn gen_rtio_log<'ctx>( pub fn gen_rtio_log<'ctx>(
ctx: &mut CodeGenContext<'ctx, '_>, ctx: &mut CodeGenContext<'ctx, '_>,
obj: &Option<(Type, ValueEnum<'ctx>)>, obj: Option<&(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId), fun: (&FunSignature, DefinitionId),
args: &[(Option<StrRef>, ValueEnum<'ctx>)], args: &[(Option<StrRef>, ValueEnum<'ctx>)],
generator: &mut dyn CodeGenerator, generator: &mut dyn CodeGenerator,

View File

@ -1,10 +1,4 @@
#![deny( #![deny(future_incompatible, let_underscore, nonstandard_style, clippy::all)]
future_incompatible,
let_underscore,
nonstandard_style,
rust_2024_compatibility,
clippy::all
)]
#![warn(clippy::pedantic)] #![warn(clippy::pedantic)]
#![allow( #![allow(
unsafe_op_in_unsafe_fn, unsafe_op_in_unsafe_fn,
@ -16,65 +10,65 @@
clippy::wildcard_imports clippy::wildcard_imports
)] )]
use std::collections::{HashMap, HashSet}; use std::{
use std::fs; collections::{HashMap, HashSet},
use std::io::Write; fs,
use std::process::Command; io::Write,
use std::rc::Rc; process::Command,
use std::sync::Arc; rc::Rc,
sync::Arc,
use inkwell::{
context::Context,
memory_buffer::MemoryBuffer,
module::{Linkage, Module},
passes::PassBuilderOptions,
support::is_multithreaded,
targets::*,
OptimizationLevel,
}; };
use itertools::Itertools; use itertools::Itertools;
use nac3core::codegen::irrt::setup_irrt_exceptions;
use nac3core::codegen::{gen_func_impl, CodeGenLLVMOptions, CodeGenTargetMachineOptions};
use nac3core::toplevel::builtins::get_exn_constructor;
use nac3core::typecheck::typedef::{into_var_map, TypeEnum, Unifier, VarMap};
use nac3parser::{
ast::{ExprKind, Stmt, StmtKind, StrRef},
parser::parse_program,
};
use pyo3::create_exception;
use pyo3::prelude::*;
use pyo3::{exceptions, types::PyBytes, types::PyDict, types::PySet};
use parking_lot::{Mutex, RwLock}; use parking_lot::{Mutex, RwLock};
use pyo3::{
create_exception, exceptions,
prelude::*,
types::{PyBytes, PyDict, PyNone, PySet},
};
use tempfile::{self, TempDir};
use nac3core::{ use nac3core::{
codegen::irrt::load_irrt, codegen::{
codegen::{concrete_type::ConcreteTypeStore, CodeGenTask, WithCall, WorkerRegistry}, concrete_type::ConcreteTypeStore, gen_func_impl, irrt::load_irrt, CodeGenLLVMOptions,
CodeGenTargetMachineOptions, CodeGenTask, CodeGenerator, WithCall, WorkerRegistry,
},
inkwell::{
context::Context,
memory_buffer::MemoryBuffer,
module::{FlagBehavior, Linkage, Module},
passes::PassBuilderOptions,
support::is_multithreaded,
targets::*,
OptimizationLevel,
},
nac3parser::{
ast::{Constant, ExprKind, Located, Stmt, StmtKind, StrRef},
parser::parse_program,
},
symbol_resolver::SymbolResolver, symbol_resolver::SymbolResolver,
toplevel::{ toplevel::{
builtins::get_exn_constructor,
composer::{BuiltinFuncCreator, BuiltinFuncSpec, ComposerConfig, TopLevelComposer}, composer::{BuiltinFuncCreator, BuiltinFuncSpec, ComposerConfig, TopLevelComposer},
DefinitionId, GenCall, TopLevelDef, DefinitionId, GenCall, TopLevelDef,
}, },
typecheck::typedef::{FunSignature, FuncArg}, typecheck::{
typecheck::{type_inferencer::PrimitiveStore, typedef::Type}, type_inferencer::PrimitiveStore,
typedef::{into_var_map, FunSignature, FuncArg, Type, TypeEnum, Unifier, VarMap},
},
}; };
use nac3ld::Linker; use nac3ld::Linker;
use crate::{ use codegen::{
codegen::{ attributes_writeback, gen_core_log, gen_rtio_log, rpc_codegen_callback, ArtiqCodeGenerator,
attributes_writeback, gen_core_log, gen_rtio_log, rpc_codegen_callback, ArtiqCodeGenerator,
},
symbol_resolver::{DeferredEvaluationStore, InnerResolver, PythonHelper, Resolver},
}; };
use tempfile::{self, TempDir}; use symbol_resolver::{DeferredEvaluationStore, InnerResolver, PythonHelper, Resolver};
use timeline::TimeFns;
mod codegen; mod codegen;
mod symbol_resolver; mod symbol_resolver;
mod timeline; mod timeline;
use timeline::TimeFns;
#[derive(PartialEq, Clone, Copy)] #[derive(PartialEq, Clone, Copy)]
enum Isa { enum Isa {
Host, Host,
@ -148,14 +142,32 @@ impl Nac3 {
module: &PyObject, module: &PyObject,
registered_class_ids: &HashSet<u64>, registered_class_ids: &HashSet<u64>,
) -> PyResult<()> { ) -> PyResult<()> {
let (module_name, source_file) = Python::with_gil(|py| -> PyResult<(String, String)> { let (module_name, source_file, source) =
let module: &PyAny = module.extract(py)?; Python::with_gil(|py| -> PyResult<(String, String, String)> {
Ok((module.getattr("__name__")?.extract()?, module.getattr("__file__")?.extract()?)) let module: &PyAny = module.extract(py)?;
})?; let source_file = module.getattr("__file__");
let (source_file, source) = if let Ok(source_file) = source_file {
let source_file = source_file.extract()?;
(
source_file,
fs::read_to_string(source_file).map_err(|e| {
exceptions::PyIOError::new_err(format!(
"failed to read input file: {e}"
))
})?,
)
} else {
// kernels submitted by content have no file
// but still can provide source by StringLoader
let get_src_fn = module
.getattr("__loader__")?
.extract::<PyObject>()?
.getattr(py, "get_source")?;
("<expcontent>", get_src_fn.call1(py, (PyNone::get(py),))?.extract(py)?)
};
Ok((module.getattr("__name__")?.extract()?, source_file.to_string(), source))
})?;
let source = fs::read_to_string(&source_file).map_err(|e| {
exceptions::PyIOError::new_err(format!("failed to read input file: {e}"))
})?;
let parser_result = parse_program(&source, source_file.into()) let parser_result = parse_program(&source, source_file.into())
.map_err(|e| exceptions::PySyntaxError::new_err(format!("parse error: {e}")))?; .map_err(|e| exceptions::PySyntaxError::new_err(format!("parse error: {e}")))?;
@ -195,10 +207,8 @@ impl Nac3 {
body.retain(|stmt| { body.retain(|stmt| {
if let StmtKind::FunctionDef { ref decorator_list, .. } = stmt.node { if let StmtKind::FunctionDef { ref decorator_list, .. } = stmt.node {
decorator_list.iter().any(|decorator| { decorator_list.iter().any(|decorator| {
if let ExprKind::Name { id, .. } = decorator.node { if let Some(id) = decorator_id_string(decorator) {
id.to_string() == "kernel" id == "kernel" || id == "portable" || id == "rpc"
|| id.to_string() == "portable"
|| id.to_string() == "rpc"
} else { } else {
false false
} }
@ -211,9 +221,8 @@ impl Nac3 {
} }
StmtKind::FunctionDef { ref decorator_list, .. } => { StmtKind::FunctionDef { ref decorator_list, .. } => {
decorator_list.iter().any(|decorator| { decorator_list.iter().any(|decorator| {
if let ExprKind::Name { id, .. } = decorator.node { if let Some(id) = decorator_id_string(decorator) {
let id = id.to_string(); id == "extern" || id == "kernel" || id == "portable" || id == "rpc"
id == "extern" || id == "portable" || id == "kernel" || id == "rpc"
} else { } else {
false false
} }
@ -321,7 +330,7 @@ impl Nac3 {
vars: into_var_map([arg_ty]), vars: into_var_map([arg_ty]),
}, },
Arc::new(GenCall::new(Box::new(move |ctx, obj, fun, args, generator| { Arc::new(GenCall::new(Box::new(move |ctx, obj, fun, args, generator| {
gen_core_log(ctx, &obj, fun, &args, generator)?; gen_core_log(ctx, obj.as_ref(), fun, &args, generator)?;
Ok(None) Ok(None)
}))), }))),
@ -351,7 +360,7 @@ impl Nac3 {
vars: into_var_map([arg_ty]), vars: into_var_map([arg_ty]),
}, },
Arc::new(GenCall::new(Box::new(move |ctx, obj, fun, args, generator| { Arc::new(GenCall::new(Box::new(move |ctx, obj, fun, args, generator| {
gen_rtio_log(ctx, &obj, fun, &args, generator)?; gen_rtio_log(ctx, obj.as_ref(), fun, &args, generator)?;
Ok(None) Ok(None)
}))), }))),
@ -449,7 +458,6 @@ impl Nac3 {
pyid_to_type: pyid_to_type.clone(), pyid_to_type: pyid_to_type.clone(),
primitive_ids: self.primitive_ids.clone(), primitive_ids: self.primitive_ids.clone(),
global_value_ids: global_value_ids.clone(), global_value_ids: global_value_ids.clone(),
class_names: Mutex::default(),
name_to_pyid: name_to_pyid.clone(), name_to_pyid: name_to_pyid.clone(),
module: module.clone(), module: module.clone(),
id_to_pyval: RwLock::default(), id_to_pyval: RwLock::default(),
@ -480,9 +488,25 @@ impl Nac3 {
match &stmt.node { match &stmt.node {
StmtKind::FunctionDef { decorator_list, .. } => { StmtKind::FunctionDef { decorator_list, .. } => {
if decorator_list.iter().any(|decorator| matches!(decorator.node, ExprKind::Name { id, .. } if id == "rpc".into())) { if decorator_list
store_fun.call1(py, (def_id.0.into_py(py), module.getattr(py, name.to_string().as_str()).unwrap())).unwrap(); .iter()
rpc_ids.push((None, def_id)); .any(|decorator| decorator_id_string(decorator) == Some("rpc".to_string()))
{
store_fun
.call1(
py,
(
def_id.0.into_py(py),
module.getattr(py, name.to_string().as_str()).unwrap(),
),
)
.unwrap();
let is_async = decorator_list.iter().any(|decorator| {
decorator_get_flags(decorator)
.iter()
.any(|constant| *constant == Constant::Str("async".into()))
});
rpc_ids.push((None, def_id, is_async));
} }
} }
StmtKind::ClassDef { name, body, .. } => { StmtKind::ClassDef { name, body, .. } => {
@ -490,19 +514,26 @@ impl Nac3 {
let class_obj = module.getattr(py, class_name.as_str()).unwrap(); let class_obj = module.getattr(py, class_name.as_str()).unwrap();
for stmt in body { for stmt in body {
if let StmtKind::FunctionDef { name, decorator_list, .. } = &stmt.node { if let StmtKind::FunctionDef { name, decorator_list, .. } = &stmt.node {
if decorator_list.iter().any(|decorator| matches!(decorator.node, ExprKind::Name { id, .. } if id == "rpc".into())) { if decorator_list.iter().any(|decorator| {
decorator_id_string(decorator) == Some("rpc".to_string())
}) {
let is_async = decorator_list.iter().any(|decorator| {
decorator_get_flags(decorator)
.iter()
.any(|constant| *constant == Constant::Str("async".into()))
});
if name == &"__init__".into() { if name == &"__init__".into() {
return Err(CompileError::new_err(format!( return Err(CompileError::new_err(format!(
"compilation failed\n----------\nThe constructor of class {} should not be decorated with rpc decorator (at {})", "compilation failed\n----------\nThe constructor of class {} should not be decorated with rpc decorator (at {})",
class_name, stmt.location class_name, stmt.location
))); )));
} }
rpc_ids.push((Some((class_obj.clone(), *name)), def_id)); rpc_ids.push((Some((class_obj.clone(), *name)), def_id, is_async));
} }
} }
} }
} }
_ => () _ => (),
} }
let id = *name_to_pyid.get(&name).unwrap(); let id = *name_to_pyid.get(&name).unwrap();
@ -541,13 +572,12 @@ impl Nac3 {
pyid_to_type: pyid_to_type.clone(), pyid_to_type: pyid_to_type.clone(),
primitive_ids: self.primitive_ids.clone(), primitive_ids: self.primitive_ids.clone(),
global_value_ids: global_value_ids.clone(), global_value_ids: global_value_ids.clone(),
class_names: Mutex::default(),
id_to_pyval: RwLock::default(), id_to_pyval: RwLock::default(),
id_to_primitive: RwLock::default(), id_to_primitive: RwLock::default(),
field_to_val: RwLock::default(), field_to_val: RwLock::default(),
name_to_pyid, name_to_pyid,
module: module.to_object(py), module: module.to_object(py),
helper, helper: helper.clone(),
string_store: self.string_store.clone(), string_store: self.string_store.clone(),
exception_ids: self.exception_ids.clone(), exception_ids: self.exception_ids.clone(),
deferred_eval_store: self.deferred_eval_store.clone(), deferred_eval_store: self.deferred_eval_store.clone(),
@ -559,9 +589,8 @@ impl Nac3 {
.unwrap(); .unwrap();
// Process IRRT // Process IRRT
let context = inkwell::context::Context::create(); let context = Context::create();
let irrt = load_irrt(&context); let irrt = load_irrt(&context, resolver.as_ref());
setup_irrt_exceptions(&context, &irrt, resolver.as_ref());
let fun_signature = let fun_signature =
FunSignature { args: vec![], ret: self.primitive.none, vars: VarMap::new() }; FunSignature { args: vec![], ret: self.primitive.none, vars: VarMap::new() };
@ -600,13 +629,12 @@ impl Nac3 {
let top_level = Arc::new(composer.make_top_level_context()); let top_level = Arc::new(composer.make_top_level_context());
{ {
let rpc_codegen = rpc_codegen_callback();
let defs = top_level.definitions.read(); let defs = top_level.definitions.read();
for (class_data, id) in &rpc_ids { for (class_data, id, is_async) in &rpc_ids {
let mut def = defs[id.0].write(); let mut def = defs[id.0].write();
match &mut *def { match &mut *def {
TopLevelDef::Function { codegen_callback, .. } => { TopLevelDef::Function { codegen_callback, .. } => {
*codegen_callback = Some(rpc_codegen.clone()); *codegen_callback = Some(rpc_codegen_callback(*is_async));
} }
TopLevelDef::Class { methods, .. } => { TopLevelDef::Class { methods, .. } => {
let (class_def, method_name) = class_data.as_ref().unwrap(); let (class_def, method_name) = class_data.as_ref().unwrap();
@ -617,7 +645,7 @@ impl Nac3 {
if let TopLevelDef::Function { codegen_callback, .. } = if let TopLevelDef::Function { codegen_callback, .. } =
&mut *defs[id.0].write() &mut *defs[id.0].write()
{ {
*codegen_callback = Some(rpc_codegen.clone()); *codegen_callback = Some(rpc_codegen_callback(*is_async));
store_fun store_fun
.call1( .call1(
py, py,
@ -632,6 +660,11 @@ impl Nac3 {
} }
} }
} }
TopLevelDef::Variable { .. } => {
return Err(CompileError::new_err(String::from(
"Unsupported @rpc annotation on global variable",
)))
}
} }
} }
} }
@ -652,33 +685,12 @@ impl Nac3 {
let task = CodeGenTask { let task = CodeGenTask {
subst: Vec::default(), subst: Vec::default(),
symbol_name: "__modinit__".to_string(), symbol_name: "__modinit__".to_string(),
body: instance.body,
signature,
resolver: resolver.clone(),
store,
unifier_index: instance.unifier_id,
calls: instance.calls,
id: 0,
};
let mut store = ConcreteTypeStore::new();
let mut cache = HashMap::new();
let signature = store.from_signature(
&mut composer.unifier,
&self.primitive,
&fun_signature,
&mut cache,
);
let signature = store.add_cty(signature);
let attributes_writeback_task = CodeGenTask {
subst: Vec::default(),
symbol_name: "attributes_writeback".to_string(),
body: Arc::new(Vec::default()), body: Arc::new(Vec::default()),
signature, signature,
resolver, resolver,
store, store,
unifier_index: instance.unifier_id, unifier_index: instance.unifier_id,
calls: Arc::new(HashMap::default()), calls: instance.calls,
id: 0, id: 0,
}; };
@ -691,7 +703,7 @@ impl Nac3 {
let buffer = buffer.as_slice().into(); let buffer = buffer.as_slice().into();
membuffer.lock().push(buffer); membuffer.lock().push(buffer);
}))); })));
let size_t = Context::create() let size_t = context
.ptr_sized_int_type(&self.get_llvm_target_machine().get_target_data(), None) .ptr_sized_int_type(&self.get_llvm_target_machine().get_target_data(), None)
.get_bit_width(); .get_bit_width();
let num_threads = if is_multithreaded() { 4 } else { 1 }; let num_threads = if is_multithreaded() { 4 } else { 1 };
@ -702,19 +714,27 @@ impl Nac3 {
.collect(); .collect();
let membuffer = membuffers.clone(); let membuffer = membuffers.clone();
let mut has_return = false;
py.allow_threads(|| { py.allow_threads(|| {
let (registry, handles) = let (registry, handles) =
WorkerRegistry::create_workers(threads, top_level.clone(), &self.llvm_options, &f); WorkerRegistry::create_workers(threads, top_level.clone(), &self.llvm_options, &f);
registry.add_task(task);
registry.wait_tasks_complete(handles);
let mut generator = let mut generator = ArtiqCodeGenerator::new("main".to_string(), size_t, self.time_fns);
ArtiqCodeGenerator::new("attributes_writeback".to_string(), size_t, self.time_fns); let context = Context::create();
let context = inkwell::context::Context::create(); let module = context.create_module("main");
let module = context.create_module("attributes_writeback");
let target_machine = self.llvm_options.create_target_machine().unwrap(); let target_machine = self.llvm_options.create_target_machine().unwrap();
module.set_data_layout(&target_machine.get_target_data().get_data_layout()); module.set_data_layout(&target_machine.get_target_data().get_data_layout());
module.set_triple(&target_machine.get_triple()); module.set_triple(&target_machine.get_triple());
module.add_basic_value_flag(
"Debug Info Version",
FlagBehavior::Warning,
context.i32_type().const_int(3, false),
);
module.add_basic_value_flag(
"Dwarf Version",
FlagBehavior::Warning,
context.i32_type().const_int(4, false),
);
let builder = context.create_builder(); let builder = context.create_builder();
let (_, module, _) = gen_func_impl( let (_, module, _) = gen_func_impl(
&context, &context,
@ -722,9 +742,27 @@ impl Nac3 {
&registry, &registry,
builder, builder,
module, module,
attributes_writeback_task, task,
|generator, ctx| { |generator, ctx| {
attributes_writeback(ctx, generator, inner_resolver.as_ref(), &host_attributes) assert_eq!(instance.body.len(), 1, "toplevel module should have 1 statement");
let StmtKind::Expr { value: ref expr, .. } = instance.body[0].node else {
unreachable!("toplevel statement must be an expression")
};
let ExprKind::Call { .. } = expr.node else {
unreachable!("toplevel expression must be a function call")
};
let return_obj =
generator.gen_expr(ctx, expr)?.map(|value| (expr.custom.unwrap(), value));
has_return = return_obj.is_some();
registry.wait_tasks_complete(handles);
attributes_writeback(
ctx,
generator,
inner_resolver.as_ref(),
&host_attributes,
return_obj,
)
}, },
) )
.unwrap(); .unwrap();
@ -733,35 +771,23 @@ impl Nac3 {
membuffer.lock().push(buffer); membuffer.lock().push(buffer);
}); });
embedding_map.setattr("expects_return", has_return).unwrap();
// Link all modules into `main`. // Link all modules into `main`.
let buffers = membuffers.lock(); let buffers = membuffers.lock();
let main = context let main = context
.create_module_from_ir(MemoryBuffer::create_from_memory_range(&buffers[0], "main")) .create_module_from_ir(MemoryBuffer::create_from_memory_range(
buffers.last().unwrap(),
"main",
))
.unwrap(); .unwrap();
for buffer in buffers.iter().skip(1) { for buffer in buffers.iter().rev().skip(1) {
let other = context let other = context
.create_module_from_ir(MemoryBuffer::create_from_memory_range(buffer, "main")) .create_module_from_ir(MemoryBuffer::create_from_memory_range(buffer, "main"))
.unwrap(); .unwrap();
main.link_in_module(other).map_err(|err| CompileError::new_err(err.to_string()))?; main.link_in_module(other).map_err(|err| CompileError::new_err(err.to_string()))?;
} }
let builder = context.create_builder();
let modinit_return = main
.get_function("__modinit__")
.unwrap()
.get_last_basic_block()
.unwrap()
.get_terminator()
.unwrap();
builder.position_before(&modinit_return);
builder
.build_call(
main.get_function("attributes_writeback").unwrap(),
&[],
"attributes_writeback",
)
.unwrap();
main.link_in_module(irrt).map_err(|err| CompileError::new_err(err.to_string()))?; main.link_in_module(irrt).map_err(|err| CompileError::new_err(err.to_string()))?;
let mut function_iter = main.get_first_function(); let mut function_iter = main.get_first_function();
@ -796,6 +822,20 @@ impl Nac3 {
panic!("Failed to run optimization for module `main`: {}", err.to_string()); panic!("Failed to run optimization for module `main`: {}", err.to_string());
} }
Python::with_gil(|py| {
let string_store = self.string_store.read();
let mut string_store_vec = string_store.iter().collect::<Vec<_>>();
string_store_vec.sort_by(|(_s1, key1), (_s2, key2)| key1.cmp(key2));
for (s, key) in string_store_vec {
let embed_key: i32 = helper.store_str.call1(py, (s,)).unwrap().extract(py).unwrap();
assert_eq!(
embed_key, *key,
"string {s} is out of sync between embedding map (key={embed_key}) and \
the internal string store (key={key})"
);
}
});
link_fn(&main) link_fn(&main)
} }
@ -848,6 +888,41 @@ impl Nac3 {
} }
} }
/// Retrieves the Name.id from a decorator, supports decorators with arguments.
fn decorator_id_string(decorator: &Located<ExprKind>) -> Option<String> {
if let ExprKind::Name { id, .. } = decorator.node {
// Bare decorator
return Some(id.to_string());
} else if let ExprKind::Call { func, .. } = &decorator.node {
// Decorators that are calls (e.g. "@rpc()") have Call for the node,
// need to extract the id from within.
if let ExprKind::Name { id, .. } = func.node {
return Some(id.to_string());
}
}
None
}
/// Retrieves flags from a decorator, if any.
fn decorator_get_flags(decorator: &Located<ExprKind>) -> Vec<Constant> {
let mut flags = vec![];
if let ExprKind::Call { keywords, .. } = &decorator.node {
for keyword in keywords {
if keyword.node.arg != Some("flags".into()) {
continue;
}
if let ExprKind::Set { elts } = &keyword.node.value.node {
for elt in elts {
if let ExprKind::Constant { value, .. } = &elt.node {
flags.push(value.clone());
}
}
}
}
}
flags
}
fn link_with_lld(elf_filename: String, obj_filename: String) -> PyResult<()> { fn link_with_lld(elf_filename: String, obj_filename: String) -> PyResult<()> {
let linker_args = vec![ let linker_args = vec![
"-shared".to_string(), "-shared".to_string(),
@ -1010,6 +1085,48 @@ impl Nac3 {
let working_directory = tempfile::Builder::new().prefix("nac3-").tempdir().unwrap(); let working_directory = tempfile::Builder::new().prefix("nac3-").tempdir().unwrap();
fs::write(working_directory.path().join("kernel.ld"), include_bytes!("kernel.ld")).unwrap(); fs::write(working_directory.path().join("kernel.ld"), include_bytes!("kernel.ld")).unwrap();
let mut string_store: HashMap<String, i32> = HashMap::default();
// Keep this list of exceptions in sync with `EXCEPTION_ID_LOOKUP` in `artiq::firmware::ksupport::eh_artiq`
// The exceptions declared here must be defined in `artiq.coredevice.exceptions`
// Verify synchronization by running the test cases in `artiq.test.coredevice.test_exceptions`
let runtime_exception_names = [
"RTIOUnderflow",
"RTIOOverflow",
"RTIODestinationUnreachable",
"DMAError",
"I2CError",
"CacheError",
"SPIError",
"SubkernelError",
"0:AssertionError",
"0:AttributeError",
"0:IndexError",
"0:IOError",
"0:KeyError",
"0:NotImplementedError",
"0:OverflowError",
"0:RuntimeError",
"0:TimeoutError",
"0:TypeError",
"0:ValueError",
"0:ZeroDivisionError",
"0:LinAlgError",
"UnwrapNoneError",
];
// Preallocate runtime exception names
for (i, name) in runtime_exception_names.iter().enumerate() {
let exn_name = if name.find(':').is_none() {
format!("0:artiq.coredevice.exceptions.{name}")
} else {
(*name).to_string()
};
let id = i32::try_from(i).unwrap();
string_store.insert(exn_name, id);
}
Ok(Nac3 { Ok(Nac3 {
isa, isa,
time_fns, time_fns,
@ -1019,7 +1136,7 @@ impl Nac3 {
top_levels: Vec::default(), top_levels: Vec::default(),
pyid_to_def: Arc::default(), pyid_to_def: Arc::default(),
working_directory, working_directory,
string_store: Arc::default(), string_store: Arc::new(string_store.into()),
exception_ids: Arc::default(), exception_ids: Arc::default(),
deferred_eval_store: DeferredEvaluationStore::new(), deferred_eval_store: DeferredEvaluationStore::new(),
llvm_options: CodeGenLLVMOptions { llvm_options: CodeGenLLVMOptions {
@ -1029,7 +1146,12 @@ impl Nac3 {
}) })
} }
fn analyze(&mut self, functions: &PySet, classes: &PySet) -> PyResult<()> { fn analyze(
&mut self,
functions: &PySet,
classes: &PySet,
content_modules: &PySet,
) -> PyResult<()> {
let (modules, class_ids) = let (modules, class_ids) =
Python::with_gil(|py| -> PyResult<(HashMap<u64, PyObject>, HashSet<u64>)> { Python::with_gil(|py| -> PyResult<(HashMap<u64, PyObject>, HashSet<u64>)> {
let mut modules: HashMap<u64, PyObject> = HashMap::new(); let mut modules: HashMap<u64, PyObject> = HashMap::new();
@ -1039,14 +1161,22 @@ impl Nac3 {
let getmodule_fn = PyModule::import(py, "inspect")?.getattr("getmodule")?; let getmodule_fn = PyModule::import(py, "inspect")?.getattr("getmodule")?;
for function in functions { for function in functions {
let module = getmodule_fn.call1((function,))?.extract()?; let module: PyObject = getmodule_fn.call1((function,))?.extract()?;
modules.insert(id_fn.call1((&module,))?.extract()?, module); if !module.is_none(py) {
modules.insert(id_fn.call1((&module,))?.extract()?, module);
}
} }
for class in classes { for class in classes {
let module = getmodule_fn.call1((class,))?.extract()?; let module: PyObject = getmodule_fn.call1((class,))?.extract()?;
modules.insert(id_fn.call1((&module,))?.extract()?, module); if !module.is_none(py) {
modules.insert(id_fn.call1((&module,))?.extract()?, module);
}
class_ids.insert(id_fn.call1((class,))?.extract()?); class_ids.insert(id_fn.call1((class,))?.extract()?);
} }
for module in content_modules {
let module: PyObject = module.extract()?;
modules.insert(id_fn.call1((&module,))?.extract()?, module);
}
Ok((modules, class_ids)) Ok((modules, class_ids))
})?; })?;

View File

@ -1,17 +1,32 @@
use crate::PrimitivePythonId; use std::{
use inkwell::{ collections::{HashMap, HashSet},
module::Linkage, sync::{
types::BasicType, atomic::{AtomicBool, Ordering::Relaxed},
values::{BasicValue, BasicValueEnum}, Arc,
AddressSpace, },
}; };
use itertools::Itertools; use itertools::Itertools;
use parking_lot::RwLock;
use pyo3::{
types::{PyDict, PyTuple},
PyAny, PyErr, PyObject, PyResult, Python,
};
use super::PrimitivePythonId;
use nac3core::{ use nac3core::{
codegen::{ codegen::{
model::*, types::{ndarray::NDArrayType, ProxyType},
object::ndarray::{make_contiguous_strides, NDArray}, values::ndarray::make_contiguous_strides,
CodeGenContext, CodeGenerator, CodeGenContext, CodeGenerator,
}, },
inkwell::{
module::Linkage,
types::{BasicType, BasicTypeEnum},
values::BasicValueEnum,
AddressSpace,
},
nac3parser::ast::{self, StrRef},
symbol_resolver::{StaticValue, SymbolResolver, SymbolValue, ValueEnum}, symbol_resolver::{StaticValue, SymbolResolver, SymbolValue, ValueEnum},
toplevel::{ toplevel::{
helper::PrimDef, helper::PrimDef,
@ -23,19 +38,6 @@ use nac3core::{
typedef::{into_var_map, iter_type_vars, Type, TypeEnum, TypeVar, Unifier, VarMap}, typedef::{into_var_map, iter_type_vars, Type, TypeEnum, TypeVar, Unifier, VarMap},
}, },
}; };
use nac3parser::ast::{self, StrRef};
use parking_lot::{Mutex, RwLock};
use pyo3::{
types::{PyDict, PyTuple},
PyAny, PyErr, PyObject, PyResult, Python,
};
use std::{
collections::{HashMap, HashSet},
sync::{
atomic::{AtomicBool, Ordering::Relaxed},
Arc,
},
};
pub enum PrimitiveValue { pub enum PrimitiveValue {
I32(i32), I32(i32),
@ -80,7 +82,6 @@ pub struct InnerResolver {
pub id_to_primitive: RwLock<HashMap<u64, PrimitiveValue>>, pub id_to_primitive: RwLock<HashMap<u64, PrimitiveValue>>,
pub field_to_val: RwLock<HashMap<ResolverField, Option<PyFieldHandle>>>, pub field_to_val: RwLock<HashMap<ResolverField, Option<PyFieldHandle>>>,
pub global_value_ids: Arc<RwLock<HashMap<u64, PyObject>>>, pub global_value_ids: Arc<RwLock<HashMap<u64, PyObject>>>,
pub class_names: Mutex<HashMap<StrRef, Type>>,
pub pyid_to_def: Arc<RwLock<HashMap<u64, DefinitionId>>>, pub pyid_to_def: Arc<RwLock<HashMap<u64, DefinitionId>>>,
pub pyid_to_type: Arc<RwLock<HashMap<u64, Type>>>, pub pyid_to_type: Arc<RwLock<HashMap<u64, Type>>>,
pub primitive_ids: PrimitivePythonId, pub primitive_ids: PrimitivePythonId,
@ -930,10 +931,13 @@ impl InnerResolver {
|_| Ok(Ok(extracted_ty)), |_| Ok(Ok(extracted_ty)),
) )
} else if unifier.unioned(extracted_ty, primitives.bool) { } else if unifier.unioned(extracted_ty, primitives.bool) {
obj.extract::<bool>().map_or_else( if obj.extract::<bool>().is_ok()
|_| Ok(Err(format!("{obj} is not in the range of bool"))), || obj.call_method("__bool__", (), None)?.extract::<bool>().is_ok()
|_| Ok(Ok(extracted_ty)), {
) Ok(Ok(extracted_ty))
} else {
Ok(Err(format!("{obj} is not in the range of bool")))
}
} else if unifier.unioned(extracted_ty, primitives.float) { } else if unifier.unioned(extracted_ty, primitives.float) {
obj.extract::<f64>().map_or_else( obj.extract::<f64>().map_or_else(
|_| Ok(Err(format!("{obj} is not in the range of float64"))), |_| Ok(Err(format!("{obj} is not in the range of float64"))),
@ -973,10 +977,14 @@ impl InnerResolver {
let val: u64 = obj.extract().unwrap(); let val: u64 = obj.extract().unwrap();
self.id_to_primitive.write().insert(id, PrimitiveValue::U64(val)); self.id_to_primitive.write().insert(id, PrimitiveValue::U64(val));
Ok(Some(ctx.ctx.i64_type().const_int(val, false).into())) Ok(Some(ctx.ctx.i64_type().const_int(val, false).into()))
} else if ty_id == self.primitive_ids.bool || ty_id == self.primitive_ids.np_bool_ { } else if ty_id == self.primitive_ids.bool {
let val: bool = obj.extract().unwrap(); let val: bool = obj.extract().unwrap();
self.id_to_primitive.write().insert(id, PrimitiveValue::Bool(val)); self.id_to_primitive.write().insert(id, PrimitiveValue::Bool(val));
Ok(Some(ctx.ctx.i8_type().const_int(u64::from(val), false).into())) Ok(Some(ctx.ctx.i8_type().const_int(u64::from(val), false).into()))
} else if ty_id == self.primitive_ids.np_bool_ {
let val: bool = obj.call_method("__bool__", (), None)?.extract().unwrap();
self.id_to_primitive.write().insert(id, PrimitiveValue::Bool(val));
Ok(Some(ctx.ctx.i8_type().const_int(u64::from(val), false).into()))
} else if ty_id == self.primitive_ids.string || ty_id == self.primitive_ids.np_str_ { } else if ty_id == self.primitive_ids.string || ty_id == self.primitive_ids.np_str_ {
let val: String = obj.extract().unwrap(); let val: String = obj.extract().unwrap();
self.id_to_primitive.write().insert(id, PrimitiveValue::Str(val.clone())); self.id_to_primitive.write().insert(id, PrimitiveValue::Str(val.clone()));
@ -1084,15 +1092,19 @@ impl InnerResolver {
} else { } else {
unreachable!("must be ndarray") unreachable!("must be ndarray")
}; };
let (ndarray_dtype, ndarray_ndims) = let (ndarray_dtype, _) = unpack_ndarray_var_tys(&mut ctx.unifier, ndarray_ty);
unpack_ndarray_var_tys(&mut ctx.unifier, ndarray_ty);
let llvm_i8 = ctx.ctx.i8_type();
let llvm_pi8 = llvm_i8.ptr_type(AddressSpace::default());
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_ndarray = NDArrayType::from_unifier_type(generator, ctx, ndarray_ty);
let dtype = llvm_ndarray.element_type();
let dtype = Any(ctx.get_llvm_type(generator, ndarray_dtype));
{ {
if self.global_value_ids.read().contains_key(&id) { if self.global_value_ids.read().contains_key(&id) {
let global = ctx.module.get_global(&id_str).unwrap_or_else(|| { let global = ctx.module.get_global(&id_str).unwrap_or_else(|| {
ctx.module.add_global( ctx.module.add_global(
Struct(NDArray).get_type(generator, ctx.ctx), llvm_ndarray.as_base_type().get_element_type().into_struct_type(),
Some(AddressSpace::default()), Some(AddressSpace::default()),
&id_str, &id_str,
) )
@ -1102,26 +1114,14 @@ impl InnerResolver {
self.global_value_ids.write().insert(id, obj.into()); self.global_value_ids.write().insert(id, obj.into());
} }
let TypeEnum::TLiteral { values, .. } = &*ctx.unifier.get_ty_immutable(ndarray_ndims) let ndims = llvm_ndarray.ndims();
else {
unreachable!("Expected Literal for ndarray_ndims")
};
let ndarray_ndims = if values.len() == 1 {
values[0].clone()
} else {
todo!("Unpacking literal of more than one element unimplemented")
};
let Ok(ndims) = u64::try_from(ndarray_ndims) else {
unreachable!("Expected u64 value for ndarray_ndims")
};
// Obtain the shape of the ndarray // Obtain the shape of the ndarray
let shape_tuple: &PyTuple = obj.getattr("shape")?.downcast()?; let shape_tuple: &PyTuple = obj.getattr("shape")?.downcast()?;
assert_eq!(shape_tuple.len(), ndims as usize); assert_eq!(shape_tuple.len(), ndims as usize);
// The Rust type inferencer cannot figure this out // The Rust type inferencer cannot figure this out
let shape_values: Result<Vec<Instance<'ctx, Int<SizeT>>>, PyErr> = shape_tuple let shape_values = shape_tuple
.iter() .iter()
.enumerate() .enumerate()
.map(|(i, elem)| { .map(|(i, elem)| {
@ -1131,33 +1131,35 @@ impl InnerResolver {
super::CompileError::new_err(format!("Error getting element {i}: {e}")) super::CompileError::new_err(format!("Error getting element {i}: {e}"))
})? })?
.unwrap(); .unwrap();
let value = Int(SizeT).check_value(generator, ctx.ctx, value).unwrap(); let value = ctx
.builder
.build_int_z_extend(value.into_int_value(), llvm_usize, "")
.unwrap();
Ok(value) Ok(value)
}) })
.collect(); .collect::<Result<Vec<_>, PyErr>>()?;
let shape_values = shape_values?;
// Also use this opportunity to get the constant values of `shape_values` for calculating strides. // Also use this opportunity to get the constant values of `shape_values` for calculating strides.
let shape_u64s = shape_values let shape_u64s = shape_values
.iter() .iter()
.map(|dim| { .map(|dim| {
assert!(dim.value.is_const()); assert!(dim.is_const());
dim.value.get_zero_extended_constant().unwrap() dim.get_zero_extended_constant().unwrap()
}) })
.collect_vec(); .collect_vec();
let shape_values = Int(SizeT).const_array(generator, ctx.ctx, &shape_values); let shape_values = llvm_usize.const_array(&shape_values);
// create a global for ndarray.shape and initialize it using the shape // create a global for ndarray.shape and initialize it using the shape
let shape_global = ctx.module.add_global( let shape_global = ctx.module.add_global(
Array { len: AnyLen(ndims as u32), item: Int(SizeT) }.get_type(generator, ctx.ctx), llvm_usize.array_type(ndims as u32),
Some(AddressSpace::default()), Some(AddressSpace::default()),
&(id_str.clone() + ".shape"), &(id_str.clone() + ".shape"),
); );
shape_global.set_initializer(&shape_values.value); shape_global.set_initializer(&shape_values);
// Obtain the (flattened) elements of the ndarray // Obtain the (flattened) elements of the ndarray
let sz: usize = obj.getattr("size")?.extract()?; let sz: usize = obj.getattr("size")?.extract()?;
let data_values: Vec<Instance<'ctx, Any>> = (0..sz) let data: Vec<_> = (0..sz)
.map(|i| { .map(|i| {
obj.getattr("flat")?.get_item(i).and_then(|elem| { obj.getattr("flat")?.get_item(i).and_then(|elem| {
let value = self let value = self
@ -1169,79 +1171,126 @@ impl InnerResolver {
})? })?
.unwrap(); .unwrap();
let value = dtype.check_value(generator, ctx.ctx, value).unwrap(); assert_eq!(value.get_type(), dtype);
Ok(value) Ok(value)
}) })
}) })
.try_collect()?; .try_collect()?;
let data = dtype.const_array(generator, ctx.ctx, &data_values); let data = data.into_iter();
let data = match dtype {
BasicTypeEnum::ArrayType(ty) => {
ty.const_array(&data.map(BasicValueEnum::into_array_value).collect_vec())
}
BasicTypeEnum::FloatType(ty) => {
ty.const_array(&data.map(BasicValueEnum::into_float_value).collect_vec())
}
BasicTypeEnum::IntType(ty) => {
ty.const_array(&data.map(BasicValueEnum::into_int_value).collect_vec())
}
BasicTypeEnum::PointerType(ty) => {
ty.const_array(&data.map(BasicValueEnum::into_pointer_value).collect_vec())
}
BasicTypeEnum::StructType(ty) => {
ty.const_array(&data.map(BasicValueEnum::into_struct_value).collect_vec())
}
BasicTypeEnum::VectorType(_) => unreachable!(),
};
// create a global for ndarray.data and initialize it using the elements // create a global for ndarray.data and initialize it using the elements
// //
// NOTE: NDArray's `data` is `u8*`. Here, `data_global` is an array of `dtype`. // NOTE: NDArray's `data` is `u8*`. Here, `data_global` is an array of `dtype`.
// We will have to cast it to an `u8*` later. // We will have to cast it to an `u8*` later.
let data_global = ctx.module.add_global( let data_global = ctx.module.add_global(
Array { len: AnyLen(sz as u32), item: dtype }.get_type(generator, ctx.ctx), dtype.array_type(sz as u32),
Some(AddressSpace::default()), Some(AddressSpace::default()),
&(id_str.clone() + ".data"), &(id_str.clone() + ".data"),
); );
data_global.set_initializer(&data.value); data_global.set_initializer(&data);
// Get the constant itemsize. // Get the constant itemsize.
let itemsize = dtype.get_type(generator, ctx.ctx).size_of().unwrap(); //
let itemsize = itemsize.get_zero_extended_constant().unwrap(); // NOTE: dtype.size_of() may return a non-constant, where `TargetData::get_store_size`
// will always return a constant size.
let itemsize = ctx
.registry
.llvm_options
.create_target_machine()
.map(|tm| tm.get_target_data().get_store_size(&dtype))
.unwrap();
assert_ne!(itemsize, 0);
// Create the strides needed for ndarray.strides // Create the strides needed for ndarray.strides
let strides = make_contiguous_strides(itemsize, ndims, &shape_u64s); let strides = make_contiguous_strides(itemsize, ndims, &shape_u64s);
let strides = strides let strides =
.into_iter() strides.into_iter().map(|stride| llvm_usize.const_int(stride, false)).collect_vec();
.map(|stride| Int(SizeT).const_int(generator, ctx.ctx, stride)) let strides = llvm_usize.const_array(&strides);
.collect_vec();
let strides = Int(SizeT).const_array(generator, ctx.ctx, &strides);
// create a global for ndarray.strides and initialize it // create a global for ndarray.strides and initialize it
let strides_global = ctx.module.add_global( let strides_global = ctx.module.add_global(
Array { len: AnyLen(ndims as u32), item: Int(Byte) }.get_type(generator, ctx.ctx), llvm_usize.array_type(ndims as u32),
Some(AddressSpace::default()), Some(AddressSpace::default()),
&(id_str.clone() + ".strides"), &format!("${id_str}.strides"),
); );
strides_global.set_initializer(&strides.value); strides_global.set_initializer(&strides);
// create a global for the ndarray object and initialize it // create a global for the ndarray object and initialize it
// We are also doing [`Model::check_value`] instead of [`Model::believe_value`] to catch bugs.
// NOTE: data_global is an array of dtype, we want a `u8*`. // NOTE: data_global is an array of dtype, we want a `u8*`.
let ndarray_data = Ptr(dtype).check_value(generator, ctx.ctx, data_global).unwrap(); let ndarray_data = data_global.as_pointer_value();
let ndarray_data = Ptr(Int(Byte)).pointer_cast(generator, ctx, ndarray_data.value); let ndarray_data = ctx.builder.build_pointer_cast(ndarray_data, llvm_pi8, "").unwrap();
let ndarray_itemsize = Int(SizeT).const_int(generator, ctx.ctx, itemsize); let ndarray_itemsize = llvm_usize.const_int(itemsize, false);
let ndarray_ndims = Int(SizeT).const_int(generator, ctx.ctx, ndims); let ndarray_ndims = llvm_usize.const_int(ndims, false);
let ndarray_shape = // calling as_pointer_value on shape and strides returns [i64 x ndims]*
Ptr(Int(SizeT)).check_value(generator, ctx.ctx, shape_global).unwrap(); // convert into i64* to conform with expected layout of ndarray
let ndarray_strides = let ndarray_shape = shape_global.as_pointer_value();
Ptr(Int(SizeT)).check_value(generator, ctx.ctx, strides_global).unwrap(); let ndarray_shape = unsafe {
ctx.builder
.build_in_bounds_gep(
ndarray_shape,
&[llvm_usize.const_zero(), llvm_usize.const_zero()],
"",
)
.unwrap()
};
let ndarray = Struct(NDArray).const_struct( let ndarray_strides = strides_global.as_pointer_value();
generator, let ndarray_strides = unsafe {
ctx.ctx, ctx.builder
&[ .build_in_bounds_gep(
ndarray_data.value.as_basic_value_enum(), ndarray_strides,
ndarray_itemsize.value.as_basic_value_enum(), &[llvm_usize.const_zero(), llvm_usize.const_zero()],
ndarray_ndims.value.as_basic_value_enum(), "",
ndarray_shape.value.as_basic_value_enum(), )
ndarray_strides.value.as_basic_value_enum(), .unwrap()
], };
);
let ndarray = llvm_ndarray
.as_base_type()
.get_element_type()
.into_struct_type()
.const_named_struct(&[
ndarray_itemsize.into(),
ndarray_ndims.into(),
ndarray_shape.into(),
ndarray_strides.into(),
ndarray_data.into(),
]);
let ndarray_global = ctx.module.add_global( let ndarray_global = ctx.module.add_global(
Struct(NDArray).get_type(generator, ctx.ctx), llvm_ndarray.as_base_type().get_element_type().into_struct_type(),
Some(AddressSpace::default()), Some(AddressSpace::default()),
&id_str, &id_str,
); );
ndarray_global.set_initializer(&ndarray.value); ndarray_global.set_initializer(&ndarray);
Ok(Some(ndarray_global.as_pointer_value().into())) Ok(Some(ndarray_global.as_pointer_value().into()))
} else if ty_id == self.primitive_ids.tuple { } else if ty_id == self.primitive_ids.tuple {
@ -1403,9 +1452,12 @@ impl InnerResolver {
} else if ty_id == self.primitive_ids.uint64 { } else if ty_id == self.primitive_ids.uint64 {
let val: u64 = obj.extract()?; let val: u64 = obj.extract()?;
Ok(SymbolValue::U64(val)) Ok(SymbolValue::U64(val))
} else if ty_id == self.primitive_ids.bool || ty_id == self.primitive_ids.np_bool_ { } else if ty_id == self.primitive_ids.bool {
let val: bool = obj.extract()?; let val: bool = obj.extract()?;
Ok(SymbolValue::Bool(val)) Ok(SymbolValue::Bool(val))
} else if ty_id == self.primitive_ids.np_bool_ {
let val: bool = obj.call_method("__bool__", (), None)?.extract()?;
Ok(SymbolValue::Bool(val))
} else if ty_id == self.primitive_ids.string || ty_id == self.primitive_ids.np_str_ { } else if ty_id == self.primitive_ids.string || ty_id == self.primitive_ids.np_str_ {
let val: String = obj.extract()?; let val: String = obj.extract()?;
Ok(SymbolValue::Str(val)) Ok(SymbolValue::Str(val))
@ -1504,6 +1556,7 @@ impl SymbolResolver for Resolver {
&self, &self,
id: StrRef, id: StrRef,
_: &mut CodeGenContext<'ctx, '_>, _: &mut CodeGenContext<'ctx, '_>,
_: &mut dyn CodeGenerator,
) -> Option<ValueEnum<'ctx>> { ) -> Option<ValueEnum<'ctx>> {
let sym_value = { let sym_value = {
let id_to_val = self.0.id_to_pyval.read(); let id_to_val = self.0.id_to_pyval.read();
@ -1565,10 +1618,7 @@ impl SymbolResolver for Resolver {
if let Some(id) = string_store.get(s) { if let Some(id) = string_store.get(s) {
*id *id
} else { } else {
let id = Python::with_gil(|py| -> PyResult<i32> { let id = i32::try_from(string_store.len()).unwrap();
self.0.helper.store_str.call1(py, (s,))?.extract(py)
})
.unwrap();
string_store.insert(s.into(), id); string_store.insert(s.into(), id);
id id
} }

View File

@ -1,9 +1,12 @@
use inkwell::{
values::{BasicValueEnum, CallSiteValue},
AddressSpace, AtomicOrdering,
};
use itertools::Either; use itertools::Either;
use nac3core::codegen::CodeGenContext;
use nac3core::{
codegen::CodeGenContext,
inkwell::{
values::{BasicValueEnum, CallSiteValue},
AddressSpace, AtomicOrdering,
},
};
/// Functions for manipulating the timeline. /// Functions for manipulating the timeline.
pub trait TimeFns { pub trait TimeFns {
@ -31,7 +34,7 @@ impl TimeFns for NowPinningTimeFns64 {
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now")); .unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
let now_hiptr = ctx let now_hiptr = ctx
.builder .builder
.build_bitcast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr") .build_bit_cast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.map(BasicValueEnum::into_pointer_value) .map(BasicValueEnum::into_pointer_value)
.unwrap(); .unwrap();
@ -80,7 +83,7 @@ impl TimeFns for NowPinningTimeFns64 {
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now")); .unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
let now_hiptr = ctx let now_hiptr = ctx
.builder .builder
.build_bitcast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr") .build_bit_cast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.map(BasicValueEnum::into_pointer_value) .map(BasicValueEnum::into_pointer_value)
.unwrap(); .unwrap();
@ -109,7 +112,7 @@ impl TimeFns for NowPinningTimeFns64 {
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now")); .unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
let now_hiptr = ctx let now_hiptr = ctx
.builder .builder
.build_bitcast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr") .build_bit_cast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.map(BasicValueEnum::into_pointer_value) .map(BasicValueEnum::into_pointer_value)
.unwrap(); .unwrap();
@ -207,7 +210,7 @@ impl TimeFns for NowPinningTimeFns {
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now")); .unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
let now_hiptr = ctx let now_hiptr = ctx
.builder .builder
.build_bitcast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr") .build_bit_cast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.map(BasicValueEnum::into_pointer_value) .map(BasicValueEnum::into_pointer_value)
.unwrap(); .unwrap();
@ -258,7 +261,7 @@ impl TimeFns for NowPinningTimeFns {
let time_lo = ctx.builder.build_int_truncate(time, i32_type, "time.lo").unwrap(); let time_lo = ctx.builder.build_int_truncate(time, i32_type, "time.lo").unwrap();
let now_hiptr = ctx let now_hiptr = ctx
.builder .builder
.build_bitcast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr") .build_bit_cast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.map(BasicValueEnum::into_pointer_value) .map(BasicValueEnum::into_pointer_value)
.unwrap(); .unwrap();

View File

@ -10,7 +10,6 @@ constant-optimization = ["fold"]
fold = [] fold = []
[dependencies] [dependencies]
lazy_static = "1.5"
parking_lot = "0.12" parking_lot = "0.12"
string-interner = "0.17" string-interner = "0.17"
fxhash = "0.2" fxhash = "0.2"

View File

@ -5,14 +5,12 @@ pub use crate::location::Location;
use fxhash::FxBuildHasher; use fxhash::FxBuildHasher;
use parking_lot::{Mutex, MutexGuard}; use parking_lot::{Mutex, MutexGuard};
use std::{cell::RefCell, collections::HashMap, fmt}; use std::{cell::RefCell, collections::HashMap, fmt, sync::LazyLock};
use string_interner::{symbol::SymbolU32, DefaultBackend, StringInterner}; use string_interner::{symbol::SymbolU32, DefaultBackend, StringInterner};
pub type Interner = StringInterner<DefaultBackend, FxBuildHasher>; pub type Interner = StringInterner<DefaultBackend, FxBuildHasher>;
lazy_static! { static INTERNER: LazyLock<Mutex<Interner>> =
static ref INTERNER: Mutex<Interner> = LazyLock::new(|| Mutex::new(StringInterner::with_hasher(FxBuildHasher::default())));
Mutex::new(StringInterner::with_hasher(FxBuildHasher::default()));
}
thread_local! { thread_local! {
static LOCAL_INTERNER: RefCell<HashMap<String, StrRef>> = RefCell::default(); static LOCAL_INTERNER: RefCell<HashMap<String, StrRef>> = RefCell::default();

View File

@ -1,10 +1,4 @@
#![deny( #![deny(future_incompatible, let_underscore, nonstandard_style, clippy::all)]
future_incompatible,
let_underscore,
nonstandard_style,
rust_2024_compatibility,
clippy::all
)]
#![warn(clippy::pedantic)] #![warn(clippy::pedantic)]
#![allow( #![allow(
clippy::missing_errors_doc, clippy::missing_errors_doc,
@ -14,9 +8,6 @@
clippy::wildcard_imports clippy::wildcard_imports
)] )]
#[macro_use]
extern crate lazy_static;
mod ast_gen; mod ast_gen;
mod constant; mod constant;
#[cfg(feature = "fold")] #[cfg(feature = "fold")]

View File

@ -5,22 +5,25 @@ authors = ["M-Labs"]
edition = "2021" edition = "2021"
[features] [features]
default = ["derive"]
derive = ["dep:nac3core_derive"]
no-escape-analysis = [] no-escape-analysis = []
[dependencies] [dependencies]
itertools = "0.13" itertools = "0.13"
crossbeam = "0.8" crossbeam = "0.8"
indexmap = "2.2" indexmap = "2.6"
parking_lot = "0.12" parking_lot = "0.12"
rayon = "1.8" rayon = "1.10"
nac3core_derive = { path = "nac3core_derive", optional = true }
nac3parser = { path = "../nac3parser" } nac3parser = { path = "../nac3parser" }
strum = "0.26" strum = "0.26"
strum_macros = "0.26" strum_macros = "0.26"
[dependencies.inkwell] [dependencies.inkwell]
version = "0.4" version = "0.5"
default-features = false default-features = false
features = ["llvm14-0", "target-x86", "target-arm", "target-riscv", "no-libffi-linking"] features = ["llvm14-0-prefer-dynamic", "target-x86", "target-arm", "target-riscv", "no-libffi-linking"]
[dev-dependencies] [dev-dependencies]
test-case = "1.2.0" test-case = "1.2.0"

View File

@ -1,4 +1,3 @@
use regex::Regex;
use std::{ use std::{
env, env,
fs::File, fs::File,
@ -7,6 +6,8 @@ use std::{
process::{Command, Stdio}, process::{Command, Stdio},
}; };
use regex::Regex;
fn main() { fn main() {
let out_dir = env::var("OUT_DIR").unwrap(); let out_dir = env::var("OUT_DIR").unwrap();
let out_dir = Path::new(&out_dir); let out_dir = Path::new(&out_dir);
@ -22,6 +23,7 @@ fn main() {
"--target=wasm32", "--target=wasm32",
"-x", "-x",
"c++", "c++",
"-std=c++20",
"-fno-discard-value-names", "-fno-discard-value-names",
"-fno-exceptions", "-fno-exceptions",
"-fno-rtti", "-fno-rtti",
@ -54,9 +56,8 @@ fn main() {
let output = Command::new("clang-irrt") let output = Command::new("clang-irrt")
.args(flags) .args(flags)
.output() .output()
.map(|o| { .inspect(|o| {
assert!(o.status.success(), "{}", std::str::from_utf8(&o.stderr).unwrap()); assert!(o.status.success(), "{}", std::str::from_utf8(&o.stderr).unwrap());
o
}) })
.unwrap(); .unwrap();

View File

@ -1,16 +1,15 @@
#include <irrt/exception.hpp> #include "irrt/exception.hpp"
#include <irrt/int_types.hpp> #include "irrt/list.hpp"
#include <irrt/list.hpp> #include "irrt/math.hpp"
#include <irrt/math_util.hpp> #include "irrt/range.hpp"
#include <irrt/ndarray/array.hpp> #include "irrt/slice.hpp"
#include <irrt/ndarray/basic.hpp> #include "irrt/string.hpp"
#include <irrt/ndarray/broadcast.hpp> #include "irrt/ndarray/basic.hpp"
#include <irrt/ndarray/def.hpp> #include "irrt/ndarray/def.hpp"
#include <irrt/ndarray/indexing.hpp> #include "irrt/ndarray/iter.hpp"
#include <irrt/ndarray/iter.hpp> #include "irrt/ndarray/indexing.hpp"
#include <irrt/ndarray/matmul.hpp> #include "irrt/ndarray/array.hpp"
#include <irrt/ndarray/reshape.hpp> #include "irrt/ndarray/reshape.hpp"
#include <irrt/ndarray/transpose.hpp> #include "irrt/ndarray/broadcast.hpp"
#include <irrt/original.hpp> #include "irrt/ndarray/transpose.hpp"
#include <irrt/range.hpp> #include "irrt/ndarray/matmul.hpp"
#include <irrt/slice.hpp>

View File

@ -1,9 +1,9 @@
#pragma once #pragma once
#include <irrt/int_types.hpp> #include "irrt/int_types.hpp"
template <typename SizeT> struct CSlice template<typename SizeT>
{ struct CSlice {
uint8_t *base; void* base;
SizeT len; SizeT len;
}; };

View File

@ -1,20 +0,0 @@
#pragma once
#include <irrt/int_types.hpp>
namespace cstr
{
/**
* @brief Implementation of `strlen()`.
*/
uint32_t length(const char *str)
{
uint32_t length = 0;
while (*str != '\0')
{
length++;
str++;
}
return length;
}
} // namespace cstr

View File

@ -7,17 +7,19 @@
#define IRRT_DEBUG_ASSERT_BOOL false #define IRRT_DEBUG_ASSERT_BOOL false
#endif #endif
#define raise_debug_assert(SizeT, msg, param1, param2, param3) \ #define raise_debug_assert(SizeT, msg, param1, param2, param3) \
raise_exception(SizeT, EXN_ASSERTION_ERROR, "IRRT debug assert failed: " msg, param1, param2, param3); raise_exception(SizeT, EXN_ASSERTION_ERROR, "IRRT debug assert failed: " msg, param1, param2, param3)
#define debug_assert_eq(SizeT, lhs, rhs) \ #define debug_assert_eq(SizeT, lhs, rhs) \
if (IRRT_DEBUG_ASSERT_BOOL && (lhs) != (rhs)) \ if constexpr (IRRT_DEBUG_ASSERT_BOOL) { \
{ \ if ((lhs) != (rhs)) { \
raise_debug_assert(SizeT, "LHS = {0}. RHS = {1}", lhs, rhs, NO_PARAM); \ raise_debug_assert(SizeT, "LHS = {0}. RHS = {1}", lhs, rhs, NO_PARAM); \
} \
} }
#define debug_assert(SizeT, expr) \ #define debug_assert(SizeT, expr) \
if (IRRT_DEBUG_ASSERT_BOOL && !(expr)) \ if constexpr (IRRT_DEBUG_ASSERT_BOOL) { \
{ \ if (!(expr)) { \
raise_debug_assert(SizeT, "Got false.", NO_PARAM, NO_PARAM, NO_PARAM); \ raise_debug_assert(SizeT, "Got false.", NO_PARAM, NO_PARAM, NO_PARAM); \
} \
} }

View File

@ -1,24 +1,22 @@
#pragma once #pragma once
#include <irrt/cslice.hpp> #include "irrt/cslice.hpp"
#include <irrt/cstr_util.hpp> #include "irrt/int_types.hpp"
#include <irrt/int_types.hpp>
/** /**
* @brief The int type of ARTIQ exception IDs. * @brief The int type of ARTIQ exception IDs.
*/ */
typedef int32_t ExceptionId; using ExceptionId = int32_t;
/* /*
* Set of exceptions C++ IRRT can use. * Set of exceptions C++ IRRT can use.
* Must be synchronized with `setup_irrt_exceptions` in `nac3core/src/codegen/irrt/mod.rs`. * Must be synchronized with `setup_irrt_exceptions` in `nac3core/src/codegen/irrt/mod.rs`.
*/ */
extern "C" extern "C" {
{ ExceptionId EXN_INDEX_ERROR;
ExceptionId EXN_INDEX_ERROR; ExceptionId EXN_VALUE_ERROR;
ExceptionId EXN_VALUE_ERROR; ExceptionId EXN_ASSERTION_ERROR;
ExceptionId EXN_ASSERTION_ERROR; ExceptionId EXN_TYPE_ERROR;
ExceptionId EXN_TYPE_ERROR;
} }
/** /**
@ -27,15 +25,14 @@ extern "C"
* The parameter `err` could be `Exception<int32_t>` or `Exception<int64_t>`. The caller * The parameter `err` could be `Exception<int32_t>` or `Exception<int64_t>`. The caller
* must make sure to pass `Exception`s with the correct `SizeT` depending on the `size_t` of the runtime. * must make sure to pass `Exception`s with the correct `SizeT` depending on the `size_t` of the runtime.
*/ */
extern "C" void __nac3_raise(void *err); extern "C" void __nac3_raise(void* err);
namespace namespace {
{
/** /**
* @brief NAC3's Exception struct * @brief NAC3's Exception struct
*/ */
template <typename SizeT> struct Exception template<typename SizeT>
{ struct Exception {
ExceptionId id; ExceptionId id;
CSlice<SizeT> filename; CSlice<SizeT> filename;
int32_t line; int32_t line;
@ -45,26 +42,35 @@ template <typename SizeT> struct Exception
int64_t params[3]; int64_t params[3];
}; };
const int64_t NO_PARAM = 0; constexpr int64_t NO_PARAM = 0;
template <typename SizeT> template<typename SizeT>
void _raise_exception_helper(ExceptionId id, const char *filename, int32_t line, const char *function, const char *msg, void _raise_exception_helper(ExceptionId id,
int64_t param0, int64_t param1, int64_t param2) const char* filename,
{ int32_t line,
const char* function,
const char* msg,
int64_t param0,
int64_t param1,
int64_t param2) {
Exception<SizeT> e = { Exception<SizeT> e = {
.id = id, .id = id,
.filename = {.base = (uint8_t *)filename, .len = (int32_t)cstr::length(filename)}, .filename = {.base = reinterpret_cast<void*>(const_cast<char*>(filename)),
.len = static_cast<SizeT>(__builtin_strlen(filename))},
.line = line, .line = line,
.column = 0, .column = 0,
.function = {.base = (uint8_t *)function, .len = (int32_t)cstr::length(function)}, .function = {.base = reinterpret_cast<void*>(const_cast<char*>(function)),
.msg = {.base = (uint8_t *)msg, .len = (int32_t)cstr::length(msg)}, .len = static_cast<SizeT>(__builtin_strlen(function))},
.msg = {.base = reinterpret_cast<void*>(const_cast<char*>(msg)),
.len = static_cast<SizeT>(__builtin_strlen(msg))},
}; };
e.params[0] = param0; e.params[0] = param0;
e.params[1] = param1; e.params[1] = param1;
e.params[2] = param2; e.params[2] = param2;
__nac3_raise((void *)&e); __nac3_raise(reinterpret_cast<void*>(&e));
__builtin_unreachable(); __builtin_unreachable();
} }
} // namespace
/** /**
* @brief Raise an exception with location details (location in the IRRT source files). * @brief Raise an exception with location details (location in the IRRT source files).
@ -75,6 +81,5 @@ void _raise_exception_helper(ExceptionId id, const char *filename, int32_t line,
* `param0` to `param2` are optional format arguments of `msg`. They should be set to * `param0` to `param2` are optional format arguments of `msg`. They should be set to
* `NO_PARAM` to indicate they are unused. * `NO_PARAM` to indicate they are unused.
*/ */
#define raise_exception(SizeT, id, msg, param0, param1, param2) \ #define raise_exception(SizeT, id, msg, param0, param1, param2) \
_raise_exception_helper<SizeT>(id, __FILE__, __LINE__, __FUNCTION__, msg, param0, param1, param2) _raise_exception_helper<SizeT>(id, __FILE__, __LINE__, __FUNCTION__, msg, param0, param1, param2)
} // namespace

View File

@ -1,8 +1,25 @@
#pragma once #pragma once
#if __STDC_VERSION__ >= 202000
using int8_t = _BitInt(8); using int8_t = _BitInt(8);
using uint8_t = unsigned _BitInt(8); using uint8_t = unsigned _BitInt(8);
using int32_t = _BitInt(32); using int32_t = _BitInt(32);
using uint32_t = unsigned _BitInt(32); using uint32_t = unsigned _BitInt(32);
using int64_t = _BitInt(64); using int64_t = _BitInt(64);
using uint64_t = unsigned _BitInt(64); using uint64_t = unsigned _BitInt(64);
#else
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wdeprecated-type"
using int8_t = _ExtInt(8);
using uint8_t = unsigned _ExtInt(8);
using int32_t = _ExtInt(32);
using uint32_t = unsigned _ExtInt(32);
using int64_t = _ExtInt(64);
using uint64_t = unsigned _ExtInt(64);
#pragma clang diagnostic pop
#endif
// The type of an index or a value describing the length of a range/slice is always `int32_t`.
using SliceIndex = int32_t;

View File

@ -1,19 +1,96 @@
#pragma once #pragma once
#include <irrt/int_types.hpp> #include "irrt/int_types.hpp"
#include <irrt/slice.hpp> #include "irrt/math_util.hpp"
#include "irrt/slice.hpp"
namespace namespace {
{
/** /**
* @brief A list in NAC3. * @brief A list in NAC3.
* *
* The `items` field is opaque. You must rely on external contexts to * The `items` field is opaque. You must rely on external contexts to
* know how to interpret it. * know how to interpret it.
*/ */
template <typename SizeT> struct List template<typename SizeT>
{ struct List {
uint8_t *items; uint8_t* items;
SizeT len; SizeT len;
}; };
} // namespace } // namespace
extern "C" {
// Handle list assignment and dropping part of the list when
// both dest_step and src_step are +1.
// - All the index must *not* be out-of-bound or negative,
// - The end index is *inclusive*,
// - The length of src and dest slice size should already
// be checked: if dest.step == 1 then len(src) <= len(dest) else len(src) == len(dest)
SliceIndex __nac3_list_slice_assign_var_size(SliceIndex dest_start,
SliceIndex dest_end,
SliceIndex dest_step,
void* dest_arr,
SliceIndex dest_arr_len,
SliceIndex src_start,
SliceIndex src_end,
SliceIndex src_step,
void* src_arr,
SliceIndex src_arr_len,
const SliceIndex size) {
/* if dest_arr_len == 0, do nothing since we do not support extending list */
if (dest_arr_len == 0)
return dest_arr_len;
/* if both step is 1, memmove directly, handle the dropping of the list, and shrink size */
if (src_step == dest_step && dest_step == 1) {
const SliceIndex src_len = (src_end >= src_start) ? (src_end - src_start + 1) : 0;
const SliceIndex dest_len = (dest_end >= dest_start) ? (dest_end - dest_start + 1) : 0;
if (src_len > 0) {
__builtin_memmove(static_cast<uint8_t*>(dest_arr) + dest_start * size,
static_cast<uint8_t*>(src_arr) + src_start * size, src_len * size);
}
if (dest_len > 0) {
/* dropping */
__builtin_memmove(static_cast<uint8_t*>(dest_arr) + (dest_start + src_len) * size,
static_cast<uint8_t*>(dest_arr) + (dest_end + 1) * size,
(dest_arr_len - dest_end - 1) * size);
}
/* shrink size */
return dest_arr_len - (dest_len - src_len);
}
/* if two range overlaps, need alloca */
uint8_t need_alloca = (dest_arr == src_arr)
&& !(max(dest_start, dest_end) < min(src_start, src_end)
|| max(src_start, src_end) < min(dest_start, dest_end));
if (need_alloca) {
void* tmp = __builtin_alloca(src_arr_len * size);
__builtin_memcpy(tmp, src_arr, src_arr_len * size);
src_arr = tmp;
}
SliceIndex src_ind = src_start;
SliceIndex dest_ind = dest_start;
for (; (src_step > 0) ? (src_ind <= src_end) : (src_ind >= src_end); src_ind += src_step, dest_ind += dest_step) {
/* for constant optimization */
if (size == 1) {
__builtin_memcpy(static_cast<uint8_t*>(dest_arr) + dest_ind, static_cast<uint8_t*>(src_arr) + src_ind, 1);
} else if (size == 4) {
__builtin_memcpy(static_cast<uint8_t*>(dest_arr) + dest_ind * 4,
static_cast<uint8_t*>(src_arr) + src_ind * 4, 4);
} else if (size == 8) {
__builtin_memcpy(static_cast<uint8_t*>(dest_arr) + dest_ind * 8,
static_cast<uint8_t*>(src_arr) + src_ind * 8, 8);
} else {
/* memcpy for var size, cannot overlap after previous alloca */
__builtin_memcpy(static_cast<uint8_t*>(dest_arr) + dest_ind * size,
static_cast<uint8_t*>(src_arr) + src_ind * size, size);
}
}
/* only dest_step == 1 can we shrink the dest list. */
/* size should be ensured prior to calling this function */
if (dest_step == 1 && dest_end >= dest_start) {
__builtin_memmove(static_cast<uint8_t*>(dest_arr) + dest_ind * size,
static_cast<uint8_t*>(dest_arr) + (dest_end + 1) * size,
(dest_arr_len - dest_end - 1) * size);
return dest_arr_len - (dest_end - dest_ind) - 1;
}
return dest_arr_len;
}
} // extern "C"

View File

@ -0,0 +1,95 @@
#pragma once
#include "irrt/int_types.hpp"
namespace {
// adapted from GNU Scientific Library: https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c
// need to make sure `exp >= 0` before calling this function
template<typename T>
T __nac3_int_exp_impl(T base, T exp) {
T res = 1;
/* repeated squaring method */
do {
if (exp & 1) {
res *= base; /* for n odd */
}
exp >>= 1;
base *= base;
} while (exp);
return res;
}
} // namespace
#define DEF_nac3_int_exp_(T) \
T __nac3_int_exp_##T(T base, T exp) { \
return __nac3_int_exp_impl(base, exp); \
}
extern "C" {
// Putting semicolons here to make clang-format not reformat this into
// a stair shape.
DEF_nac3_int_exp_(int32_t);
DEF_nac3_int_exp_(int64_t);
DEF_nac3_int_exp_(uint32_t);
DEF_nac3_int_exp_(uint64_t);
int32_t __nac3_isinf(double x) {
return __builtin_isinf(x);
}
int32_t __nac3_isnan(double x) {
return __builtin_isnan(x);
}
double tgamma(double arg);
double __nac3_gamma(double z) {
// Handling for denormals
// | x | Python gamma(x) | C tgamma(x) |
// --- | ----------------- | --------------- | ----------- |
// (1) | nan | nan | nan |
// (2) | -inf | -inf | inf |
// (3) | inf | inf | inf |
// (4) | 0.0 | inf | inf |
// (5) | {-1.0, -2.0, ...} | inf | nan |
// (1)-(3)
if (__builtin_isinf(z) || __builtin_isnan(z)) {
return z;
}
double v = tgamma(z);
// (4)-(5)
return __builtin_isinf(v) || __builtin_isnan(v) ? __builtin_inf() : v;
}
double lgamma(double arg);
double __nac3_gammaln(double x) {
// libm's handling of value overflows differs from scipy:
// - scipy: gammaln(-inf) -> -inf
// - libm : lgamma(-inf) -> inf
if (__builtin_isinf(x)) {
return x;
}
return lgamma(x);
}
double j0(double x);
double __nac3_j0(double x) {
// libm's handling of value overflows differs from scipy:
// - scipy: j0(inf) -> nan
// - libm : j0(inf) -> 0.0
if (__builtin_isinf(x)) {
return __builtin_nan("");
}
return j0(x);
}
} // namespace

View File

@ -1,14 +1,13 @@
#pragma once #pragma once
namespace namespace {
{ template<typename T>
template <typename T> const T &max(const T &a, const T &b) const T& max(const T& a, const T& b) {
{
return a > b ? a : b; return a > b ? a : b;
} }
template <typename T> const T &min(const T &a, const T &b) template<typename T>
{ const T& min(const T& a, const T& b) {
return a > b ? b : a; return a > b ? b : a;
} }
} // namespace } // namespace

View File

@ -1,38 +1,31 @@
#pragma once #pragma once
#include <irrt/debug.hpp> #include "irrt/debug.hpp"
#include <irrt/exception.hpp> #include "irrt/exception.hpp"
#include <irrt/int_types.hpp> #include "irrt/int_types.hpp"
#include <irrt/list.hpp> #include "irrt/list.hpp"
#include <irrt/ndarray/basic.hpp> #include "irrt/ndarray/basic.hpp"
#include <irrt/ndarray/def.hpp> #include "irrt/ndarray/def.hpp"
namespace namespace {
{ namespace ndarray::array {
namespace ndarray
{
namespace array
{
/** /**
* @brief In the context of `np.array(<list>)`, deduce the ndarray's shape produced by `<list>` and raise * @brief In the context of `np.array(<list>)`, deduce the ndarray's shape produced by `<list>` and raise
* an exception if there is anything wrong with `<shape>` (e.g., inconsistent dimensions `np.array([[1.0, 2.0], [3.0]])`) * an exception if there is anything wrong with `<shape>` (e.g., inconsistent dimensions `np.array([[1.0, 2.0],
* [3.0]])`)
* *
* If this function finds no issues with `<list>`, the deduced shape is written to `shape`. The caller has the responsibility to * If this function finds no issues with `<list>`, the deduced shape is written to `shape`. The caller has the
* allocate `[SizeT; ndims]` for `shape`. The caller must also initialize `shape` with `-1`s because of implementation details. * responsibility to allocate `[SizeT; ndims]` for `shape`. The caller must also initialize `shape` with `-1`s because
* of implementation details.
*/ */
template <typename SizeT> template<typename SizeT>
void set_and_validate_list_shape_helper(SizeT axis, List<SizeT> *list, SizeT ndims, SizeT *shape) void set_and_validate_list_shape_helper(SizeT axis, List<SizeT>* list, SizeT ndims, SizeT* shape) {
{ if (shape[axis] == -1) {
if (shape[axis] == -1)
{
// Dimension is unspecified. Set it. // Dimension is unspecified. Set it.
shape[axis] = list->len; shape[axis] = list->len;
} } else {
else
{
// Dimension is specified. Check. // Dimension is specified. Check.
if (shape[axis] != list->len) if (shape[axis] != list->len) {
{
// Mismatch, throw an error. // Mismatch, throw an error.
// NOTE: NumPy's error message is more complex and needs more PARAMS to display. // NOTE: NumPy's error message is more complex and needs more PARAMS to display.
raise_exception(SizeT, EXN_VALUE_ERROR, raise_exception(SizeT, EXN_VALUE_ERROR,
@ -42,17 +35,13 @@ void set_and_validate_list_shape_helper(SizeT axis, List<SizeT> *list, SizeT ndi
} }
} }
if (axis + 1 == ndims) if (axis + 1 == ndims) {
{
// `list` has type `list[ItemType]` // `list` has type `list[ItemType]`
// Do nothing // Do nothing
} } else {
else
{
// `list` has type `list[list[...]]` // `list` has type `list[list[...]]`
List<SizeT> **lists = (List<SizeT> **)(list->items); List<SizeT>** lists = (List<SizeT>**)(list->items);
for (SizeT i = 0; i < list->len; i++) for (SizeT i = 0; i < list->len; i++) {
{
set_and_validate_list_shape_helper<SizeT>(axis + 1, lists[i], ndims, shape); set_and_validate_list_shape_helper<SizeT>(axis + 1, lists[i], ndims, shape);
} }
} }
@ -61,11 +50,10 @@ void set_and_validate_list_shape_helper(SizeT axis, List<SizeT> *list, SizeT ndi
/** /**
* @brief See `set_and_validate_list_shape_helper`. * @brief See `set_and_validate_list_shape_helper`.
*/ */
template <typename SizeT> void set_and_validate_list_shape(List<SizeT> *list, SizeT ndims, SizeT *shape) template<typename SizeT>
{ void set_and_validate_list_shape(List<SizeT>* list, SizeT ndims, SizeT* shape) {
for (SizeT axis = 0; axis < ndims; axis++) for (SizeT axis = 0; axis < ndims; axis++) {
{ shape[axis] = -1; // Sentinel to say this dimension is unspecified.
shape[axis] = -1; // Sentinel to say this dimension is unspecified.
} }
set_and_validate_list_shape_helper<SizeT>(0, list, ndims, shape); set_and_validate_list_shape_helper<SizeT>(0, list, ndims, shape);
} }
@ -86,34 +74,27 @@ template <typename SizeT> void set_and_validate_list_shape(List<SizeT> *list, Si
* When this function call ends: * When this function call ends:
* - `ndarray->data` is written with contents from `<list>`. * - `ndarray->data` is written with contents from `<list>`.
*/ */
template <typename SizeT> template<typename SizeT>
void write_list_to_array_helper(SizeT axis, SizeT *index, List<SizeT> *list, NDArray<SizeT> *ndarray) void write_list_to_array_helper(SizeT axis, SizeT* index, List<SizeT>* list, NDArray<SizeT>* ndarray) {
{
debug_assert_eq(SizeT, list->len, ndarray->shape[axis]); debug_assert_eq(SizeT, list->len, ndarray->shape[axis]);
if (IRRT_DEBUG_ASSERT_BOOL) if (IRRT_DEBUG_ASSERT_BOOL) {
{ if (!ndarray::basic::is_c_contiguous(ndarray)) {
if (!ndarray::basic::is_c_contiguous(ndarray))
{
raise_debug_assert(SizeT, "ndarray is not C-contiguous", ndarray->strides[0], ndarray->strides[1], raise_debug_assert(SizeT, "ndarray is not C-contiguous", ndarray->strides[0], ndarray->strides[1],
NO_PARAM); NO_PARAM);
} }
} }
if (axis + 1 == ndarray->ndims) if (axis + 1 == ndarray->ndims) {
{
// `list` has type `list[scalar]` // `list` has type `list[scalar]`
// `ndarray` is contiguous, so we can do this, and this is fast. // `ndarray` is contiguous, so we can do this, and this is fast.
uint8_t *dst = ndarray->data + (ndarray->itemsize * (*index)); uint8_t* dst = static_cast<uint8_t*>(ndarray->data) + (ndarray->itemsize * (*index));
__builtin_memcpy(dst, list->items, ndarray->itemsize * list->len); __builtin_memcpy(dst, list->items, ndarray->itemsize * list->len);
*index += list->len; *index += list->len;
} } else {
else
{
// `list` has type `list[list[...]]` // `list` has type `list[list[...]]`
List<SizeT> **lists = (List<SizeT> **)(list->items); List<SizeT>** lists = (List<SizeT>**)(list->items);
for (SizeT i = 0; i < list->len; i++) for (SizeT i = 0; i < list->len; i++) {
{
write_list_to_array_helper<SizeT>(axis + 1, index, lists[i], ndarray); write_list_to_array_helper<SizeT>(axis + 1, index, lists[i], ndarray);
} }
} }
@ -122,36 +103,30 @@ void write_list_to_array_helper(SizeT axis, SizeT *index, List<SizeT> *list, NDA
/** /**
* @brief See `write_list_to_array_helper`. * @brief See `write_list_to_array_helper`.
*/ */
template <typename SizeT> void write_list_to_array(List<SizeT> *list, NDArray<SizeT> *ndarray) template<typename SizeT>
{ void write_list_to_array(List<SizeT>* list, NDArray<SizeT>* ndarray) {
SizeT index = 0; SizeT index = 0;
write_list_to_array_helper<SizeT>((SizeT)0, &index, list, ndarray); write_list_to_array_helper<SizeT>((SizeT)0, &index, list, ndarray);
} }
} // namespace array } // namespace ndarray::array
} // namespace ndarray } // namespace
} // namespace
extern "C" extern "C" {
{ using namespace ndarray::array;
using namespace ndarray::array;
void __nac3_ndarray_array_set_and_validate_list_shape(List<int32_t> *list, int32_t ndims, int32_t *shape) void __nac3_ndarray_array_set_and_validate_list_shape(List<int32_t>* list, int32_t ndims, int32_t* shape) {
{ set_and_validate_list_shape(list, ndims, shape);
set_and_validate_list_shape(list, ndims, shape); }
}
void __nac3_ndarray_array_set_and_validate_list_shape64(List<int64_t>* list, int64_t ndims, int64_t* shape) {
void __nac3_ndarray_array_set_and_validate_list_shape64(List<int64_t> *list, int64_t ndims, int64_t *shape) set_and_validate_list_shape(list, ndims, shape);
{ }
set_and_validate_list_shape(list, ndims, shape);
} void __nac3_ndarray_array_write_list_to_array(List<int32_t>* list, NDArray<int32_t>* ndarray) {
write_list_to_array(list, ndarray);
void __nac3_ndarray_array_write_list_to_array(List<int32_t> *list, NDArray<int32_t> *ndarray) }
{
write_list_to_array(list, ndarray); void __nac3_ndarray_array_write_list_to_array64(List<int64_t>* list, NDArray<int64_t>* ndarray) {
} write_list_to_array(list, ndarray);
}
void __nac3_ndarray_array_write_list_to_array64(List<int64_t> *list, NDArray<int64_t> *ndarray)
{
write_list_to_array(list, ndarray);
}
} }

View File

@ -1,28 +1,22 @@
#pragma once #pragma once
#include <irrt/debug.hpp> #include "irrt/debug.hpp"
#include <irrt/exception.hpp> #include "irrt/exception.hpp"
#include <irrt/int_types.hpp> #include "irrt/int_types.hpp"
#include <irrt/ndarray/def.hpp> #include "irrt/ndarray/def.hpp"
namespace namespace {
{ namespace ndarray::basic {
namespace ndarray
{
namespace basic
{
/** /**
* @brief Assert that `shape` does not contain negative dimensions. * @brief Assert that `shape` does not contain negative dimensions.
* *
* @param ndims Number of dimensions in `shape` * @param ndims Number of dimensions in `shape`
* @param shape The shape to check on * @param shape The shape to check on
*/ */
template <typename SizeT> void assert_shape_no_negative(SizeT ndims, const SizeT *shape) template<typename SizeT>
{ void assert_shape_no_negative(SizeT ndims, const SizeT* shape) {
for (SizeT axis = 0; axis < ndims; axis++) for (SizeT axis = 0; axis < ndims; axis++) {
{ if (shape[axis] < 0) {
if (shape[axis] < 0)
{
raise_exception(SizeT, EXN_VALUE_ERROR, raise_exception(SizeT, EXN_VALUE_ERROR,
"negative dimensions are not allowed; axis {0} " "negative dimensions are not allowed; axis {0} "
"has dimension {1}", "has dimension {1}",
@ -34,21 +28,19 @@ template <typename SizeT> void assert_shape_no_negative(SizeT ndims, const SizeT
/** /**
* @brief Assert that two shapes are the same in the context of writing output to an ndarray. * @brief Assert that two shapes are the same in the context of writing output to an ndarray.
*/ */
template <typename SizeT> template<typename SizeT>
void assert_output_shape_same(SizeT ndarray_ndims, const SizeT *ndarray_shape, SizeT output_ndims, void assert_output_shape_same(SizeT ndarray_ndims,
const SizeT *output_shape) const SizeT* ndarray_shape,
{ SizeT output_ndims,
if (ndarray_ndims != output_ndims) const SizeT* output_shape) {
{ if (ndarray_ndims != output_ndims) {
// There is no corresponding NumPy error message like this. // There is no corresponding NumPy error message like this.
raise_exception(SizeT, EXN_VALUE_ERROR, "Cannot write output of ndims {0} to an ndarray with ndims {1}", raise_exception(SizeT, EXN_VALUE_ERROR, "Cannot write output of ndims {0} to an ndarray with ndims {1}",
output_ndims, ndarray_ndims, NO_PARAM); output_ndims, ndarray_ndims, NO_PARAM);
} }
for (SizeT axis = 0; axis < ndarray_ndims; axis++) for (SizeT axis = 0; axis < ndarray_ndims; axis++) {
{ if (ndarray_shape[axis] != output_shape[axis]) {
if (ndarray_shape[axis] != output_shape[axis])
{
// There is no corresponding NumPy error message like this. // There is no corresponding NumPy error message like this.
raise_exception(SizeT, EXN_VALUE_ERROR, raise_exception(SizeT, EXN_VALUE_ERROR,
"Mismatched dimensions on axis {0}, output has " "Mismatched dimensions on axis {0}, output has "
@ -64,8 +56,8 @@ void assert_output_shape_same(SizeT ndarray_ndims, const SizeT *ndarray_shape, S
* @param ndims Number of dimensions in `shape` * @param ndims Number of dimensions in `shape`
* @param shape The shape of the ndarray * @param shape The shape of the ndarray
*/ */
template <typename SizeT> SizeT calc_size_from_shape(SizeT ndims, const SizeT *shape) template<typename SizeT>
{ SizeT calc_size_from_shape(SizeT ndims, const SizeT* shape) {
SizeT size = 1; SizeT size = 1;
for (SizeT axis = 0; axis < ndims; axis++) for (SizeT axis = 0; axis < ndims; axis++)
size *= shape[axis]; size *= shape[axis];
@ -80,10 +72,9 @@ template <typename SizeT> SizeT calc_size_from_shape(SizeT ndims, const SizeT *s
* @param indices The returned indices indexing the ndarray with shape `shape`. * @param indices The returned indices indexing the ndarray with shape `shape`.
* @param nth The index of the element of interest. * @param nth The index of the element of interest.
*/ */
template <typename SizeT> void set_indices_by_nth(SizeT ndims, const SizeT *shape, SizeT *indices, SizeT nth) template<typename SizeT>
{ void set_indices_by_nth(SizeT ndims, const SizeT* shape, SizeT* indices, SizeT nth) {
for (SizeT i = 0; i < ndims; i++) for (SizeT i = 0; i < ndims; i++) {
{
SizeT axis = ndims - i - 1; SizeT axis = ndims - i - 1;
SizeT dim = shape[axis]; SizeT dim = shape[axis];
@ -97,8 +88,8 @@ template <typename SizeT> void set_indices_by_nth(SizeT ndims, const SizeT *shap
* *
* This function corresponds to `<an_ndarray>.size` * This function corresponds to `<an_ndarray>.size`
*/ */
template <typename SizeT> SizeT size(const NDArray<SizeT> *ndarray) template<typename SizeT>
{ SizeT size(const NDArray<SizeT>* ndarray) {
return calc_size_from_shape(ndarray->ndims, ndarray->shape); return calc_size_from_shape(ndarray->ndims, ndarray->shape);
} }
@ -107,8 +98,8 @@ template <typename SizeT> SizeT size(const NDArray<SizeT> *ndarray)
* *
* This function corresponds to `<an_ndarray>.nbytes`. * This function corresponds to `<an_ndarray>.nbytes`.
*/ */
template <typename SizeT> SizeT nbytes(const NDArray<SizeT> *ndarray) template<typename SizeT>
{ SizeT nbytes(const NDArray<SizeT>* ndarray) {
return size(ndarray) * ndarray->itemsize; return size(ndarray) * ndarray->itemsize;
} }
@ -119,32 +110,35 @@ template <typename SizeT> SizeT nbytes(const NDArray<SizeT> *ndarray)
* *
* @param dst_length The length. * @param dst_length The length.
*/ */
template <typename SizeT> SizeT len(const NDArray<SizeT> *ndarray) template<typename SizeT>
{ SizeT len(const NDArray<SizeT>* ndarray) {
// numpy prohibits `__len__` on unsized objects if (ndarray->ndims != 0) {
if (ndarray->ndims == 0)
{
raise_exception(SizeT, EXN_TYPE_ERROR, "len() of unsized object", NO_PARAM, NO_PARAM, NO_PARAM);
}
else
{
return ndarray->shape[0]; return ndarray->shape[0];
} }
// numpy prohibits `__len__` on unsized objects
raise_exception(SizeT, EXN_TYPE_ERROR, "len() of unsized object", NO_PARAM, NO_PARAM, NO_PARAM);
__builtin_unreachable();
} }
/** /**
* @brief Return a boolean indicating if `ndarray` is (C-)contiguous. * @brief Return a boolean indicating if `ndarray` is (C-)contiguous.
* *
* You may want to see ndarray's rules for C-contiguity: https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45 * You may want to see ndarray's rules for C-contiguity:
* https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45
*/ */
template <typename SizeT> bool is_c_contiguous(const NDArray<SizeT> *ndarray) template<typename SizeT>
{ bool is_c_contiguous(const NDArray<SizeT>* ndarray) {
// References: // References:
// - tinynumpy's implementation: https://github.com/wadetb/tinynumpy/blob/0d23d22e07062ffab2afa287374c7b366eebdda1/tinynumpy/tinynumpy.py#L102 // - tinynumpy's implementation:
// - ndarray's flags["C_CONTIGUOUS"]: https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flags.html#numpy.ndarray.flags // https://github.com/wadetb/tinynumpy/blob/0d23d22e07062ffab2afa287374c7b366eebdda1/tinynumpy/tinynumpy.py#L102
// - ndarray's rules for C-contiguity: https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45 // - ndarray's flags["C_CONTIGUOUS"]:
// https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flags.html#numpy.ndarray.flags
// - ndarray's rules for C-contiguity:
// https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45
// From https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45: // From
// https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45:
// //
// The traditional rule is that for an array to be flagged as C contiguous, // The traditional rule is that for an array to be flagged as C contiguous,
// the following must hold: // the following must hold:
@ -160,21 +154,17 @@ template <typename SizeT> bool is_c_contiguous(const NDArray<SizeT> *ndarray)
// with shape[i] == 0. In the second case `strides == itemsize` will // with shape[i] == 0. In the second case `strides == itemsize` will
// can be true for all dimensions and both flags are set. // can be true for all dimensions and both flags are set.
if (ndarray->ndims == 0) if (ndarray->ndims == 0) {
{
return true; return true;
} }
if (ndarray->strides[ndarray->ndims - 1] != ndarray->itemsize) if (ndarray->strides[ndarray->ndims - 1] != ndarray->itemsize) {
{
return false; return false;
} }
for (SizeT i = 1; i < ndarray->ndims; i++) for (SizeT i = 1; i < ndarray->ndims; i++) {
{
SizeT axis_i = ndarray->ndims - i - 1; SizeT axis_i = ndarray->ndims - i - 1;
if (ndarray->strides[axis_i] != ndarray->shape[axis_i + 1] * ndarray->strides[axis_i + 1]) if (ndarray->strides[axis_i] != ndarray->shape[axis_i + 1] * ndarray->strides[axis_i + 1]) {
{
return false; return false;
} }
} }
@ -187,11 +177,11 @@ template <typename SizeT> bool is_c_contiguous(const NDArray<SizeT> *ndarray)
* *
* This function does no bound check. * This function does no bound check.
*/ */
template <typename SizeT> uint8_t *get_pelement_by_indices(const NDArray<SizeT> *ndarray, const SizeT *indices) template<typename SizeT>
{ void* get_pelement_by_indices(const NDArray<SizeT>* ndarray, const SizeT* indices) {
uint8_t *element = ndarray->data; void* element = ndarray->data;
for (SizeT dim_i = 0; dim_i < ndarray->ndims; dim_i++) for (SizeT dim_i = 0; dim_i < ndarray->ndims; dim_i++)
element += indices[dim_i] * ndarray->strides[dim_i]; element = static_cast<uint8_t*>(element) + indices[dim_i] * ndarray->strides[dim_i];
return element; return element;
} }
@ -200,14 +190,13 @@ template <typename SizeT> uint8_t *get_pelement_by_indices(const NDArray<SizeT>
* *
* This function does no bound check. * This function does no bound check.
*/ */
template <typename SizeT> uint8_t *get_nth_pelement(const NDArray<SizeT> *ndarray, SizeT nth) template<typename SizeT>
{ void* get_nth_pelement(const NDArray<SizeT>* ndarray, SizeT nth) {
uint8_t *element = ndarray->data; void* element = ndarray->data;
for (SizeT i = 0; i < ndarray->ndims; i++) for (SizeT i = 0; i < ndarray->ndims; i++) {
{
SizeT axis = ndarray->ndims - i - 1; SizeT axis = ndarray->ndims - i - 1;
SizeT dim = ndarray->shape[axis]; SizeT dim = ndarray->shape[axis];
element += ndarray->strides[axis] * (nth % dim); element = static_cast<uint8_t*>(element) + ndarray->strides[axis] * (nth % dim);
nth /= dim; nth /= dim;
} }
return element; return element;
@ -218,11 +207,10 @@ template <typename SizeT> uint8_t *get_nth_pelement(const NDArray<SizeT> *ndarra
* *
* You might want to read https://ajcr.net/stride-guide-part-1/. * You might want to read https://ajcr.net/stride-guide-part-1/.
*/ */
template <typename SizeT> void set_strides_by_shape(NDArray<SizeT> *ndarray) template<typename SizeT>
{ void set_strides_by_shape(NDArray<SizeT>* ndarray) {
SizeT stride_product = 1; SizeT stride_product = 1;
for (SizeT i = 0; i < ndarray->ndims; i++) for (SizeT i = 0; i < ndarray->ndims; i++) {
{
SizeT axis = ndarray->ndims - i - 1; SizeT axis = ndarray->ndims - i - 1;
ndarray->strides[axis] = stride_product * ndarray->itemsize; ndarray->strides[axis] = stride_product * ndarray->itemsize;
stride_product *= ndarray->shape[axis]; stride_product *= ndarray->shape[axis];
@ -235,8 +223,8 @@ template <typename SizeT> void set_strides_by_shape(NDArray<SizeT> *ndarray)
* @param pelement Pointer to the element in `ndarray` to be set. * @param pelement Pointer to the element in `ndarray` to be set.
* @param pvalue Pointer to the value `pelement` will be set to. * @param pvalue Pointer to the value `pelement` will be set to.
*/ */
template <typename SizeT> void set_pelement_value(NDArray<SizeT> *ndarray, uint8_t *pelement, const uint8_t *pvalue) template<typename SizeT>
{ void set_pelement_value(NDArray<SizeT>* ndarray, void* pelement, const void* pvalue) {
__builtin_memcpy(pelement, pvalue, ndarray->itemsize); __builtin_memcpy(pelement, pvalue, ndarray->itemsize);
} }
@ -245,127 +233,108 @@ template <typename SizeT> void set_pelement_value(NDArray<SizeT> *ndarray, uint8
* *
* Both ndarrays will be viewed in their flatten views when copying the elements. * Both ndarrays will be viewed in their flatten views when copying the elements.
*/ */
template <typename SizeT> void copy_data(const NDArray<SizeT> *src_ndarray, NDArray<SizeT> *dst_ndarray) template<typename SizeT>
{ void copy_data(const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray) {
// TODO: Make this faster with memcpy when we see a contiguous segment. // TODO: Make this faster with memcpy when we see a contiguous segment.
// TODO: Handle overlapping. // TODO: Handle overlapping.
debug_assert_eq(SizeT, src_ndarray->itemsize, dst_ndarray->itemsize); debug_assert_eq(SizeT, src_ndarray->itemsize, dst_ndarray->itemsize);
for (SizeT i = 0; i < size(src_ndarray); i++) for (SizeT i = 0; i < size(src_ndarray); i++) {
{
auto src_element = ndarray::basic::get_nth_pelement(src_ndarray, i); auto src_element = ndarray::basic::get_nth_pelement(src_ndarray, i);
auto dst_element = ndarray::basic::get_nth_pelement(dst_ndarray, i); auto dst_element = ndarray::basic::get_nth_pelement(dst_ndarray, i);
ndarray::basic::set_pelement_value(dst_ndarray, dst_element, src_element); ndarray::basic::set_pelement_value(dst_ndarray, dst_element, src_element);
} }
} }
} // namespace basic } // namespace ndarray::basic
} // namespace ndarray } // namespace
} // namespace
extern "C" extern "C" {
{ using namespace ndarray::basic;
using namespace ndarray::basic;
void __nac3_ndarray_util_assert_shape_no_negative(int32_t ndims, int32_t *shape) void __nac3_ndarray_util_assert_shape_no_negative(int32_t ndims, int32_t* shape) {
{ assert_shape_no_negative(ndims, shape);
assert_shape_no_negative(ndims, shape); }
}
void __nac3_ndarray_util_assert_shape_no_negative64(int64_t ndims, int64_t* shape) {
void __nac3_ndarray_util_assert_shape_no_negative64(int64_t ndims, int64_t *shape) assert_shape_no_negative(ndims, shape);
{ }
assert_shape_no_negative(ndims, shape);
} void __nac3_ndarray_util_assert_output_shape_same(int32_t ndarray_ndims,
const int32_t* ndarray_shape,
void __nac3_ndarray_util_assert_output_shape_same(int32_t ndarray_ndims, const int32_t *ndarray_shape, int32_t output_ndims,
int32_t output_ndims, const int32_t *output_shape) const int32_t* output_shape) {
{ assert_output_shape_same(ndarray_ndims, ndarray_shape, output_ndims, output_shape);
assert_output_shape_same(ndarray_ndims, ndarray_shape, output_ndims, output_shape); }
}
void __nac3_ndarray_util_assert_output_shape_same64(int64_t ndarray_ndims,
void __nac3_ndarray_util_assert_output_shape_same64(int64_t ndarray_ndims, const int64_t *ndarray_shape, const int64_t* ndarray_shape,
int64_t output_ndims, const int64_t *output_shape) int64_t output_ndims,
{ const int64_t* output_shape) {
assert_output_shape_same(ndarray_ndims, ndarray_shape, output_ndims, output_shape); assert_output_shape_same(ndarray_ndims, ndarray_shape, output_ndims, output_shape);
} }
uint32_t __nac3_ndarray_size(NDArray<int32_t> *ndarray) uint32_t __nac3_ndarray_size(NDArray<int32_t>* ndarray) {
{ return size(ndarray);
return size(ndarray); }
}
uint64_t __nac3_ndarray_size64(NDArray<int64_t>* ndarray) {
uint64_t __nac3_ndarray_size64(NDArray<int64_t> *ndarray) return size(ndarray);
{ }
return size(ndarray);
} uint32_t __nac3_ndarray_nbytes(NDArray<int32_t>* ndarray) {
return nbytes(ndarray);
uint32_t __nac3_ndarray_nbytes(NDArray<int32_t> *ndarray) }
{
return nbytes(ndarray); uint64_t __nac3_ndarray_nbytes64(NDArray<int64_t>* ndarray) {
} return nbytes(ndarray);
}
uint64_t __nac3_ndarray_nbytes64(NDArray<int64_t> *ndarray)
{ int32_t __nac3_ndarray_len(NDArray<int32_t>* ndarray) {
return nbytes(ndarray); return len(ndarray);
} }
int32_t __nac3_ndarray_len(NDArray<int32_t> *ndarray) int64_t __nac3_ndarray_len64(NDArray<int64_t>* ndarray) {
{ return len(ndarray);
return len(ndarray); }
}
bool __nac3_ndarray_is_c_contiguous(NDArray<int32_t>* ndarray) {
int64_t __nac3_ndarray_len64(NDArray<int64_t> *ndarray) return is_c_contiguous(ndarray);
{ }
return len(ndarray);
} bool __nac3_ndarray_is_c_contiguous64(NDArray<int64_t>* ndarray) {
return is_c_contiguous(ndarray);
bool __nac3_ndarray_is_c_contiguous(NDArray<int32_t> *ndarray) }
{
return is_c_contiguous(ndarray); void* __nac3_ndarray_get_nth_pelement(const NDArray<int32_t>* ndarray, int32_t nth) {
} return get_nth_pelement(ndarray, nth);
}
bool __nac3_ndarray_is_c_contiguous64(NDArray<int64_t> *ndarray)
{ void* __nac3_ndarray_get_nth_pelement64(const NDArray<int64_t>* ndarray, int64_t nth) {
return is_c_contiguous(ndarray); return get_nth_pelement(ndarray, nth);
} }
uint8_t *__nac3_ndarray_get_nth_pelement(const NDArray<int32_t> *ndarray, int32_t nth) void* __nac3_ndarray_get_pelement_by_indices(const NDArray<int32_t>* ndarray, int32_t* indices) {
{ return get_pelement_by_indices(ndarray, indices);
return get_nth_pelement(ndarray, nth); }
}
void* __nac3_ndarray_get_pelement_by_indices64(const NDArray<int64_t>* ndarray, int64_t* indices) {
uint8_t *__nac3_ndarray_get_nth_pelement64(const NDArray<int64_t> *ndarray, int64_t nth) return get_pelement_by_indices(ndarray, indices);
{ }
return get_nth_pelement(ndarray, nth);
} void __nac3_ndarray_set_strides_by_shape(NDArray<int32_t>* ndarray) {
set_strides_by_shape(ndarray);
uint8_t *__nac3_ndarray_get_pelement_by_indices(const NDArray<int32_t> *ndarray, int32_t *indices) }
{
return get_pelement_by_indices(ndarray, indices); void __nac3_ndarray_set_strides_by_shape64(NDArray<int64_t>* ndarray) {
} set_strides_by_shape(ndarray);
}
uint8_t *__nac3_ndarray_get_pelement_by_indices64(const NDArray<int64_t> *ndarray, int64_t *indices)
{ void __nac3_ndarray_copy_data(NDArray<int32_t>* src_ndarray, NDArray<int32_t>* dst_ndarray) {
return get_pelement_by_indices(ndarray, indices); copy_data(src_ndarray, dst_ndarray);
} }
void __nac3_ndarray_set_strides_by_shape(NDArray<int32_t> *ndarray) void __nac3_ndarray_copy_data64(NDArray<int64_t>* src_ndarray, NDArray<int64_t>* dst_ndarray) {
{ copy_data(src_ndarray, dst_ndarray);
set_strides_by_shape(ndarray); }
}
void __nac3_ndarray_set_strides_by_shape64(NDArray<int64_t> *ndarray)
{
set_strides_by_shape(ndarray);
}
void __nac3_ndarray_copy_data(NDArray<int32_t> *src_ndarray, NDArray<int32_t> *dst_ndarray)
{
copy_data(src_ndarray, dst_ndarray);
}
void __nac3_ndarray_copy_data64(NDArray<int64_t> *src_ndarray, NDArray<int64_t> *dst_ndarray)
{
copy_data(src_ndarray, dst_ndarray);
}
} }

View File

@ -1,43 +1,34 @@
#pragma once #pragma once
#include <irrt/int_types.hpp> #include "irrt/int_types.hpp"
#include <irrt/ndarray/def.hpp> #include "irrt/ndarray/def.hpp"
#include <irrt/slice.hpp> #include "irrt/slice.hpp"
namespace namespace {
{ template<typename SizeT>
template <typename SizeT> struct ShapeEntry struct ShapeEntry {
{
SizeT ndims; SizeT ndims;
SizeT *shape; SizeT* shape;
}; };
} // namespace } // namespace
namespace namespace {
{ namespace ndarray::broadcast {
namespace ndarray
{
namespace broadcast
{
/** /**
* @brief Return true if `src_shape` can broadcast to `dst_shape`. * @brief Return true if `src_shape` can broadcast to `dst_shape`.
* *
* See https://numpy.org/doc/stable/user/basics.broadcasting.html * See https://numpy.org/doc/stable/user/basics.broadcasting.html
*/ */
template <typename SizeT> template<typename SizeT>
bool can_broadcast_shape_to(SizeT target_ndims, const SizeT *target_shape, SizeT src_ndims, const SizeT *src_shape) bool can_broadcast_shape_to(SizeT target_ndims, const SizeT* target_shape, SizeT src_ndims, const SizeT* src_shape) {
{ if (src_ndims > target_ndims) {
if (src_ndims > target_ndims)
{
return false; return false;
} }
for (SizeT i = 0; i < src_ndims; i++) for (SizeT i = 0; i < src_ndims; i++) {
{
SizeT target_dim = target_shape[target_ndims - i - 1]; SizeT target_dim = target_shape[target_ndims - i - 1];
SizeT src_dim = src_shape[src_ndims - i - 1]; SizeT src_dim = src_shape[src_ndims - i - 1];
if (!(src_dim == 1 || target_dim == src_dim)) if (!(src_dim == 1 || target_dim == src_dim)) {
{
return false; return false;
} }
} }
@ -55,11 +46,9 @@ bool can_broadcast_shape_to(SizeT target_ndims, const SizeT *target_shape, SizeT
* @param dst_shape The resulting shape. Must be pre-allocated by the caller. This function calculate the result * @param dst_shape The resulting shape. Must be pre-allocated by the caller. This function calculate the result
* of `np.broadcast_shapes` and write it here. * of `np.broadcast_shapes` and write it here.
*/ */
template <typename SizeT> template<typename SizeT>
void broadcast_shapes(SizeT num_shapes, const ShapeEntry<SizeT> *shapes, SizeT dst_ndims, SizeT *dst_shape) void broadcast_shapes(SizeT num_shapes, const ShapeEntry<SizeT>* shapes, SizeT dst_ndims, SizeT* dst_shape) {
{ for (SizeT dst_axis = 0; dst_axis < dst_ndims; dst_axis++) {
for (SizeT dst_axis = 0; dst_axis < dst_ndims; dst_axis++)
{
dst_shape[dst_axis] = 1; dst_shape[dst_axis] = 1;
} }
@ -67,8 +56,7 @@ void broadcast_shapes(SizeT num_shapes, const ShapeEntry<SizeT> *shapes, SizeT d
SizeT max_ndims_found = 0; SizeT max_ndims_found = 0;
#endif #endif
for (SizeT i = 0; i < num_shapes; i++) for (SizeT i = 0; i < num_shapes; i++) {
{
ShapeEntry<SizeT> entry = shapes[i]; ShapeEntry<SizeT> entry = shapes[i];
// Check pre-condition: `dst_ndims` must be `max([shape.ndims for shape in shapes])` // Check pre-condition: `dst_ndims` must be `max([shape.ndims for shape in shapes])`
@ -78,24 +66,18 @@ void broadcast_shapes(SizeT num_shapes, const ShapeEntry<SizeT> *shapes, SizeT d
max_ndims_found = max(max_ndims_found, entry.ndims); max_ndims_found = max(max_ndims_found, entry.ndims);
#endif #endif
for (SizeT j = 0; j < entry.ndims; j++) for (SizeT j = 0; j < entry.ndims; j++) {
{
SizeT entry_axis = entry.ndims - j - 1; SizeT entry_axis = entry.ndims - j - 1;
SizeT dst_axis = dst_ndims - j - 1; SizeT dst_axis = dst_ndims - j - 1;
SizeT entry_dim = entry.shape[entry_axis]; SizeT entry_dim = entry.shape[entry_axis];
SizeT dst_dim = dst_shape[dst_axis]; SizeT dst_dim = dst_shape[dst_axis];
if (dst_dim == 1) if (dst_dim == 1) {
{
dst_shape[dst_axis] = entry_dim; dst_shape[dst_axis] = entry_dim;
} } else if (entry_dim == 1 || entry_dim == dst_dim) {
else if (entry_dim == 1 || entry_dim == dst_dim)
{
// Do nothing // Do nothing
} } else {
else
{
raise_exception(SizeT, EXN_VALUE_ERROR, raise_exception(SizeT, EXN_VALUE_ERROR,
"shape mismatch: objects cannot be broadcast " "shape mismatch: objects cannot be broadcast "
"to a single shape.", "to a single shape.",
@ -104,8 +86,10 @@ void broadcast_shapes(SizeT num_shapes, const ShapeEntry<SizeT> *shapes, SizeT d
} }
} }
#ifdef IRRT_DEBUG_ASSERT
// Check pre-condition: `dst_ndims` must be `max([shape.ndims for shape in shapes])` // Check pre-condition: `dst_ndims` must be `max([shape.ndims for shape in shapes])`
debug_assert_eq(SizeT, max_ndims_found, dst_ndims); debug_assert_eq(SizeT, max_ndims_found, dst_ndims);
#endif
} }
/** /**
@ -129,11 +113,10 @@ void broadcast_shapes(SizeT num_shapes, const ShapeEntry<SizeT> *shapes, SizeT d
* - `dst_ndarray->shape` is unchanged. * - `dst_ndarray->shape` is unchanged.
* - `dst_ndarray->strides` is updated accordingly by how ndarray broadcast_to works. * - `dst_ndarray->strides` is updated accordingly by how ndarray broadcast_to works.
*/ */
template <typename SizeT> void broadcast_to(const NDArray<SizeT> *src_ndarray, NDArray<SizeT> *dst_ndarray) template<typename SizeT>
{ void broadcast_to(const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray) {
if (!ndarray::broadcast::can_broadcast_shape_to(dst_ndarray->ndims, dst_ndarray->shape, src_ndarray->ndims, if (!ndarray::broadcast::can_broadcast_shape_to(dst_ndarray->ndims, dst_ndarray->shape, src_ndarray->ndims,
src_ndarray->shape)) src_ndarray->shape)) {
{
raise_exception(SizeT, EXN_VALUE_ERROR, "operands could not be broadcast together", NO_PARAM, NO_PARAM, raise_exception(SizeT, EXN_VALUE_ERROR, "operands could not be broadcast together", NO_PARAM, NO_PARAM,
NO_PARAM); NO_PARAM);
} }
@ -141,48 +124,42 @@ template <typename SizeT> void broadcast_to(const NDArray<SizeT> *src_ndarray, N
dst_ndarray->data = src_ndarray->data; dst_ndarray->data = src_ndarray->data;
dst_ndarray->itemsize = src_ndarray->itemsize; dst_ndarray->itemsize = src_ndarray->itemsize;
for (SizeT i = 0; i < dst_ndarray->ndims; i++) for (SizeT i = 0; i < dst_ndarray->ndims; i++) {
{
SizeT src_axis = src_ndarray->ndims - i - 1; SizeT src_axis = src_ndarray->ndims - i - 1;
SizeT dst_axis = dst_ndarray->ndims - i - 1; SizeT dst_axis = dst_ndarray->ndims - i - 1;
if (src_axis < 0 || (src_ndarray->shape[src_axis] == 1 && dst_ndarray->shape[dst_axis] != 1)) if (src_axis < 0 || (src_ndarray->shape[src_axis] == 1 && dst_ndarray->shape[dst_axis] != 1)) {
{
// Freeze the steps in-place // Freeze the steps in-place
dst_ndarray->strides[dst_axis] = 0; dst_ndarray->strides[dst_axis] = 0;
} } else {
else
{
dst_ndarray->strides[dst_axis] = src_ndarray->strides[src_axis]; dst_ndarray->strides[dst_axis] = src_ndarray->strides[src_axis];
} }
} }
} }
} // namespace broadcast } // namespace ndarray::broadcast
} // namespace ndarray } // namespace
} // namespace
extern "C" extern "C" {
{ using namespace ndarray::broadcast;
using namespace ndarray::broadcast;
void __nac3_ndarray_broadcast_to(NDArray<int32_t> *src_ndarray, NDArray<int32_t> *dst_ndarray) void __nac3_ndarray_broadcast_to(NDArray<int32_t>* src_ndarray, NDArray<int32_t>* dst_ndarray) {
{ broadcast_to(src_ndarray, dst_ndarray);
broadcast_to(src_ndarray, dst_ndarray); }
}
void __nac3_ndarray_broadcast_to64(NDArray<int64_t>* src_ndarray, NDArray<int64_t>* dst_ndarray) {
void __nac3_ndarray_broadcast_to64(NDArray<int64_t> *src_ndarray, NDArray<int64_t> *dst_ndarray) broadcast_to(src_ndarray, dst_ndarray);
{ }
broadcast_to(src_ndarray, dst_ndarray);
} void __nac3_ndarray_broadcast_shapes(int32_t num_shapes,
const ShapeEntry<int32_t>* shapes,
void __nac3_ndarray_broadcast_shapes(int32_t num_shapes, const ShapeEntry<int32_t> *shapes, int32_t dst_ndims, int32_t dst_ndims,
int32_t *dst_shape) int32_t* dst_shape) {
{ broadcast_shapes(num_shapes, shapes, dst_ndims, dst_shape);
broadcast_shapes(num_shapes, shapes, dst_ndims, dst_shape); }
}
void __nac3_ndarray_broadcast_shapes64(int64_t num_shapes,
void __nac3_ndarray_broadcast_shapes64(int64_t num_shapes, const ShapeEntry<int64_t> *shapes, int64_t dst_ndims, const ShapeEntry<int64_t>* shapes,
int64_t *dst_shape) int64_t dst_ndims,
{ int64_t* dst_shape) {
broadcast_shapes(num_shapes, shapes, dst_ndims, dst_shape); broadcast_shapes(num_shapes, shapes, dst_ndims, dst_shape);
} }
} }

View File

@ -1,21 +1,22 @@
#pragma once #pragma once
#include <irrt/int_types.hpp> #include "irrt/int_types.hpp"
namespace namespace {
{
/** /**
* @brief The NDArray object * @brief The NDArray object
* *
* Official numpy implementation: https://github.com/numpy/numpy/blob/735a477f0bc2b5b84d0e72d92f224bde78d4e069/doc/source/reference/c-api/types-and-structures.rst * Official numpy implementation:
* https://github.com/numpy/numpy/blob/735a477f0bc2b5b84d0e72d92f224bde78d4e069/doc/source/reference/c-api/types-and-structures.rst#pyarrayinterface
*
* Note that this implementation is based on `PyArrayInterface` rather of `PyArrayObject`. The
* difference between `PyArrayInterface` and `PyArrayObject` (relevant to our implementation) is
* that `PyArrayInterface` *has* `itemsize` and uses `void*` for its `data`, whereas `PyArrayObject`
* does not require `itemsize` (probably using `strides[-1]` instead) and uses `char*` for its
* `data`. There are also minor differences in the struct layout.
*/ */
template <typename SizeT> struct NDArray template<typename SizeT>
{ struct NDArray {
/**
* @brief The underlying data this `ndarray` is pointing to.
*/
uint8_t *data;
/** /**
* @brief The number of bytes of a single element in `data`. * @brief The number of bytes of a single element in `data`.
*/ */
@ -31,7 +32,7 @@ template <typename SizeT> struct NDArray
* *
* Note that it may contain 0. * Note that it may contain 0.
*/ */
SizeT *shape; SizeT* shape;
/** /**
* @brief Array strides, with length equal to `ndims` * @brief Array strides, with length equal to `ndims`
@ -40,6 +41,11 @@ template <typename SizeT> struct NDArray
* *
* Note that `strides` can have negative values or contain 0. * Note that `strides` can have negative values or contain 0.
*/ */
SizeT *strides; SizeT* strides;
/**
* @brief The underlying data this `ndarray` is pointing to.
*/
void* data;
}; };
} // namespace } // namespace

View File

@ -1,14 +1,13 @@
#pragma once #pragma once
#include <irrt/exception.hpp> #include "irrt/exception.hpp"
#include <irrt/int_types.hpp> #include "irrt/int_types.hpp"
#include <irrt/ndarray/basic.hpp> #include "irrt/ndarray/basic.hpp"
#include <irrt/ndarray/def.hpp> #include "irrt/ndarray/def.hpp"
#include <irrt/range.hpp> #include "irrt/range.hpp"
#include <irrt/slice.hpp> #include "irrt/slice.hpp"
namespace namespace {
{
typedef uint8_t NDIndexType; typedef uint8_t NDIndexType;
/** /**
@ -48,8 +47,7 @@ const NDIndexType ND_INDEX_TYPE_ELLIPSIS = 3;
* ^^^^ ^ ^^^ ^^^^^^^^^^ each of these is represented by an NDIndex. * ^^^^ ^ ^^^ ^^^^^^^^^^ each of these is represented by an NDIndex.
* ``` * ```
*/ */
struct NDIndex struct NDIndex {
{
/** /**
* @brief Enum tag to specify the type of index. * @brief Enum tag to specify the type of index.
* *
@ -62,16 +60,12 @@ struct NDIndex
* *
* Please see the comment of each enum constant. * Please see the comment of each enum constant.
*/ */
uint8_t *data; uint8_t* data;
}; };
} // namespace } // namespace
namespace namespace {
{ namespace ndarray::indexing {
namespace ndarray
{
namespace indexing
{
/** /**
* @brief Perform ndarray "basic indexing" (https://numpy.org/doc/stable/user/basics.indexing.html#basic-indexing) * @brief Perform ndarray "basic indexing" (https://numpy.org/doc/stable/user/basics.indexing.html#basic-indexing)
* *
@ -99,9 +93,8 @@ namespace indexing
* @param src_ndarray The NDArray to be indexed. * @param src_ndarray The NDArray to be indexed.
* @param dst_ndarray The resulting NDArray after indexing. Further details in the comments above, * @param dst_ndarray The resulting NDArray after indexing. Further details in the comments above,
*/ */
template <typename SizeT> template<typename SizeT>
void index(SizeT num_indices, const NDIndex *indices, const NDArray<SizeT> *src_ndarray, NDArray<SizeT> *dst_ndarray) void index(SizeT num_indices, const NDIndex* indices, const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray) {
{
// Validate `indices`. // Validate `indices`.
// Expected value of `dst_ndarray->ndims`. // Expected value of `dst_ndarray->ndims`.
@ -111,40 +104,28 @@ void index(SizeT num_indices, const NDIndex *indices, const NDArray<SizeT> *src_
// There may be ellipsis `...` in `indices`. There can only be 0 or 1 ellipsis. // There may be ellipsis `...` in `indices`. There can only be 0 or 1 ellipsis.
SizeT num_ellipsis = 0; SizeT num_ellipsis = 0;
for (SizeT i = 0; i < num_indices; i++) for (SizeT i = 0; i < num_indices; i++) {
{ if (indices[i].type == ND_INDEX_TYPE_SINGLE_ELEMENT) {
if (indices[i].type == ND_INDEX_TYPE_SINGLE_ELEMENT)
{
expected_dst_ndims--; expected_dst_ndims--;
num_indexed++; num_indexed++;
} } else if (indices[i].type == ND_INDEX_TYPE_SLICE) {
else if (indices[i].type == ND_INDEX_TYPE_SLICE)
{
num_indexed++; num_indexed++;
} } else if (indices[i].type == ND_INDEX_TYPE_NEWAXIS) {
else if (indices[i].type == ND_INDEX_TYPE_NEWAXIS)
{
expected_dst_ndims++; expected_dst_ndims++;
} } else if (indices[i].type == ND_INDEX_TYPE_ELLIPSIS) {
else if (indices[i].type == ND_INDEX_TYPE_ELLIPSIS)
{
num_ellipsis++; num_ellipsis++;
if (num_ellipsis > 1) if (num_ellipsis > 1) {
{
raise_exception(SizeT, EXN_INDEX_ERROR, "an index can only have a single ellipsis ('...')", NO_PARAM, raise_exception(SizeT, EXN_INDEX_ERROR, "an index can only have a single ellipsis ('...')", NO_PARAM,
NO_PARAM, NO_PARAM); NO_PARAM, NO_PARAM);
} }
} } else {
else
{
__builtin_unreachable(); __builtin_unreachable();
} }
} }
debug_assert_eq(SizeT, expected_dst_ndims, dst_ndarray->ndims); debug_assert_eq(SizeT, expected_dst_ndims, dst_ndarray->ndims);
if (src_ndarray->ndims - num_indexed < 0) if (src_ndarray->ndims - num_indexed < 0) {
{
raise_exception(SizeT, EXN_INDEX_ERROR, raise_exception(SizeT, EXN_INDEX_ERROR,
"too many indices for array: array is {0}-dimensional, " "too many indices for array: array is {0}-dimensional, "
"but {1} were indexed", "but {1} were indexed",
@ -154,72 +135,61 @@ void index(SizeT num_indices, const NDIndex *indices, const NDArray<SizeT> *src_
dst_ndarray->data = src_ndarray->data; dst_ndarray->data = src_ndarray->data;
dst_ndarray->itemsize = src_ndarray->itemsize; dst_ndarray->itemsize = src_ndarray->itemsize;
// Reference code: https://github.com/wadetb/tinynumpy/blob/0d23d22e07062ffab2afa287374c7b366eebdda1/tinynumpy/tinynumpy.py#L652 // Reference code:
// https://github.com/wadetb/tinynumpy/blob/0d23d22e07062ffab2afa287374c7b366eebdda1/tinynumpy/tinynumpy.py#L652
SizeT src_axis = 0; SizeT src_axis = 0;
SizeT dst_axis = 0; SizeT dst_axis = 0;
for (int32_t i = 0; i < num_indices; i++) for (int32_t i = 0; i < num_indices; i++) {
{ const NDIndex* index = &indices[i];
const NDIndex *index = &indices[i]; if (index->type == ND_INDEX_TYPE_SINGLE_ELEMENT) {
if (index->type == ND_INDEX_TYPE_SINGLE_ELEMENT) SizeT input = (SizeT) * ((int32_t*)index->data);
{
SizeT input = (SizeT) * ((int32_t *)index->data);
SizeT k = slice::resolve_index_in_length(src_ndarray->shape[src_axis], input); SizeT k = slice::resolve_index_in_length(src_ndarray->shape[src_axis], input);
if (k == -1) if (k == -1) {
{
raise_exception(SizeT, EXN_INDEX_ERROR, raise_exception(SizeT, EXN_INDEX_ERROR,
"index {0} is out of bounds for axis {1} " "index {0} is out of bounds for axis {1} "
"with size {2}", "with size {2}",
input, src_axis, src_ndarray->shape[src_axis]); input, src_axis, src_ndarray->shape[src_axis]);
} }
dst_ndarray->data += k * src_ndarray->strides[src_axis]; dst_ndarray->data = static_cast<uint8_t*>(dst_ndarray->data) + k * src_ndarray->strides[src_axis];
src_axis++; src_axis++;
} } else if (index->type == ND_INDEX_TYPE_SLICE) {
else if (index->type == ND_INDEX_TYPE_SLICE) Slice<int32_t>* slice = (Slice<int32_t>*)index->data;
{
Slice<int32_t> *slice = (Slice<int32_t> *)index->data;
Range<int32_t> range = slice->indices_checked<SizeT>(src_ndarray->shape[src_axis]); Range<int32_t> range = slice->indices_checked<SizeT>(src_ndarray->shape[src_axis]);
dst_ndarray->data += (SizeT)range.start * src_ndarray->strides[src_axis]; dst_ndarray->data =
static_cast<uint8_t*>(dst_ndarray->data) + (SizeT)range.start * src_ndarray->strides[src_axis];
dst_ndarray->strides[dst_axis] = ((SizeT)range.step) * src_ndarray->strides[src_axis]; dst_ndarray->strides[dst_axis] = ((SizeT)range.step) * src_ndarray->strides[src_axis];
dst_ndarray->shape[dst_axis] = (SizeT)range.len<SizeT>(); dst_ndarray->shape[dst_axis] = (SizeT)range.len<SizeT>();
dst_axis++; dst_axis++;
src_axis++; src_axis++;
} } else if (index->type == ND_INDEX_TYPE_NEWAXIS) {
else if (index->type == ND_INDEX_TYPE_NEWAXIS)
{
dst_ndarray->strides[dst_axis] = 0; dst_ndarray->strides[dst_axis] = 0;
dst_ndarray->shape[dst_axis] = 1; dst_ndarray->shape[dst_axis] = 1;
dst_axis++; dst_axis++;
} } else if (index->type == ND_INDEX_TYPE_ELLIPSIS) {
else if (index->type == ND_INDEX_TYPE_ELLIPSIS)
{
// The number of ':' entries this '...' implies. // The number of ':' entries this '...' implies.
SizeT ellipsis_size = src_ndarray->ndims - num_indexed; SizeT ellipsis_size = src_ndarray->ndims - num_indexed;
for (SizeT j = 0; j < ellipsis_size; j++) for (SizeT j = 0; j < ellipsis_size; j++) {
{
dst_ndarray->strides[dst_axis] = src_ndarray->strides[src_axis]; dst_ndarray->strides[dst_axis] = src_ndarray->strides[src_axis];
dst_ndarray->shape[dst_axis] = src_ndarray->shape[src_axis]; dst_ndarray->shape[dst_axis] = src_ndarray->shape[src_axis];
dst_axis++; dst_axis++;
src_axis++; src_axis++;
} }
} } else {
else
{
__builtin_unreachable(); __builtin_unreachable();
} }
} }
for (; dst_axis < dst_ndarray->ndims; dst_axis++, src_axis++) for (; dst_axis < dst_ndarray->ndims; dst_axis++, src_axis++) {
{
dst_ndarray->shape[dst_axis] = src_ndarray->shape[src_axis]; dst_ndarray->shape[dst_axis] = src_ndarray->shape[src_axis];
dst_ndarray->strides[dst_axis] = src_ndarray->strides[src_axis]; dst_ndarray->strides[dst_axis] = src_ndarray->strides[src_axis];
} }
@ -227,23 +197,23 @@ void index(SizeT num_indices, const NDIndex *indices, const NDArray<SizeT> *src_
debug_assert_eq(SizeT, src_ndarray->ndims, src_axis); debug_assert_eq(SizeT, src_ndarray->ndims, src_axis);
debug_assert_eq(SizeT, dst_ndarray->ndims, dst_axis); debug_assert_eq(SizeT, dst_ndarray->ndims, dst_axis);
} }
} // namespace indexing } // namespace ndarray::indexing
} // namespace ndarray } // namespace
} // namespace
extern "C" extern "C" {
{ using namespace ndarray::indexing;
using namespace ndarray::indexing;
void __nac3_ndarray_index(int32_t num_indices, NDIndex *indices, NDArray<int32_t> *src_ndarray, void __nac3_ndarray_index(int32_t num_indices,
NDArray<int32_t> *dst_ndarray) NDIndex* indices,
{ NDArray<int32_t>* src_ndarray,
index(num_indices, indices, src_ndarray, dst_ndarray); NDArray<int32_t>* dst_ndarray) {
} index(num_indices, indices, src_ndarray, dst_ndarray);
}
void __nac3_ndarray_index64(int64_t num_indices, NDIndex *indices, NDArray<int64_t> *src_ndarray,
NDArray<int64_t> *dst_ndarray) void __nac3_ndarray_index64(int64_t num_indices,
{ NDIndex* indices,
index(num_indices, indices, src_ndarray, dst_ndarray); NDArray<int64_t>* src_ndarray,
} NDArray<int64_t>* dst_ndarray) {
index(num_indices, indices, src_ndarray, dst_ndarray);
}
} }

View File

@ -1,35 +1,55 @@
#pragma once #pragma once
#include <irrt/int_types.hpp> #include "irrt/int_types.hpp"
#include <irrt/ndarray/def.hpp> #include "irrt/ndarray/def.hpp"
namespace namespace {
{
/** /**
* @brief Helper struct to enumerate through an ndarray *efficiently*. * @brief Helper struct to enumerate through an ndarray *efficiently*.
* *
* Example usage (in pseudo-code):
* ```
* // Suppose my_ndarray has been initialized, with shape [2, 3] and dtype `double`
* NDIter nditer;
* nditer.initialize(my_ndarray);
* while (nditer.has_element()) {
* // This body is run 6 (= my_ndarray.size) times.
*
* // [0, 0] -> [0, 1] -> [0, 2] -> [1, 0] -> [1, 1] -> [1, 2] -> end
* print(nditer.indices);
*
* // 0 -> 1 -> 2 -> 3 -> 4 -> 5
* print(nditer.nth);
*
* // <1st element> -> <2nd element> -> ... -> <6th element> -> end
* print(*((double *) nditer.element))
*
* nditer.next(); // Go to next element.
* }
* ```
*
* Interesting cases: * Interesting cases:
* - If ndims == 0, there is one iteration. * - If `my_ndarray.ndims` == 0, there is one iteration.
* - If shape contains zeroes, there are no iterations. * - If `my_ndarray.shape` contains zeroes, there are no iterations.
*/ */
template <typename SizeT> struct NDIter template<typename SizeT>
{ struct NDIter {
// Information about the ndarray being iterated over. // Information about the ndarray being iterated over.
SizeT ndims; SizeT ndims;
SizeT *shape; SizeT* shape;
SizeT *strides; SizeT* strides;
/** /**
* @brief The current indices. * @brief The current indices.
* *
* Must be allocated by the caller. * Must be allocated by the caller.
*/ */
SizeT *indices; SizeT* indices;
/** /**
* @brief The nth (0-based) index of the current indices. * @brief The nth (0-based) index of the current indices.
* *
* Initially this is all 0s. * Initially this is 0.
*/ */
SizeT nth; SizeT nth;
@ -38,7 +58,7 @@ template <typename SizeT> struct NDIter
* *
* Initially this points to first element of the ndarray. * Initially this points to first element of the ndarray.
*/ */
uint8_t *element; void* element;
/** /**
* @brief Cache for the product of shape. * @brief Cache for the product of shape.
@ -47,11 +67,7 @@ template <typename SizeT> struct NDIter
*/ */
SizeT size; SizeT size;
// TODO:: Not implemented: There is something called backstrides to speedup iteration. void initialize(SizeT ndims, SizeT* shape, SizeT* strides, void* element, SizeT* indices) {
// See https://ajcr.net/stride-guide-part-1/, and https://docs.scipy.org/doc/numpy-1.13.0/reference/c-api.types-and-structures.html#c.PyArrayIterObject.PyArrayIterObject.backstrides.
void initialize(SizeT ndims, SizeT *shape, SizeT *strides, uint8_t *element, SizeT *indices)
{
this->ndims = ndims; this->ndims = ndims;
this->shape = shape; this->shape = shape;
this->strides = strides; this->strides = strides;
@ -61,79 +77,70 @@ template <typename SizeT> struct NDIter
// Compute size // Compute size
this->size = 1; this->size = 1;
for (SizeT i = 0; i < ndims; i++) for (SizeT i = 0; i < ndims; i++) {
{
this->size *= shape[i]; this->size *= shape[i];
} }
// `indices` starts on all 0s.
for (SizeT axis = 0; axis < ndims; axis++) for (SizeT axis = 0; axis < ndims; axis++)
indices[axis] = 0; indices[axis] = 0;
nth = 0; nth = 0;
} }
void initialize_by_ndarray(NDArray<SizeT> *ndarray, SizeT *indices) void initialize_by_ndarray(NDArray<SizeT>* ndarray, SizeT* indices) {
{ // NOTE: ndarray->data is pointing to the first element, and `NDIter`'s `element` should also point to the first
// element as well.
this->initialize(ndarray->ndims, ndarray->shape, ndarray->strides, ndarray->data, indices); this->initialize(ndarray->ndims, ndarray->shape, ndarray->strides, ndarray->data, indices);
} }
bool has_next() // Is the current iteration valid?
{ // If true, then `element`, `indices` and `nth` contain details about the current element.
return nth < size; bool has_element() { return nth < size; }
}
void next() // Go to the next element.
{ void next() {
for (SizeT i = 0; i < ndims; i++) for (SizeT i = 0; i < ndims; i++) {
{
SizeT axis = ndims - i - 1; SizeT axis = ndims - i - 1;
indices[axis]++; indices[axis]++;
if (indices[axis] >= shape[axis]) if (indices[axis] >= shape[axis]) {
{
indices[axis] = 0; indices[axis] = 0;
// TODO: Can be optimized with backstrides. // TODO: There is something called backstrides to speedup iteration.
element -= strides[axis] * (shape[axis] - 1); // See https://ajcr.net/stride-guide-part-1/, and
} // https://docs.scipy.org/doc/numpy-1.13.0/reference/c-api.types-and-structures.html#c.PyArrayIterObject.PyArrayIterObject.backstrides.
else element = static_cast<void*>(reinterpret_cast<uint8_t*>(element) - strides[axis] * (shape[axis] - 1));
{ } else {
element += strides[axis]; element = static_cast<void*>(reinterpret_cast<uint8_t*>(element) + strides[axis]);
break; break;
} }
} }
nth++; nth++;
} }
}; };
} // namespace } // namespace
extern "C" extern "C" {
{ void __nac3_nditer_initialize(NDIter<int32_t>* iter, NDArray<int32_t>* ndarray, int32_t* indices) {
void __nac3_nditer_initialize(NDIter<int32_t> *iter, NDArray<int32_t> *ndarray, int32_t *indices) iter->initialize_by_ndarray(ndarray, indices);
{ }
iter->initialize_by_ndarray(ndarray, indices);
} void __nac3_nditer_initialize64(NDIter<int64_t>* iter, NDArray<int64_t>* ndarray, int64_t* indices) {
iter->initialize_by_ndarray(ndarray, indices);
void __nac3_nditer_initialize64(NDIter<int64_t> *iter, NDArray<int64_t> *ndarray, int64_t *indices) }
{
iter->initialize_by_ndarray(ndarray, indices); bool __nac3_nditer_has_element(NDIter<int32_t>* iter) {
} return iter->has_element();
}
bool __nac3_nditer_has_next(NDIter<int32_t> *iter)
{ bool __nac3_nditer_has_element64(NDIter<int64_t>* iter) {
return iter->has_next(); return iter->has_element();
} }
bool __nac3_nditer_has_next64(NDIter<int64_t> *iter) void __nac3_nditer_next(NDIter<int32_t>* iter) {
{ iter->next();
return iter->has_next(); }
}
void __nac3_nditer_next64(NDIter<int64_t>* iter) {
void __nac3_nditer_next(NDIter<int32_t> *iter) iter->next();
{ }
iter->next();
}
void __nac3_nditer_next64(NDIter<int64_t> *iter)
{
iter->next();
}
} }

View File

@ -1,20 +1,16 @@
#pragma once #pragma once
#include <irrt/debug.hpp> #include "irrt/debug.hpp"
#include <irrt/exception.hpp> #include "irrt/exception.hpp"
#include <irrt/int_types.hpp> #include "irrt/int_types.hpp"
#include <irrt/ndarray/basic.hpp> #include "irrt/ndarray/basic.hpp"
#include <irrt/ndarray/broadcast.hpp> #include "irrt/ndarray/broadcast.hpp"
#include <irrt/ndarray/iter.hpp> #include "irrt/ndarray/iter.hpp"
// NOTE: Everything would be much easier and elegant if einsum is implemented. // NOTE: Everything would be much easier and elegant if einsum is implemented.
namespace namespace {
{ namespace ndarray::matmul {
namespace ndarray
{
namespace matmul
{
/** /**
* @brief Perform the broadcast in `np.einsum("...ij,...jk->...ik", a, b)`. * @brief Perform the broadcast in `np.einsum("...ij,...jk->...ik", a, b)`.
@ -36,17 +32,21 @@ namespace matmul
* @param final_ndims Should be equal to `max(a_ndims, b_ndims)`. This is the length of `new_a_shape`, * @param final_ndims Should be equal to `max(a_ndims, b_ndims)`. This is the length of `new_a_shape`,
* `new_b_shape`, and `dst_shape` - the number of dimensions after broadcasting. * `new_b_shape`, and `dst_shape` - the number of dimensions after broadcasting.
*/ */
template <typename SizeT> template<typename SizeT>
void calculate_shapes(SizeT a_ndims, SizeT *a_shape, SizeT b_ndims, SizeT *b_shape, SizeT final_ndims, void calculate_shapes(SizeT a_ndims,
SizeT *new_a_shape, SizeT *new_b_shape, SizeT *dst_shape) SizeT* a_shape,
{ SizeT b_ndims,
SizeT* b_shape,
SizeT final_ndims,
SizeT* new_a_shape,
SizeT* new_b_shape,
SizeT* dst_shape) {
debug_assert(SizeT, a_ndims >= 2); debug_assert(SizeT, a_ndims >= 2);
debug_assert(SizeT, b_ndims >= 2); debug_assert(SizeT, b_ndims >= 2);
debug_assert_eq(SizeT, max(a_ndims, b_ndims), final_ndims); debug_assert_eq(SizeT, max(a_ndims, b_ndims), final_ndims);
// Check that a and b are compatible for matmul // Check that a and b are compatible for matmul
if (a_shape[a_ndims - 1] != b_shape[b_ndims - 2]) if (a_shape[a_ndims - 1] != b_shape[b_ndims - 2]) {
{
// This is a custom error message. Different from NumPy. // This is a custom error message. Different from NumPy.
raise_exception(SizeT, EXN_VALUE_ERROR, "Cannot multiply LHS (shape ?x{0}) with RHS (shape {1}x?})", raise_exception(SizeT, EXN_VALUE_ERROR, "Cannot multiply LHS (shape ?x{0}) with RHS (shape {1}x?})",
a_shape[a_ndims - 1], b_shape[b_ndims - 2], NO_PARAM); a_shape[a_ndims - 1], b_shape[b_ndims - 2], NO_PARAM);
@ -68,25 +68,31 @@ void calculate_shapes(SizeT a_ndims, SizeT *a_shape, SizeT b_ndims, SizeT *b_sha
dst_shape[final_ndims - 2] = a_shape[a_ndims - 2]; dst_shape[final_ndims - 2] = a_shape[a_ndims - 2];
dst_shape[final_ndims - 1] = b_shape[b_ndims - 1]; dst_shape[final_ndims - 1] = b_shape[b_ndims - 1];
} }
} // namespace matmul } // namespace ndarray::matmul
} // namespace ndarray } // namespace
} // namespace
extern "C" extern "C" {
{ using namespace ndarray::matmul;
using namespace ndarray::matmul;
void __nac3_ndarray_matmul_calculate_shapes(int32_t a_ndims, int32_t *a_shape, int32_t b_ndims, int32_t *b_shape, void __nac3_ndarray_matmul_calculate_shapes(int32_t a_ndims,
int32_t final_ndims, int32_t *new_a_shape, int32_t *new_b_shape, int32_t* a_shape,
int32_t *dst_shape) int32_t b_ndims,
{ int32_t* b_shape,
calculate_shapes(a_ndims, a_shape, b_ndims, b_shape, final_ndims, new_a_shape, new_b_shape, dst_shape); int32_t final_ndims,
} int32_t* new_a_shape,
int32_t* new_b_shape,
void __nac3_ndarray_matmul_calculate_shapes64(int64_t a_ndims, int64_t *a_shape, int64_t b_ndims, int64_t *b_shape, int32_t* dst_shape) {
int64_t final_ndims, int64_t *new_a_shape, int64_t *new_b_shape, calculate_shapes(a_ndims, a_shape, b_ndims, b_shape, final_ndims, new_a_shape, new_b_shape, dst_shape);
int64_t *dst_shape) }
{
calculate_shapes(a_ndims, a_shape, b_ndims, b_shape, final_ndims, new_a_shape, new_b_shape, dst_shape); void __nac3_ndarray_matmul_calculate_shapes64(int64_t a_ndims,
} int64_t* a_shape,
int64_t b_ndims,
int64_t* b_shape,
int64_t final_ndims,
int64_t* new_a_shape,
int64_t* new_b_shape,
int64_t* dst_shape) {
calculate_shapes(a_ndims, a_shape, b_ndims, b_shape, final_ndims, new_a_shape, new_b_shape, dst_shape);
}
} }

View File

@ -1,14 +1,11 @@
#pragma once #pragma once
#include <irrt/int_types.hpp> #include "irrt/exception.hpp"
#include <irrt/ndarray/def.hpp> #include "irrt/int_types.hpp"
#include "irrt/ndarray/def.hpp"
namespace namespace {
{ namespace ndarray::reshape {
namespace ndarray
{
namespace reshape
{
/** /**
* @brief Perform assertions on and resolve unknown dimensions in `new_shape` in `np.reshape(<ndarray>, new_shape)` * @brief Perform assertions on and resolve unknown dimensions in `new_shape` in `np.reshape(<ndarray>, new_shape)`
* *
@ -22,8 +19,8 @@ namespace reshape
* @param new_ndims Number of elements in `new_shape` * @param new_ndims Number of elements in `new_shape`
* @param new_shape Target shape to reshape to * @param new_shape Target shape to reshape to
*/ */
template <typename SizeT> void resolve_and_check_new_shape(SizeT size, SizeT new_ndims, SizeT *new_shape) template<typename SizeT>
{ void resolve_and_check_new_shape(SizeT size, SizeT new_ndims, SizeT* new_shape) {
// Is there a -1 in `new_shape`? // Is there a -1 in `new_shape`?
bool neg1_exists = false; bool neg1_exists = false;
// Location of -1, only initialized if `neg1_exists` is true // Location of -1, only initialized if `neg1_exists` is true
@ -31,27 +28,19 @@ template <typename SizeT> void resolve_and_check_new_shape(SizeT size, SizeT new
// The computed ndarray size of `new_shape` // The computed ndarray size of `new_shape`
SizeT new_size = 1; SizeT new_size = 1;
for (SizeT axis_i = 0; axis_i < new_ndims; axis_i++) for (SizeT axis_i = 0; axis_i < new_ndims; axis_i++) {
{
SizeT dim = new_shape[axis_i]; SizeT dim = new_shape[axis_i];
if (dim < 0) if (dim < 0) {
{ if (dim == -1) {
if (dim == -1) if (neg1_exists) {
{
if (neg1_exists)
{
// Multiple `-1` found. Throw an error. // Multiple `-1` found. Throw an error.
raise_exception(SizeT, EXN_VALUE_ERROR, "can only specify one unknown dimension", NO_PARAM, raise_exception(SizeT, EXN_VALUE_ERROR, "can only specify one unknown dimension", NO_PARAM,
NO_PARAM, NO_PARAM); NO_PARAM, NO_PARAM);
} } else {
else
{
neg1_exists = true; neg1_exists = true;
neg1_axis_i = axis_i; neg1_axis_i = axis_i;
} }
} } else {
else
{
// TODO: What? In `np.reshape` any negative dimensions is // TODO: What? In `np.reshape` any negative dimensions is
// treated like its `-1`. // treated like its `-1`.
// //
@ -63,63 +52,46 @@ template <typename SizeT> void resolve_and_check_new_shape(SizeT size, SizeT new
raise_exception(SizeT, EXN_VALUE_ERROR, "Found non -1 negative dimension {0} on axis {1}", dim, axis_i, raise_exception(SizeT, EXN_VALUE_ERROR, "Found non -1 negative dimension {0} on axis {1}", dim, axis_i,
NO_PARAM); NO_PARAM);
} }
} } else {
else
{
new_size *= dim; new_size *= dim;
} }
} }
bool can_reshape; bool can_reshape;
if (neg1_exists) if (neg1_exists) {
{
// Let `x` be the unknown dimension // Let `x` be the unknown dimension
// Solve `x * <new_size> = <size>` // Solve `x * <new_size> = <size>`
if (new_size == 0 && size == 0) if (new_size == 0 && size == 0) {
{
// `x` has infinitely many solutions // `x` has infinitely many solutions
can_reshape = false; can_reshape = false;
} } else if (new_size == 0 && size != 0) {
else if (new_size == 0 && size != 0)
{
// `x` has no solutions // `x` has no solutions
can_reshape = false; can_reshape = false;
} } else if (size % new_size != 0) {
else if (size % new_size != 0)
{
// `x` has no integer solutions // `x` has no integer solutions
can_reshape = false; can_reshape = false;
} } else {
else
{
can_reshape = true; can_reshape = true;
new_shape[neg1_axis_i] = size / new_size; // Resolve dimension new_shape[neg1_axis_i] = size / new_size; // Resolve dimension
} }
} } else {
else
{
can_reshape = (new_size == size); can_reshape = (new_size == size);
} }
if (!can_reshape) if (!can_reshape) {
{
raise_exception(SizeT, EXN_VALUE_ERROR, "cannot reshape array of size {0} into given shape", size, NO_PARAM, raise_exception(SizeT, EXN_VALUE_ERROR, "cannot reshape array of size {0} into given shape", size, NO_PARAM,
NO_PARAM); NO_PARAM);
} }
} }
} // namespace reshape } // namespace ndarray::reshape
} // namespace ndarray } // namespace
} // namespace
extern "C" extern "C" {
{ void __nac3_ndarray_reshape_resolve_and_check_new_shape(int32_t size, int32_t new_ndims, int32_t* new_shape) {
void __nac3_ndarray_reshape_resolve_and_check_new_shape(int32_t size, int32_t new_ndims, int32_t *new_shape) ndarray::reshape::resolve_and_check_new_shape(size, new_ndims, new_shape);
{ }
ndarray::reshape::resolve_and_check_new_shape(size, new_ndims, new_shape);
} void __nac3_ndarray_reshape_resolve_and_check_new_shape64(int64_t size, int64_t new_ndims, int64_t* new_shape) {
ndarray::reshape::resolve_and_check_new_shape(size, new_ndims, new_shape);
void __nac3_ndarray_reshape_resolve_and_check_new_shape64(int64_t size, int64_t new_ndims, int64_t *new_shape) }
{
ndarray::reshape::resolve_and_check_new_shape(size, new_ndims, new_shape);
}
} }

View File

@ -1,8 +1,10 @@
#pragma once #pragma once
#include <irrt/int_types.hpp> #include "irrt/debug.hpp"
#include <irrt/ndarray/def.hpp> #include "irrt/exception.hpp"
#include <irrt/slice.hpp> #include "irrt/int_types.hpp"
#include "irrt/ndarray/def.hpp"
#include "irrt/slice.hpp"
/* /*
* Notes on `np.transpose(<array>, <axes>)` * Notes on `np.transpose(<array>, <axes>)`
@ -13,12 +15,8 @@
* Supporting it for now. * Supporting it for now.
*/ */
namespace namespace {
{ namespace ndarray::transpose {
namespace ndarray
{
namespace transpose
{
/** /**
* @brief Do assertions on `<axes>` in `np.transpose(<array>, <axes>)`. * @brief Do assertions on `<axes>` in `np.transpose(<array>, <axes>)`.
* *
@ -30,30 +28,26 @@ namespace transpose
* This should be equal to `ndims`. If not, a "ValueError: axes don't match array" is thrown. * This should be equal to `ndims`. If not, a "ValueError: axes don't match array" is thrown.
* @param axes The user specified `<axes>`. * @param axes The user specified `<axes>`.
*/ */
template <typename SizeT> void assert_transpose_axes(SizeT ndims, SizeT num_axes, const SizeT *axes) template<typename SizeT>
{ void assert_transpose_axes(SizeT ndims, SizeT num_axes, const SizeT* axes) {
if (ndims != num_axes) if (ndims != num_axes) {
{
raise_exception(SizeT, EXN_VALUE_ERROR, "axes don't match array", NO_PARAM, NO_PARAM, NO_PARAM); raise_exception(SizeT, EXN_VALUE_ERROR, "axes don't match array", NO_PARAM, NO_PARAM, NO_PARAM);
} }
// TODO: Optimize this // TODO: Optimize this
bool *axe_specified = (bool *)__builtin_alloca(sizeof(bool) * ndims); bool* axe_specified = (bool*)__builtin_alloca(sizeof(bool) * ndims);
for (SizeT i = 0; i < ndims; i++) for (SizeT i = 0; i < ndims; i++)
axe_specified[i] = false; axe_specified[i] = false;
for (SizeT i = 0; i < ndims; i++) for (SizeT i = 0; i < ndims; i++) {
{
SizeT axis = slice::resolve_index_in_length(ndims, axes[i]); SizeT axis = slice::resolve_index_in_length(ndims, axes[i]);
if (axis == -1) if (axis == -1) {
{
// TODO: numpy actually throws a `numpy.exceptions.AxisError` // TODO: numpy actually throws a `numpy.exceptions.AxisError`
raise_exception(SizeT, EXN_VALUE_ERROR, "axis {0} is out of bounds for array of dimension {1}", axis, ndims, raise_exception(SizeT, EXN_VALUE_ERROR, "axis {0} is out of bounds for array of dimension {1}", axis, ndims,
NO_PARAM); NO_PARAM);
} }
if (axe_specified[axis]) if (axe_specified[axis]) {
{
raise_exception(SizeT, EXN_VALUE_ERROR, "repeated axis in transpose", NO_PARAM, NO_PARAM, NO_PARAM); raise_exception(SizeT, EXN_VALUE_ERROR, "repeated axis in transpose", NO_PARAM, NO_PARAM, NO_PARAM);
} }
@ -88,9 +82,8 @@ template <typename SizeT> void assert_transpose_axes(SizeT ndims, SizeT num_axes
* @param num_axes Number of elements in axes. Unused if `axes` is nullptr. * @param num_axes Number of elements in axes. Unused if `axes` is nullptr.
* @param axes Axes permutation. Set it to `nullptr` if `<axes>` is `None`. * @param axes Axes permutation. Set it to `nullptr` if `<axes>` is `None`.
*/ */
template <typename SizeT> template<typename SizeT>
void transpose(const NDArray<SizeT> *src_ndarray, NDArray<SizeT> *dst_ndarray, SizeT num_axes, const SizeT *axes) void transpose(const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray, SizeT num_axes, const SizeT* axes) {
{
debug_assert_eq(SizeT, src_ndarray->ndims, dst_ndarray->ndims); debug_assert_eq(SizeT, src_ndarray->ndims, dst_ndarray->ndims);
const auto ndims = src_ndarray->ndims; const auto ndims = src_ndarray->ndims;
@ -101,8 +94,7 @@ void transpose(const NDArray<SizeT> *src_ndarray, NDArray<SizeT> *dst_ndarray, S
dst_ndarray->itemsize = src_ndarray->itemsize; dst_ndarray->itemsize = src_ndarray->itemsize;
// Check out https://ajcr.net/stride-guide-part-2/ to see how `np.transpose` works behind the scenes. // Check out https://ajcr.net/stride-guide-part-2/ to see how `np.transpose` works behind the scenes.
if (axes == nullptr) if (axes == nullptr) {
{
// `np.transpose(<array>, axes=None)` // `np.transpose(<array>, axes=None)`
/* /*
@ -113,19 +105,15 @@ void transpose(const NDArray<SizeT> *src_ndarray, NDArray<SizeT> *dst_ndarray, S
* This is a fast implementation to handle this special (but very common) case. * This is a fast implementation to handle this special (but very common) case.
*/ */
for (SizeT axis = 0; axis < ndims; axis++) for (SizeT axis = 0; axis < ndims; axis++) {
{
dst_ndarray->shape[axis] = src_ndarray->shape[ndims - axis - 1]; dst_ndarray->shape[axis] = src_ndarray->shape[ndims - axis - 1];
dst_ndarray->strides[axis] = src_ndarray->strides[ndims - axis - 1]; dst_ndarray->strides[axis] = src_ndarray->strides[ndims - axis - 1];
} }
} } else {
else
{
// `np.transpose(<array>, <axes>)` // `np.transpose(<array>, <axes>)`
// Permute strides and shape according to `axes`, while resolving negative indices in `axes` // Permute strides and shape according to `axes`, while resolving negative indices in `axes`
for (SizeT axis = 0; axis < ndims; axis++) for (SizeT axis = 0; axis < ndims; axis++) {
{
// `i` cannot be OUT_OF_BOUNDS because of assertions // `i` cannot be OUT_OF_BOUNDS because of assertions
SizeT i = slice::resolve_index_in_length(ndims, axes[axis]); SizeT i = slice::resolve_index_in_length(ndims, axes[axis]);
@ -134,22 +122,22 @@ void transpose(const NDArray<SizeT> *src_ndarray, NDArray<SizeT> *dst_ndarray, S
} }
} }
} }
} // namespace transpose } // namespace ndarray::transpose
} // namespace ndarray } // namespace
} // namespace
extern "C" extern "C" {
{ using namespace ndarray::transpose;
using namespace ndarray::transpose; void __nac3_ndarray_transpose(const NDArray<int32_t>* src_ndarray,
void __nac3_ndarray_transpose(const NDArray<int32_t> *src_ndarray, NDArray<int32_t> *dst_ndarray, int32_t num_axes, NDArray<int32_t>* dst_ndarray,
const int32_t *axes) int32_t num_axes,
{ const int32_t* axes) {
transpose(src_ndarray, dst_ndarray, num_axes, axes); transpose(src_ndarray, dst_ndarray, num_axes, axes);
} }
void __nac3_ndarray_transpose64(const NDArray<int64_t> *src_ndarray, NDArray<int64_t> *dst_ndarray, void __nac3_ndarray_transpose64(const NDArray<int64_t>* src_ndarray,
int64_t num_axes, const int64_t *axes) NDArray<int64_t>* dst_ndarray,
{ int64_t num_axes,
transpose(src_ndarray, dst_ndarray, num_axes, axes); const int64_t* axes) {
} transpose(src_ndarray, dst_ndarray, num_axes, axes);
}
} }

View File

@ -1,215 +0,0 @@
#pragma once
#include <irrt/int_types.hpp>
#include <irrt/math_util.hpp>
// The type of an index or a value describing the length of a range/slice is always `int32_t`.
using SliceIndex = int32_t;
namespace
{
// adapted from GNU Scientific Library: https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c
// need to make sure `exp >= 0` before calling this function
template <typename T> T __nac3_int_exp_impl(T base, T exp)
{
T res = 1;
/* repeated squaring method */
do
{
if (exp & 1)
{
res *= base; /* for n odd */
}
exp >>= 1;
base *= base;
} while (exp);
return res;
}
} // namespace
extern "C"
{
#define DEF_nac3_int_exp_(T) \
T __nac3_int_exp_##T(T base, T exp) \
{ \
return __nac3_int_exp_impl(base, exp); \
}
DEF_nac3_int_exp_(int32_t) DEF_nac3_int_exp_(int64_t) DEF_nac3_int_exp_(uint32_t) DEF_nac3_int_exp_(uint64_t)
SliceIndex __nac3_slice_index_bound(SliceIndex i, const SliceIndex len)
{
if (i < 0)
{
i = len + i;
}
if (i < 0)
{
return 0;
}
else if (i > len)
{
return len;
}
return i;
}
SliceIndex __nac3_range_slice_len(const SliceIndex start, const SliceIndex end, const SliceIndex step)
{
SliceIndex diff = end - start;
if (diff > 0 && step > 0)
{
return ((diff - 1) / step) + 1;
}
else if (diff < 0 && step < 0)
{
return ((diff + 1) / step) + 1;
}
else
{
return 0;
}
}
// Handle list assignment and dropping part of the list when
// both dest_step and src_step are +1.
// - All the index must *not* be out-of-bound or negative,
// - The end index is *inclusive*,
// - The length of src and dest slice size should already
// be checked: if dest.step == 1 then len(src) <= len(dest) else len(src) == len(dest)
SliceIndex __nac3_list_slice_assign_var_size(SliceIndex dest_start, SliceIndex dest_end, SliceIndex dest_step,
uint8_t *dest_arr, SliceIndex dest_arr_len, SliceIndex src_start,
SliceIndex src_end, SliceIndex src_step, uint8_t *src_arr,
SliceIndex src_arr_len, const SliceIndex size)
{
/* if dest_arr_len == 0, do nothing since we do not support extending list */
if (dest_arr_len == 0)
return dest_arr_len;
/* if both step is 1, memmove directly, handle the dropping of the list, and shrink size */
if (src_step == dest_step && dest_step == 1)
{
const SliceIndex src_len = (src_end >= src_start) ? (src_end - src_start + 1) : 0;
const SliceIndex dest_len = (dest_end >= dest_start) ? (dest_end - dest_start + 1) : 0;
if (src_len > 0)
{
__builtin_memmove(dest_arr + dest_start * size, src_arr + src_start * size, src_len * size);
}
if (dest_len > 0)
{
/* dropping */
__builtin_memmove(dest_arr + (dest_start + src_len) * size, dest_arr + (dest_end + 1) * size,
(dest_arr_len - dest_end - 1) * size);
}
/* shrink size */
return dest_arr_len - (dest_len - src_len);
}
/* if two range overlaps, need alloca */
uint8_t need_alloca = (dest_arr == src_arr) && !(max(dest_start, dest_end) < min(src_start, src_end) ||
max(src_start, src_end) < min(dest_start, dest_end));
if (need_alloca)
{
uint8_t *tmp = reinterpret_cast<uint8_t *>(__builtin_alloca(src_arr_len * size));
__builtin_memcpy(tmp, src_arr, src_arr_len * size);
src_arr = tmp;
}
SliceIndex src_ind = src_start;
SliceIndex dest_ind = dest_start;
for (; (src_step > 0) ? (src_ind <= src_end) : (src_ind >= src_end); src_ind += src_step, dest_ind += dest_step)
{
/* for constant optimization */
if (size == 1)
{
__builtin_memcpy(dest_arr + dest_ind, src_arr + src_ind, 1);
}
else if (size == 4)
{
__builtin_memcpy(dest_arr + dest_ind * 4, src_arr + src_ind * 4, 4);
}
else if (size == 8)
{
__builtin_memcpy(dest_arr + dest_ind * 8, src_arr + src_ind * 8, 8);
}
else
{
/* memcpy for var size, cannot overlap after previous alloca */
__builtin_memcpy(dest_arr + dest_ind * size, src_arr + src_ind * size, size);
}
}
/* only dest_step == 1 can we shrink the dest list. */
/* size should be ensured prior to calling this function */
if (dest_step == 1 && dest_end >= dest_start)
{
__builtin_memmove(dest_arr + dest_ind * size, dest_arr + (dest_end + 1) * size,
(dest_arr_len - dest_end - 1) * size);
return dest_arr_len - (dest_end - dest_ind) - 1;
}
return dest_arr_len;
}
int32_t __nac3_isinf(double x)
{
return __builtin_isinf(x);
}
int32_t __nac3_isnan(double x)
{
return __builtin_isnan(x);
}
double tgamma(double arg);
double __nac3_gamma(double z)
{
// Handling for denormals
// | x | Python gamma(x) | C tgamma(x) |
// --- | ----------------- | --------------- | ----------- |
// (1) | nan | nan | nan |
// (2) | -inf | -inf | inf |
// (3) | inf | inf | inf |
// (4) | 0.0 | inf | inf |
// (5) | {-1.0, -2.0, ...} | inf | nan |
// (1)-(3)
if (__builtin_isinf(z) || __builtin_isnan(z))
{
return z;
}
double v = tgamma(z);
// (4)-(5)
return __builtin_isinf(v) || __builtin_isnan(v) ? __builtin_inf() : v;
}
double lgamma(double arg);
double __nac3_gammaln(double x)
{
// libm's handling of value overflows differs from scipy:
// - scipy: gammaln(-inf) -> -inf
// - libm : lgamma(-inf) -> inf
if (__builtin_isinf(x))
{
return x;
}
return lgamma(x);
}
double j0(double x);
double __nac3_j0(double x)
{
// libm's handling of value overflows differs from scipy:
// - scipy: j0(inf) -> nan
// - libm : j0(inf) -> 0.0
if (__builtin_isinf(x))
{
return __builtin_nan("");
}
return j0(x);
}
} // extern "C"

View File

@ -1,14 +1,12 @@
#pragma once #pragma once
#include <irrt/debug.hpp> #include "irrt/debug.hpp"
#include <irrt/int_types.hpp> #include "irrt/int_types.hpp"
namespace namespace {
{ namespace range {
namespace range template<typename T>
{ T len(T start, T stop, T step) {
template <typename T> T len(T start, T stop, T step)
{
// Reference: // Reference:
// https://github.com/python/cpython/blob/9dbd12375561a393eaec4b21ee4ac568a407cdb0/Objects/rangeobject.c#L933 // https://github.com/python/cpython/blob/9dbd12375561a393eaec4b21ee4ac568a407cdb0/Objects/rangeobject.c#L933
if (step > 0 && start < stop) if (step > 0 && start < stop)
@ -18,13 +16,13 @@ template <typename T> T len(T start, T stop, T step)
else else
return 0; return 0;
} }
} // namespace range } // namespace range
/** /**
* @brief A Python range. * @brief A Python range.
*/ */
template <typename T> struct Range template<typename T>
{ struct Range {
T start; T start;
T stop; T stop;
T step; T step;
@ -32,10 +30,18 @@ template <typename T> struct Range
/** /**
* @brief Calculate the `len()` of this range. * @brief Calculate the `len()` of this range.
*/ */
template <typename SizeT> T len() template<typename SizeT>
{ T len() {
debug_assert(SizeT, step != 0); debug_assert(SizeT, step != 0);
return range::len(start, stop, step); return range::len(start, stop, step);
} }
}; };
} // namespace } // namespace
extern "C" {
using namespace range;
SliceIndex __nac3_range_slice_len(const SliceIndex start, const SliceIndex end, const SliceIndex step) {
return len(start, end, step);
}
}

View File

@ -1,29 +1,24 @@
#pragma once #pragma once
#include <irrt/debug.hpp> #include "irrt/debug.hpp"
#include <irrt/exception.hpp> #include "irrt/exception.hpp"
#include <irrt/int_types.hpp> #include "irrt/int_types.hpp"
#include <irrt/math_util.hpp> #include "irrt/math_util.hpp"
#include <irrt/range.hpp> #include "irrt/range.hpp"
namespace namespace {
{ namespace slice {
namespace slice
{
/** /**
* @brief Resolve a possibly negative index in a list of a known length. * @brief Resolve a possibly negative index in a list of a known length.
* *
* Returns -1 if the resolved index is out of the list's bounds. * Returns -1 if the resolved index is out of the list's bounds.
*/ */
template <typename T> T resolve_index_in_length(T length, T index) template<typename T>
{ T resolve_index_in_length(T length, T index) {
T resolved = index < 0 ? length + index : index; T resolved = index < 0 ? length + index : index;
if (0 <= resolved && resolved < length) if (0 <= resolved && resolved < length) {
{
return resolved; return resolved;
} } else {
else
{
return -1; return -1;
} }
} }
@ -33,51 +28,49 @@ template <typename T> T resolve_index_in_length(T length, T index)
* *
* This is equivalent to `range(*slice(start, stop, step).indices(length))` in Python. * This is equivalent to `range(*slice(start, stop, step).indices(length))` in Python.
*/ */
template <typename T> template<typename T>
void indices(bool start_defined, T start, bool stop_defined, T stop, bool step_defined, T step, T length, void indices(bool start_defined,
T *range_start, T *range_stop, T *range_step) T start,
{ bool stop_defined,
T stop,
bool step_defined,
T step,
T length,
T* range_start,
T* range_stop,
T* range_step) {
// Reference: https://github.com/python/cpython/blob/main/Objects/sliceobject.c#L388 // Reference: https://github.com/python/cpython/blob/main/Objects/sliceobject.c#L388
*range_step = step_defined ? step : 1; *range_step = step_defined ? step : 1;
bool step_is_negative = *range_step < 0; bool step_is_negative = *range_step < 0;
T lower, upper; T lower, upper;
if (step_is_negative) if (step_is_negative) {
{
lower = -1; lower = -1;
upper = length - 1; upper = length - 1;
} } else {
else
{
lower = 0; lower = 0;
upper = length; upper = length;
} }
if (start_defined) if (start_defined) {
{
*range_start = start < 0 ? max(lower, start + length) : min(upper, start); *range_start = start < 0 ? max(lower, start + length) : min(upper, start);
} } else {
else
{
*range_start = step_is_negative ? upper : lower; *range_start = step_is_negative ? upper : lower;
} }
if (stop_defined) if (stop_defined) {
{
*range_stop = stop < 0 ? max(lower, stop + length) : min(upper, stop); *range_stop = stop < 0 ? max(lower, stop + length) : min(upper, stop);
} } else {
else
{
*range_stop = step_is_negative ? lower : upper; *range_stop = step_is_negative ? lower : upper;
} }
} }
} // namespace slice } // namespace slice
/** /**
* @brief A Python-like slice with **unresolved** indices. * @brief A Python-like slice with **unresolved** indices.
*/ */
template <typename T> struct Slice template<typename T>
{ struct Slice {
bool start_defined; bool start_defined;
T start; T start;
@ -87,32 +80,25 @@ template <typename T> struct Slice
bool step_defined; bool step_defined;
T step; T step;
Slice() Slice() { this->reset(); }
{
this->reset();
}
void reset() void reset() {
{
this->start_defined = false; this->start_defined = false;
this->stop_defined = false; this->stop_defined = false;
this->step_defined = false; this->step_defined = false;
} }
void set_start(T start) void set_start(T start) {
{
this->start_defined = true; this->start_defined = true;
this->start = start; this->start = start;
} }
void set_stop(T stop) void set_stop(T stop) {
{
this->stop_defined = true; this->stop_defined = true;
this->stop = stop; this->stop = stop;
} }
void set_step(T step) void set_step(T step) {
{
this->step_defined = true; this->step_defined = true;
this->step = step; this->step = step;
} }
@ -122,8 +108,8 @@ template <typename T> struct Slice
* *
* In Python, this would be `range(*slice(start, stop, step).indices(length))`. * In Python, this would be `range(*slice(start, stop, step).indices(length))`.
*/ */
template <typename SizeT> Range<T> indices(T length) template<typename SizeT>
{ Range<T> indices(T length) {
// Reference: // Reference:
// https://github.com/python/cpython/blob/main/Objects/sliceobject.c#L388 // https://github.com/python/cpython/blob/main/Objects/sliceobject.c#L388
debug_assert(SizeT, length >= 0); debug_assert(SizeT, length >= 0);
@ -137,22 +123,34 @@ template <typename T> struct Slice
/** /**
* @brief Like `.indices()` but with assertions. * @brief Like `.indices()` but with assertions.
*/ */
template <typename SizeT> Range<T> indices_checked(T length) template<typename SizeT>
{ Range<T> indices_checked(T length) {
// TODO: Switch to `SizeT length` // TODO: Switch to `SizeT length`
if (length < 0) if (length < 0) {
{
raise_exception(SizeT, EXN_VALUE_ERROR, "length should not be negative, got {0}", length, NO_PARAM, raise_exception(SizeT, EXN_VALUE_ERROR, "length should not be negative, got {0}", length, NO_PARAM,
NO_PARAM); NO_PARAM);
} }
if (this->step_defined && this->step == 0) if (this->step_defined && this->step == 0) {
{
raise_exception(SizeT, EXN_VALUE_ERROR, "slice step cannot be zero", NO_PARAM, NO_PARAM, NO_PARAM); raise_exception(SizeT, EXN_VALUE_ERROR, "slice step cannot be zero", NO_PARAM, NO_PARAM, NO_PARAM);
} }
return this->indices<SizeT>(length); return this->indices<SizeT>(length);
} }
}; };
} // namespace } // namespace
extern "C" {
SliceIndex __nac3_slice_index_bound(SliceIndex i, const SliceIndex len) {
if (i < 0) {
i = len + i;
}
if (i < 0) {
return 0;
} else if (i > len) {
return len;
}
return i;
}
}

View File

@ -0,0 +1,23 @@
#pragma once
#include "irrt/int_types.hpp"
namespace {
template<typename SizeT>
bool __nac3_str_eq_impl(const char* str1, SizeT len1, const char* str2, SizeT len2) {
if (len1 != len2) {
return 0;
}
return __builtin_memcmp(str1, str2, static_cast<SizeT>(len1)) == 0;
}
} // namespace
extern "C" {
bool nac3_str_eq(const char* str1, uint32_t len1, const char* str2, uint32_t len2) {
return __nac3_str_eq_impl<uint32_t>(str1, len1, str2, len2);
}
bool nac3_str_eq64(const char* str1, uint64_t len1, const char* str2, uint64_t len2) {
return __nac3_str_eq_impl<uint64_t>(str1, len1, str2, len2);
}
}

View File

@ -0,0 +1,21 @@
[package]
name = "nac3core_derive"
version = "0.1.0"
edition = "2021"
[lib]
proc-macro = true
[[test]]
name = "structfields_tests"
path = "tests/structfields_test.rs"
[dev-dependencies]
nac3core = { path = ".." }
trybuild = { version = "1.0", features = ["diff"] }
[dependencies]
proc-macro2 = "1.0"
proc-macro-error = "1.0"
syn = "2.0"
quote = "1.0"

View File

@ -0,0 +1,320 @@
use proc_macro::TokenStream;
use proc_macro_error::{abort, proc_macro_error};
use quote::quote;
use syn::{
parse_macro_input, spanned::Spanned, Data, DataStruct, Expr, ExprField, ExprMethodCall,
ExprPath, GenericArgument, Ident, LitStr, Path, PathArguments, Type, TypePath,
};
/// Extracts all generic arguments of a [`Type`] into a [`Vec`].
///
/// Returns [`Some`] of a possibly-empty [`Vec`] if the path of `ty` matches with
/// `expected_ty_name`, otherwise returns [`None`].
fn extract_generic_args(expected_ty_name: &'static str, ty: &Type) -> Option<Vec<GenericArgument>> {
let Type::Path(TypePath { qself: None, path, .. }) = ty else {
return None;
};
let segments = &path.segments;
if segments.len() != 1 {
return None;
};
let segment = segments.iter().next().unwrap();
if segment.ident != expected_ty_name {
return None;
}
let PathArguments::AngleBracketed(path_args) = &segment.arguments else {
return Some(Vec::new());
};
let args = &path_args.args;
Some(args.iter().cloned().collect::<Vec<_>>())
}
/// Maps a `path` matching one of the `target_idents` into the `replacement` [`Ident`].
fn map_path_to_ident(path: &Path, target_idents: &[&str], replacement: &str) -> Option<Ident> {
path.require_ident()
.ok()
.filter(|ident| target_idents.iter().any(|target| ident == target))
.map(|ident| Ident::new(replacement, ident.span()))
}
/// Extracts the left-hand side of a dot-expression.
fn extract_dot_operand(expr: &Expr) -> Option<&Expr> {
match expr {
Expr::MethodCall(ExprMethodCall { receiver: operand, .. })
| Expr::Field(ExprField { base: operand, .. }) => Some(operand),
_ => None,
}
}
/// Replaces the top-level receiver of a dot-expression with an [`Ident`], returning `Some(&mut expr)` if the
/// replacement is performed.
///
/// The top-level receiver is the left-most receiver expression, e.g. the top-level receiver of `a.b.c.foo()` is `a`.
fn replace_top_level_receiver(expr: &mut Expr, ident: Ident) -> Option<&mut Expr> {
if let Expr::MethodCall(ExprMethodCall { receiver: operand, .. })
| Expr::Field(ExprField { base: operand, .. }) = expr
{
return if extract_dot_operand(operand).is_some() {
if replace_top_level_receiver(operand, ident).is_some() {
Some(expr)
} else {
None
}
} else {
*operand = Box::new(Expr::Path(ExprPath {
attrs: Vec::default(),
qself: None,
path: ident.into(),
}));
Some(expr)
};
}
None
}
/// Iterates all operands to the left-hand side of the `.` of an [expression][`Expr`], i.e. the container operand of all
/// [`Expr::Field`] and the receiver operand of all [`Expr::MethodCall`].
///
/// The iterator will return the operand expressions in reverse order of appearance. For example, `a.b.c.func()` will
/// return `vec![c, b, a]`.
fn iter_dot_operands(expr: &Expr) -> impl Iterator<Item = &Expr> {
let mut o = extract_dot_operand(expr);
std::iter::from_fn(move || {
let this = o;
o = o.as_ref().and_then(|o| extract_dot_operand(o));
this
})
}
/// Normalizes a value expression for use when creating an instance of this structure, returning a
/// [`proc_macro2::TokenStream`] of tokens representing the normalized expression.
fn normalize_value_expr(expr: &Expr) -> proc_macro2::TokenStream {
match &expr {
Expr::Path(ExprPath { qself: None, path, .. }) => {
if let Some(ident) = map_path_to_ident(path, &["usize", "size_t"], "llvm_usize") {
quote! { #ident }
} else {
abort!(
path,
format!(
"Expected one of `size_t`, `usize`, or an implicit call expression in #[value_type(...)], found {}",
quote!(#expr).to_string(),
)
)
}
}
Expr::Call(_) => {
quote! { ctx.#expr }
}
Expr::MethodCall(_) => {
let base_receiver = iter_dot_operands(expr).last();
match base_receiver {
// `usize.{...}`, `size_t.{...}` -> Rewrite the identifiers to `llvm_usize`
Some(Expr::Path(ExprPath { qself: None, path, .. }))
if map_path_to_ident(path, &["usize", "size_t"], "llvm_usize").is_some() =>
{
let ident =
map_path_to_ident(path, &["usize", "size_t"], "llvm_usize").unwrap();
let mut expr = expr.clone();
let expr = replace_top_level_receiver(&mut expr, ident).unwrap();
quote!(#expr)
}
// `ctx.{...}`, `context.{...}` -> Rewrite the identifiers to `ctx`
Some(Expr::Path(ExprPath { qself: None, path, .. }))
if map_path_to_ident(path, &["ctx", "context"], "ctx").is_some() =>
{
let ident = map_path_to_ident(path, &["ctx", "context"], "ctx").unwrap();
let mut expr = expr.clone();
let expr = replace_top_level_receiver(&mut expr, ident).unwrap();
quote!(#expr)
}
// No reserved identifier prefix -> Prepend `ctx.` to the entire expression
_ => quote! { ctx.#expr },
}
}
_ => {
abort!(
expr,
format!(
"Expected one of `size_t`, `usize`, or an implicit call expression in #[value_type(...)], found {}",
quote!(#expr).to_string(),
)
)
}
}
}
/// Derives an implementation of `codegen::types::structure::StructFields`.
///
/// The benefit of using `#[derive(StructFields)]` is that all index- or order-dependent logic required by
/// `impl StructFields` is automatically generated by this implementation, including the field index as required by
/// `StructField::new` and the fields as returned by `StructFields::to_vec`.
///
/// # Prerequisites
///
/// In order to derive from [`StructFields`], you must implement (or derive) [`Eq`] and [`Copy`] as required by
/// `StructFields`.
///
/// Moreover, `#[derive(StructFields)]` can only be used for `struct`s with named fields, and may only contain fields
/// with either `StructField` or [`PhantomData`] types.
///
/// # Attributes for [`StructFields`]
///
/// Each `StructField` field must be declared with the `#[value_type(...)]` attribute. The argument of `value_type`
/// accepts one of the following:
///
/// - An expression returning an instance of `inkwell::types::BasicType` (with or without the receiver `ctx`/`context`).
/// For example, `context.i8_type()`, `ctx.i8_type()`, and `i8_type()` all refer to `i8`.
/// - The reserved identifiers `usize` and `size_t` referring to an `inkwell::types::IntType` of the platform-dependent
/// integer size. `usize` and `size_t` can also be used as the receiver to other method calls, e.g.
/// `usize.array_type(3)`.
///
/// # Example
///
/// The following is an example of an LLVM slice implemented using `#[derive(StructFields)]`.
///
/// ```rust,ignore
/// use nac3core::{
/// codegen::types::structure::StructField,
/// inkwell::{
/// values::{IntValue, PointerValue},
/// AddressSpace,
/// },
/// };
/// use nac3core_derive::StructFields;
///
/// // All classes that implement StructFields must also implement Eq and Copy
/// #[derive(PartialEq, Eq, Clone, Copy, StructFields)]
/// pub struct SliceValue<'ctx> {
/// // Declares ptr have a value type of i8*
/// //
/// // Can also be written as `ctx.i8_type().ptr_type(...)` or `context.i8_type().ptr_type(...)`
/// #[value_type(i8_type().ptr_type(AddressSpace::default()))]
/// ptr: StructField<'ctx, PointerValue<'ctx>>,
///
/// // Declares len have a value type of usize, depending on the target compilation platform
/// #[value_type(usize)]
/// len: StructField<'ctx, IntValue<'ctx>>,
/// }
/// ```
#[proc_macro_derive(StructFields, attributes(value_type))]
#[proc_macro_error]
pub fn derive(input: TokenStream) -> TokenStream {
let input = parse_macro_input!(input as syn::DeriveInput);
let ident = &input.ident;
let Data::Struct(DataStruct { fields, .. }) = &input.data else {
abort!(input, "Only structs with named fields are supported");
};
if let Err(err_span) =
fields
.iter()
.try_for_each(|field| if field.ident.is_some() { Ok(()) } else { Err(field.span()) })
{
abort!(err_span, "Only structs with named fields are supported");
};
// Check if struct<'ctx>
if input.generics.params.len() != 1 {
abort!(input.generics, "Expected exactly 1 generic parameter")
}
let phantom_info = fields
.iter()
.filter(|field| extract_generic_args("PhantomData", &field.ty).is_some())
.map(|field| field.ident.as_ref().unwrap())
.cloned()
.collect::<Vec<_>>();
let field_info = fields
.iter()
.filter(|field| extract_generic_args("PhantomData", &field.ty).is_none())
.map(|field| {
let ident = field.ident.as_ref().unwrap();
let ty = &field.ty;
let Some(_) = extract_generic_args("StructField", ty) else {
abort!(field, "Only StructField and PhantomData are allowed")
};
let attrs = &field.attrs;
let Some(value_type_attr) =
attrs.iter().find(|attr| attr.path().is_ident("value_type"))
else {
abort!(field, "Expected #[value_type(...)] attribute for field");
};
let Ok(value_type_expr) = value_type_attr.parse_args::<Expr>() else {
abort!(value_type_attr, "Expected expression in #[value_type(...)]");
};
let value_expr_toks = normalize_value_expr(&value_type_expr);
(ident.clone(), value_expr_toks)
})
.collect::<Vec<_>>();
// `<*>::new` impl of `StructField` and `PhantomData` for `StructFields::new`
let phantoms_create = phantom_info
.iter()
.map(|id| quote! { #id: ::std::marker::PhantomData })
.collect::<Vec<_>>();
let fields_create = field_info
.iter()
.map(|(id, ty)| {
let id_lit = LitStr::new(&id.to_string(), id.span());
quote! {
#id: ::nac3core::codegen::types::structure::StructField::create(
&mut counter,
#id_lit,
#ty,
)
}
})
.collect::<Vec<_>>();
// `.into()` impl of `StructField` for `StructFields::to_vec`
let fields_into =
field_info.iter().map(|(id, _)| quote! { self.#id.into() }).collect::<Vec<_>>();
let impl_block = quote! {
impl<'ctx> ::nac3core::codegen::types::structure::StructFields<'ctx> for #ident<'ctx> {
fn new(ctx: impl ::nac3core::inkwell::context::AsContextRef<'ctx>, llvm_usize: ::nac3core::inkwell::types::IntType<'ctx>) -> Self {
let ctx = unsafe { ::nac3core::inkwell::context::ContextRef::new(ctx.as_ctx_ref()) };
let mut counter = ::nac3core::codegen::types::structure::FieldIndexCounter::default();
#ident {
#(#fields_create),*
#(#phantoms_create),*
}
}
fn to_vec(&self) -> ::std::vec::Vec<(&'static str, ::nac3core::inkwell::types::BasicTypeEnum<'ctx>)> {
vec![
#(#fields_into),*
]
}
}
};
impl_block.into()
}

View File

@ -0,0 +1,9 @@
use nac3core_derive::StructFields;
use std::marker::PhantomData;
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct EmptyValue<'ctx> {
_phantom: PhantomData<&'ctx ()>,
}
fn main() {}

View File

@ -0,0 +1,20 @@
use nac3core::{
codegen::types::structure::StructField,
inkwell::{
values::{IntValue, PointerValue},
AddressSpace,
},
};
use nac3core_derive::StructFields;
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct NDArrayValue<'ctx> {
#[value_type(usize)]
ndims: StructField<'ctx, IntValue<'ctx>>,
#[value_type(usize.ptr_type(AddressSpace::default()))]
shape: StructField<'ctx, PointerValue<'ctx>>,
#[value_type(i8_type().ptr_type(AddressSpace::default()))]
data: StructField<'ctx, PointerValue<'ctx>>,
}
fn main() {}

View File

@ -0,0 +1,18 @@
use nac3core::{
codegen::types::structure::StructField,
inkwell::{
values::{IntValue, PointerValue},
AddressSpace,
},
};
use nac3core_derive::StructFields;
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct SliceValue<'ctx> {
#[value_type(i8_type().ptr_type(AddressSpace::default()))]
ptr: StructField<'ctx, PointerValue<'ctx>>,
#[value_type(usize)]
len: StructField<'ctx, IntValue<'ctx>>,
}
fn main() {}

View File

@ -0,0 +1,18 @@
use nac3core::{
codegen::types::structure::StructField,
inkwell::{
values::{IntValue, PointerValue},
AddressSpace,
},
};
use nac3core_derive::StructFields;
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct SliceValue<'ctx> {
#[value_type(context.i8_type().ptr_type(AddressSpace::default()))]
ptr: StructField<'ctx, PointerValue<'ctx>>,
#[value_type(usize)]
len: StructField<'ctx, IntValue<'ctx>>,
}
fn main() {}

View File

@ -0,0 +1,18 @@
use nac3core::{
codegen::types::structure::StructField,
inkwell::{
values::{IntValue, PointerValue},
AddressSpace,
},
};
use nac3core_derive::StructFields;
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct SliceValue<'ctx> {
#[value_type(ctx.i8_type().ptr_type(AddressSpace::default()))]
ptr: StructField<'ctx, PointerValue<'ctx>>,
#[value_type(usize)]
len: StructField<'ctx, IntValue<'ctx>>,
}
fn main() {}

View File

@ -0,0 +1,18 @@
use nac3core::{
codegen::types::structure::StructField,
inkwell::{
values::{IntValue, PointerValue},
AddressSpace,
},
};
use nac3core_derive::StructFields;
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct SliceValue<'ctx> {
#[value_type(i8_type().ptr_type(AddressSpace::default()))]
ptr: StructField<'ctx, PointerValue<'ctx>>,
#[value_type(size_t)]
len: StructField<'ctx, IntValue<'ctx>>,
}
fn main() {}

View File

@ -0,0 +1,10 @@
#[test]
fn test_parse_empty() {
let t = trybuild::TestCases::new();
t.pass("tests/structfields_empty.rs");
t.pass("tests/structfields_slice.rs");
t.pass("tests/structfields_slice_ctx.rs");
t.pass("tests/structfields_slice_context.rs");
t.pass("tests/structfields_slice_sizet.rs");
t.pass("tests/structfields_ndarray.rs");
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,3 +1,9 @@
use std::collections::HashMap;
use indexmap::IndexMap;
use nac3parser::ast::StrRef;
use crate::{ use crate::{
symbol_resolver::SymbolValue, symbol_resolver::SymbolValue,
toplevel::DefinitionId, toplevel::DefinitionId,
@ -9,10 +15,6 @@ use crate::{
}, },
}; };
use indexmap::IndexMap;
use nac3parser::ast::StrRef;
use std::collections::HashMap;
pub struct ConcreteTypeStore { pub struct ConcreteTypeStore {
store: Vec<ConcreteTypeEnum>, store: Vec<ConcreteTypeEnum>,
} }

File diff suppressed because it is too large Load Diff

View File

@ -1,8 +1,10 @@
use inkwell::attributes::{Attribute, AttributeLoc}; use inkwell::{
use inkwell::values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue}; attributes::{Attribute, AttributeLoc},
values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue},
};
use itertools::Either; use itertools::Either;
use crate::codegen::CodeGenContext; use super::CodeGenContext;
/// Macro to generate extern function /// Macro to generate extern function
/// Both function return type and function parameter type are `FloatValue` /// Both function return type and function parameter type are `FloatValue`

View File

@ -1,20 +1,23 @@
use crate::{
codegen::{bool_to_i1, bool_to_i8, classes::ArraySliceValue, expr::*, stmt::*, CodeGenContext},
symbol_resolver::ValueEnum,
toplevel::{DefinitionId, TopLevelDef},
typecheck::typedef::{FunSignature, Type},
};
use inkwell::{ use inkwell::{
context::Context, context::Context,
types::{BasicTypeEnum, IntType}, types::{BasicTypeEnum, IntType},
values::{BasicValueEnum, IntValue, PointerValue}, values::{BasicValueEnum, IntValue, PointerValue},
}; };
use nac3parser::ast::{Expr, Stmt, StrRef}; use nac3parser::ast::{Expr, Stmt, StrRef};
use super::{bool_to_i1, bool_to_i8, expr::*, stmt::*, values::ArraySliceValue, CodeGenContext};
use crate::{
symbol_resolver::ValueEnum,
toplevel::{DefinitionId, TopLevelDef},
typecheck::typedef::{FunSignature, Type},
};
pub trait CodeGenerator { pub trait CodeGenerator {
/// Return the module name for the code generator. /// Return the module name for the code generator.
fn get_name(&self) -> &str; fn get_name(&self) -> &str;
/// Return an instance of [`IntType`] corresponding to the type of `size_t` for this instance.
fn get_size_type<'ctx>(&self, ctx: &'ctx Context) -> IntType<'ctx>; fn get_size_type<'ctx>(&self, ctx: &'ctx Context) -> IntType<'ctx>;
/// Generate function call and returns the function return value. /// Generate function call and returns the function return value.

View File

@ -0,0 +1,174 @@
use inkwell::{
types::BasicTypeEnum,
values::{BasicValueEnum, CallSiteValue, IntValue},
AddressSpace, IntPredicate,
};
use itertools::Either;
use super::calculate_len_for_slice_range;
use crate::codegen::{
macros::codegen_unreachable,
values::{ArrayLikeValue, ListValue},
CodeGenContext, CodeGenerator,
};
/// This function handles 'end' **inclusively**.
/// Order of tuples `assign_idx` and `value_idx` is ('start', 'end', 'step').
/// Negative index should be handled before entering this function
pub fn list_slice_assignment<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ty: BasicTypeEnum<'ctx>,
dest_arr: ListValue<'ctx>,
dest_idx: (IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>),
src_arr: ListValue<'ctx>,
src_idx: (IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>),
) {
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pi8 = ctx.ctx.i8_type().ptr_type(AddressSpace::default());
let llvm_i32 = ctx.ctx.i32_type();
assert_eq!(dest_idx.0.get_type(), llvm_i32);
assert_eq!(dest_idx.1.get_type(), llvm_i32);
assert_eq!(dest_idx.2.get_type(), llvm_i32);
assert_eq!(src_idx.0.get_type(), llvm_i32);
assert_eq!(src_idx.1.get_type(), llvm_i32);
assert_eq!(src_idx.2.get_type(), llvm_i32);
let (fun_symbol, elem_ptr_type) = ("__nac3_list_slice_assign_var_size", llvm_pi8);
let slice_assign_fun = {
let ty_vec = vec![
llvm_i32.into(), // dest start idx
llvm_i32.into(), // dest end idx
llvm_i32.into(), // dest step
elem_ptr_type.into(), // dest arr ptr
llvm_i32.into(), // dest arr len
llvm_i32.into(), // src start idx
llvm_i32.into(), // src end idx
llvm_i32.into(), // src step
elem_ptr_type.into(), // src arr ptr
llvm_i32.into(), // src arr len
llvm_i32.into(), // size
];
ctx.module.get_function(fun_symbol).unwrap_or_else(|| {
let fn_t = llvm_i32.fn_type(ty_vec.as_slice(), false);
ctx.module.add_function(fun_symbol, fn_t, None)
})
};
let zero = llvm_i32.const_zero();
let one = llvm_i32.const_int(1, false);
let dest_arr_ptr = dest_arr.data().base_ptr(ctx, generator);
let dest_arr_ptr =
ctx.builder.build_pointer_cast(dest_arr_ptr, elem_ptr_type, "dest_arr_ptr_cast").unwrap();
let dest_len = dest_arr.load_size(ctx, Some("dest.len"));
let dest_len =
ctx.builder.build_int_truncate_or_bit_cast(dest_len, llvm_i32, "srclen32").unwrap();
let src_arr_ptr = src_arr.data().base_ptr(ctx, generator);
let src_arr_ptr =
ctx.builder.build_pointer_cast(src_arr_ptr, elem_ptr_type, "src_arr_ptr_cast").unwrap();
let src_len = src_arr.load_size(ctx, Some("src.len"));
let src_len =
ctx.builder.build_int_truncate_or_bit_cast(src_len, llvm_i32, "srclen32").unwrap();
// index in bound and positive should be done
// assert if dest.step == 1 then len(src) <= len(dest) else len(src) == len(dest), and
// throw exception if not satisfied
let src_end = ctx
.builder
.build_select(
ctx.builder.build_int_compare(IntPredicate::SLT, src_idx.2, zero, "is_neg").unwrap(),
ctx.builder.build_int_sub(src_idx.1, one, "e_min_one").unwrap(),
ctx.builder.build_int_add(src_idx.1, one, "e_add_one").unwrap(),
"final_e",
)
.map(BasicValueEnum::into_int_value)
.unwrap();
let dest_end = ctx
.builder
.build_select(
ctx.builder.build_int_compare(IntPredicate::SLT, dest_idx.2, zero, "is_neg").unwrap(),
ctx.builder.build_int_sub(dest_idx.1, one, "e_min_one").unwrap(),
ctx.builder.build_int_add(dest_idx.1, one, "e_add_one").unwrap(),
"final_e",
)
.map(BasicValueEnum::into_int_value)
.unwrap();
let src_slice_len =
calculate_len_for_slice_range(generator, ctx, src_idx.0, src_end, src_idx.2);
let dest_slice_len =
calculate_len_for_slice_range(generator, ctx, dest_idx.0, dest_end, dest_idx.2);
let src_eq_dest = ctx
.builder
.build_int_compare(IntPredicate::EQ, src_slice_len, dest_slice_len, "slice_src_eq_dest")
.unwrap();
let src_slt_dest = ctx
.builder
.build_int_compare(IntPredicate::SLT, src_slice_len, dest_slice_len, "slice_src_slt_dest")
.unwrap();
let dest_step_eq_one = ctx
.builder
.build_int_compare(
IntPredicate::EQ,
dest_idx.2,
dest_idx.2.get_type().const_int(1, false),
"slice_dest_step_eq_one",
)
.unwrap();
let cond_1 = ctx.builder.build_and(dest_step_eq_one, src_slt_dest, "slice_cond_1").unwrap();
let cond = ctx.builder.build_or(src_eq_dest, cond_1, "slice_cond").unwrap();
ctx.make_assert(
generator,
cond,
"0:ValueError",
"attempt to assign sequence of size {0} to slice of size {1} with step size {2}",
[Some(src_slice_len), Some(dest_slice_len), Some(dest_idx.2)],
ctx.current_loc,
);
let new_len = {
let args = vec![
dest_idx.0.into(), // dest start idx
dest_idx.1.into(), // dest end idx
dest_idx.2.into(), // dest step
dest_arr_ptr.into(), // dest arr ptr
dest_len.into(), // dest arr len
src_idx.0.into(), // src start idx
src_idx.1.into(), // src end idx
src_idx.2.into(), // src step
src_arr_ptr.into(), // src arr ptr
src_len.into(), // src arr len
{
let s = match ty {
BasicTypeEnum::FloatType(t) => t.size_of(),
BasicTypeEnum::IntType(t) => t.size_of(),
BasicTypeEnum::PointerType(t) => t.size_of(),
BasicTypeEnum::StructType(t) => t.size_of().unwrap(),
_ => codegen_unreachable!(ctx),
};
ctx.builder.build_int_truncate_or_bit_cast(s, llvm_i32, "size").unwrap()
}
.into(),
];
ctx.builder
.build_call(slice_assign_fun, args.as_slice(), "slice_assign")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
};
// update length
let need_update =
ctx.builder.build_int_compare(IntPredicate::NE, new_len, dest_len, "need_update").unwrap();
let current = ctx.builder.get_insert_block().unwrap().get_parent().unwrap();
let update_bb = ctx.ctx.append_basic_block(current, "update");
let cont_bb = ctx.ctx.append_basic_block(current, "cont");
ctx.builder.build_conditional_branch(need_update, update_bb, cont_bb).unwrap();
ctx.builder.position_at_end(update_bb);
let new_len =
ctx.builder.build_int_z_extend_or_bit_cast(new_len, llvm_usize, "new_len").unwrap();
dest_arr.store_size(ctx, generator, new_len);
ctx.builder.build_unconditional_branch(cont_bb).unwrap();
ctx.builder.position_at_end(cont_bb);
}

View File

@ -0,0 +1,168 @@
use inkwell::{
values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue},
IntPredicate,
};
use itertools::Either;
use crate::codegen::{
macros::codegen_unreachable,
{CodeGenContext, CodeGenerator},
};
// repeated squaring method adapted from GNU Scientific Library:
// https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c
pub fn integer_power<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
base: IntValue<'ctx>,
exp: IntValue<'ctx>,
signed: bool,
) -> IntValue<'ctx> {
let symbol = match (base.get_type().get_bit_width(), exp.get_type().get_bit_width(), signed) {
(32, 32, true) => "__nac3_int_exp_int32_t",
(64, 64, true) => "__nac3_int_exp_int64_t",
(32, 32, false) => "__nac3_int_exp_uint32_t",
(64, 64, false) => "__nac3_int_exp_uint64_t",
_ => codegen_unreachable!(ctx),
};
let base_type = base.get_type();
let pow_fun = ctx.module.get_function(symbol).unwrap_or_else(|| {
let fn_type = base_type.fn_type(&[base_type.into(), base_type.into()], false);
ctx.module.add_function(symbol, fn_type, None)
});
// throw exception when exp < 0
let ge_zero = ctx
.builder
.build_int_compare(
IntPredicate::SGE,
exp,
exp.get_type().const_zero(),
"assert_int_pow_ge_0",
)
.unwrap();
ctx.make_assert(
generator,
ge_zero,
"0:ValueError",
"integer power must be positive or zero",
[None, None, None],
ctx.current_loc,
);
ctx.builder
.build_call(pow_fun, &[base.into(), exp.into()], "call_int_pow")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Generates a call to `isinf` in IR. Returns an `i1` representing the result.
pub fn call_isinf<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
v: FloatValue<'ctx>,
) -> IntValue<'ctx> {
let llvm_i32 = ctx.ctx.i32_type();
let llvm_f64 = ctx.ctx.f64_type();
assert_eq!(v.get_type(), llvm_f64);
let intrinsic_fn = ctx.module.get_function("__nac3_isinf").unwrap_or_else(|| {
let fn_type = llvm_i32.fn_type(&[llvm_f64.into()], false);
ctx.module.add_function("__nac3_isinf", fn_type, None)
});
let ret = ctx
.builder
.build_call(intrinsic_fn, &[v.into()], "isinf")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap();
generator.bool_to_i1(ctx, ret)
}
/// Generates a call to `isnan` in IR. Returns an `i1` representing the result.
pub fn call_isnan<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
v: FloatValue<'ctx>,
) -> IntValue<'ctx> {
let llvm_i32 = ctx.ctx.i32_type();
let llvm_f64 = ctx.ctx.f64_type();
assert_eq!(v.get_type(), llvm_f64);
let intrinsic_fn = ctx.module.get_function("__nac3_isnan").unwrap_or_else(|| {
let fn_type = llvm_i32.fn_type(&[llvm_f64.into()], false);
ctx.module.add_function("__nac3_isnan", fn_type, None)
});
let ret = ctx
.builder
.build_call(intrinsic_fn, &[v.into()], "isnan")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap();
generator.bool_to_i1(ctx, ret)
}
/// Generates a call to `gamma` in IR. Returns an `f64` representing the result.
pub fn call_gamma<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> FloatValue<'ctx> {
let llvm_f64 = ctx.ctx.f64_type();
assert_eq!(v.get_type(), llvm_f64);
let intrinsic_fn = ctx.module.get_function("__nac3_gamma").unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
ctx.module.add_function("__nac3_gamma", fn_type, None)
});
ctx.builder
.build_call(intrinsic_fn, &[v.into()], "gamma")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Generates a call to `gammaln` in IR. Returns an `f64` representing the result.
pub fn call_gammaln<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> FloatValue<'ctx> {
let llvm_f64 = ctx.ctx.f64_type();
assert_eq!(v.get_type(), llvm_f64);
let intrinsic_fn = ctx.module.get_function("__nac3_gammaln").unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
ctx.module.add_function("__nac3_gammaln", fn_type, None)
});
ctx.builder
.build_call(intrinsic_fn, &[v.into()], "gammaln")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Generates a call to `j0` in IR. Returns an `f64` representing the result.
pub fn call_j0<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> FloatValue<'ctx> {
let llvm_f64 = ctx.ctx.f64_type();
assert_eq!(v.get_type(), llvm_f64);
let intrinsic_fn = ctx.module.get_function("__nac3_j0").unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
ctx.module.add_function("__nac3_j0", fn_type, None)
});
ctx.builder
.build_call(intrinsic_fn, &[v.into()], "j0")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}

View File

@ -1,29 +1,31 @@
use crate::{symbol_resolver::SymbolResolver, typecheck::typedef::Type};
use super::{
classes::{ArrayLikeValue, ListValue},
model::*,
object::{
list::List,
ndarray::{broadcast::ShapeEntry, indexing::NDIndex, nditer::NDIter, NDArray},
},
CodeGenContext, CodeGenerator,
};
use function::CallFunction;
use inkwell::{ use inkwell::{
attributes::{Attribute, AttributeLoc}, attributes::{Attribute, AttributeLoc},
context::Context, context::Context,
memory_buffer::MemoryBuffer, memory_buffer::MemoryBuffer,
module::Module, module::Module,
types::BasicTypeEnum, values::{BasicValue, BasicValueEnum, IntValue},
values::{BasicValue, BasicValueEnum, CallSiteValue, FloatValue, IntValue}, IntPredicate,
AddressSpace, IntPredicate,
}; };
use itertools::Either;
use nac3parser::ast::Expr; use nac3parser::ast::Expr;
use super::{CodeGenContext, CodeGenerator};
use crate::{symbol_resolver::SymbolResolver, typecheck::typedef::Type};
pub use list::*;
pub use math::*;
pub use range::*;
pub use slice::*;
pub use string::*;
mod list;
mod math;
pub mod ndarray;
mod range;
mod slice;
mod string;
#[must_use] #[must_use]
pub fn load_irrt(ctx: &Context) -> Module { pub fn load_irrt<'ctx>(ctx: &'ctx Context, symbol_resolver: &dyn SymbolResolver) -> Module<'ctx> {
let bitcode_buf = MemoryBuffer::create_from_memory_range( let bitcode_buf = MemoryBuffer::create_from_memory_range(
include_bytes!(concat!(env!("OUT_DIR"), "/irrt.bc")), include_bytes!(concat!(env!("OUT_DIR"), "/irrt.bc")),
"irrt_bitcode_buffer", "irrt_bitcode_buffer",
@ -39,89 +41,47 @@ pub fn load_irrt(ctx: &Context) -> Module {
let function = irrt_mod.get_function(symbol).unwrap(); let function = irrt_mod.get_function(symbol).unwrap();
function.add_attribute(AttributeLoc::Function, ctx.create_enum_attribute(inline_attr, 0)); function.add_attribute(AttributeLoc::Function, ctx.create_enum_attribute(inline_attr, 0));
} }
// Initialize all global `EXN_*` exception IDs in IRRT with the [`SymbolResolver`].
let exn_id_type = ctx.i32_type();
let errors = &[
("EXN_INDEX_ERROR", "0:IndexError"),
("EXN_VALUE_ERROR", "0:ValueError"),
("EXN_ASSERTION_ERROR", "0:AssertionError"),
("EXN_TYPE_ERROR", "0:TypeError"),
];
for (irrt_name, symbol_name) in errors {
let exn_id = symbol_resolver.get_string_id(symbol_name);
let exn_id = exn_id_type.const_int(exn_id as u64, false).as_basic_value_enum();
let global = irrt_mod.get_global(irrt_name).unwrap_or_else(|| {
panic!("Exception symbol name '{irrt_name}' should exist in the IRRT LLVM module")
});
global.set_initializer(&exn_id);
}
irrt_mod irrt_mod
} }
// repeated squaring method adapted from GNU Scientific Library: /// Returns the name of a function which contains variants for 32-bit and 64-bit `size_t`.
// https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c ///
pub fn integer_power<'ctx, G: CodeGenerator + ?Sized>( /// - When [`TypeContext::size_type`] is 32-bits, the function name is `fn_name}`.
generator: &mut G, /// - When [`TypeContext::size_type`] is 64-bits, the function name is `{fn_name}64`.
ctx: &mut CodeGenContext<'ctx, '_>, #[must_use]
base: IntValue<'ctx>, pub fn get_usize_dependent_function_name<G: CodeGenerator + ?Sized>(
exp: IntValue<'ctx>, generator: &G,
signed: bool, ctx: &CodeGenContext<'_, '_>,
) -> IntValue<'ctx> { name: &str,
let symbol = match (base.get_type().get_bit_width(), exp.get_type().get_bit_width(), signed) { ) -> String {
(32, 32, true) => "__nac3_int_exp_int32_t", let mut name = name.to_owned();
(64, 64, true) => "__nac3_int_exp_int64_t", match generator.get_size_type(ctx.ctx).get_bit_width() {
(32, 32, false) => "__nac3_int_exp_uint32_t", 32 => {}
(64, 64, false) => "__nac3_int_exp_uint64_t", 64 => name.push_str("64"),
_ => unreachable!(), bit_width => {
}; panic!("Unsupported int type bit width {bit_width}, must be either 32-bits or 64-bits")
let base_type = base.get_type(); }
let pow_fun = ctx.module.get_function(symbol).unwrap_or_else(|| { }
let fn_type = base_type.fn_type(&[base_type.into(), base_type.into()], false); name
ctx.module.add_function(symbol, fn_type, None)
});
// throw exception when exp < 0
let ge_zero = ctx
.builder
.build_int_compare(
IntPredicate::SGE,
exp,
exp.get_type().const_zero(),
"assert_int_pow_ge_0",
)
.unwrap();
ctx.make_assert(
generator,
ge_zero,
"0:ValueError",
"integer power must be positive or zero",
[None, None, None],
ctx.current_loc,
);
ctx.builder
.build_call(pow_fun, &[base.into(), exp.into()], "call_int_pow")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
}
pub fn calculate_len_for_slice_range<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
start: IntValue<'ctx>,
end: IntValue<'ctx>,
step: IntValue<'ctx>,
) -> IntValue<'ctx> {
const SYMBOL: &str = "__nac3_range_slice_len";
let len_func = ctx.module.get_function(SYMBOL).unwrap_or_else(|| {
let i32_t = ctx.ctx.i32_type();
let fn_t = i32_t.fn_type(&[i32_t.into(), i32_t.into(), i32_t.into()], false);
ctx.module.add_function(SYMBOL, fn_t, None)
});
// assert step != 0, throw exception if not
let not_zero = ctx
.builder
.build_int_compare(IntPredicate::NE, step, step.get_type().const_zero(), "range_step_ne")
.unwrap();
ctx.make_assert(
generator,
not_zero,
"0:ValueError",
"step must not be zero",
[None, None, None],
ctx.current_loc,
);
ctx.builder
.build_call(len_func, &[start.into(), end.into(), step.into()], "calc_len")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
} }
/// NOTE: the output value of the end index of this function should be compared ***inclusively***, /// NOTE: the output value of the end index of this function should be compared ***inclusively***,
@ -172,10 +132,11 @@ pub fn handle_slice_indices<'ctx, G: CodeGenerator>(
generator: &mut G, generator: &mut G,
length: IntValue<'ctx>, length: IntValue<'ctx>,
) -> Result<Option<(IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>)>, String> { ) -> Result<Option<(IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>)>, String> {
let int32 = ctx.ctx.i32_type(); let llvm_i32 = ctx.ctx.i32_type();
let zero = int32.const_zero();
let one = int32.const_int(1, false); let zero = llvm_i32.const_zero();
let length = ctx.builder.build_int_truncate_or_bit_cast(length, int32, "leni32").unwrap(); let one = llvm_i32.const_int(1, false);
let length = ctx.builder.build_int_truncate_or_bit_cast(length, llvm_i32, "leni32").unwrap();
Ok(Some(match (start, end, step) { Ok(Some(match (start, end, step) {
(s, e, None) => ( (s, e, None) => (
if let Some(s) = s.as_ref() { if let Some(s) = s.as_ref() {
@ -184,7 +145,7 @@ pub fn handle_slice_indices<'ctx, G: CodeGenerator>(
None => return Ok(None), None => return Ok(None),
} }
} else { } else {
int32.const_zero() llvm_i32.const_zero()
}, },
{ {
let e = if let Some(s) = e.as_ref() { let e = if let Some(s) = e.as_ref() {
@ -289,599 +250,3 @@ pub fn handle_slice_indices<'ctx, G: CodeGenerator>(
} }
})) }))
} }
/// this function allows index out of range, since python
/// allows index out of range in slice (`a = [1,2,3]; a[1:10] == [2,3]`).
pub fn handle_slice_index_bound<'ctx, G: CodeGenerator>(
i: &Expr<Option<Type>>,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
length: IntValue<'ctx>,
) -> Result<Option<IntValue<'ctx>>, String> {
const SYMBOL: &str = "__nac3_slice_index_bound";
let func = ctx.module.get_function(SYMBOL).unwrap_or_else(|| {
let i32_t = ctx.ctx.i32_type();
let fn_t = i32_t.fn_type(&[i32_t.into(), i32_t.into()], false);
ctx.module.add_function(SYMBOL, fn_t, None)
});
let i = if let Some(v) = generator.gen_expr(ctx, i)? {
v.to_basic_value_enum(ctx, generator, i.custom.unwrap())?
} else {
return Ok(None);
};
Ok(Some(
ctx.builder
.build_call(func, &[i.into(), length.into()], "bounded_ind")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap(),
))
}
/// This function handles 'end' **inclusively**.
/// Order of tuples `assign_idx` and `value_idx` is ('start', 'end', 'step').
/// Negative index should be handled before entering this function
pub fn list_slice_assignment<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ty: BasicTypeEnum<'ctx>,
dest_arr: ListValue<'ctx>,
dest_idx: (IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>),
src_arr: ListValue<'ctx>,
src_idx: (IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>),
) {
let size_ty = generator.get_size_type(ctx.ctx);
let int8_ptr = ctx.ctx.i8_type().ptr_type(AddressSpace::default());
let int32 = ctx.ctx.i32_type();
let (fun_symbol, elem_ptr_type) = ("__nac3_list_slice_assign_var_size", int8_ptr);
let slice_assign_fun = {
let ty_vec = vec![
int32.into(), // dest start idx
int32.into(), // dest end idx
int32.into(), // dest step
elem_ptr_type.into(), // dest arr ptr
int32.into(), // dest arr len
int32.into(), // src start idx
int32.into(), // src end idx
int32.into(), // src step
elem_ptr_type.into(), // src arr ptr
int32.into(), // src arr len
int32.into(), // size
];
ctx.module.get_function(fun_symbol).unwrap_or_else(|| {
let fn_t = int32.fn_type(ty_vec.as_slice(), false);
ctx.module.add_function(fun_symbol, fn_t, None)
})
};
let zero = int32.const_zero();
let one = int32.const_int(1, false);
let dest_arr_ptr = dest_arr.data().base_ptr(ctx, generator);
let dest_arr_ptr =
ctx.builder.build_pointer_cast(dest_arr_ptr, elem_ptr_type, "dest_arr_ptr_cast").unwrap();
let dest_len = dest_arr.load_size(ctx, Some("dest.len"));
let dest_len = ctx.builder.build_int_truncate_or_bit_cast(dest_len, int32, "srclen32").unwrap();
let src_arr_ptr = src_arr.data().base_ptr(ctx, generator);
let src_arr_ptr =
ctx.builder.build_pointer_cast(src_arr_ptr, elem_ptr_type, "src_arr_ptr_cast").unwrap();
let src_len = src_arr.load_size(ctx, Some("src.len"));
let src_len = ctx.builder.build_int_truncate_or_bit_cast(src_len, int32, "srclen32").unwrap();
// index in bound and positive should be done
// assert if dest.step == 1 then len(src) <= len(dest) else len(src) == len(dest), and
// throw exception if not satisfied
let src_end = ctx
.builder
.build_select(
ctx.builder.build_int_compare(IntPredicate::SLT, src_idx.2, zero, "is_neg").unwrap(),
ctx.builder.build_int_sub(src_idx.1, one, "e_min_one").unwrap(),
ctx.builder.build_int_add(src_idx.1, one, "e_add_one").unwrap(),
"final_e",
)
.map(BasicValueEnum::into_int_value)
.unwrap();
let dest_end = ctx
.builder
.build_select(
ctx.builder.build_int_compare(IntPredicate::SLT, dest_idx.2, zero, "is_neg").unwrap(),
ctx.builder.build_int_sub(dest_idx.1, one, "e_min_one").unwrap(),
ctx.builder.build_int_add(dest_idx.1, one, "e_add_one").unwrap(),
"final_e",
)
.map(BasicValueEnum::into_int_value)
.unwrap();
let src_slice_len =
calculate_len_for_slice_range(generator, ctx, src_idx.0, src_end, src_idx.2);
let dest_slice_len =
calculate_len_for_slice_range(generator, ctx, dest_idx.0, dest_end, dest_idx.2);
let src_eq_dest = ctx
.builder
.build_int_compare(IntPredicate::EQ, src_slice_len, dest_slice_len, "slice_src_eq_dest")
.unwrap();
let src_slt_dest = ctx
.builder
.build_int_compare(IntPredicate::SLT, src_slice_len, dest_slice_len, "slice_src_slt_dest")
.unwrap();
let dest_step_eq_one = ctx
.builder
.build_int_compare(
IntPredicate::EQ,
dest_idx.2,
dest_idx.2.get_type().const_int(1, false),
"slice_dest_step_eq_one",
)
.unwrap();
let cond_1 = ctx.builder.build_and(dest_step_eq_one, src_slt_dest, "slice_cond_1").unwrap();
let cond = ctx.builder.build_or(src_eq_dest, cond_1, "slice_cond").unwrap();
ctx.make_assert(
generator,
cond,
"0:ValueError",
"attempt to assign sequence of size {0} to slice of size {1} with step size {2}",
[Some(src_slice_len), Some(dest_slice_len), Some(dest_idx.2)],
ctx.current_loc,
);
let new_len = {
let args = vec![
dest_idx.0.into(), // dest start idx
dest_idx.1.into(), // dest end idx
dest_idx.2.into(), // dest step
dest_arr_ptr.into(), // dest arr ptr
dest_len.into(), // dest arr len
src_idx.0.into(), // src start idx
src_idx.1.into(), // src end idx
src_idx.2.into(), // src step
src_arr_ptr.into(), // src arr ptr
src_len.into(), // src arr len
{
let s = match ty {
BasicTypeEnum::FloatType(t) => t.size_of(),
BasicTypeEnum::IntType(t) => t.size_of(),
BasicTypeEnum::PointerType(t) => t.size_of(),
BasicTypeEnum::StructType(t) => t.size_of().unwrap(),
_ => unreachable!(),
};
ctx.builder.build_int_truncate_or_bit_cast(s, int32, "size").unwrap()
}
.into(),
];
ctx.builder
.build_call(slice_assign_fun, args.as_slice(), "slice_assign")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
};
// update length
let need_update =
ctx.builder.build_int_compare(IntPredicate::NE, new_len, dest_len, "need_update").unwrap();
let current = ctx.builder.get_insert_block().unwrap().get_parent().unwrap();
let update_bb = ctx.ctx.append_basic_block(current, "update");
let cont_bb = ctx.ctx.append_basic_block(current, "cont");
ctx.builder.build_conditional_branch(need_update, update_bb, cont_bb).unwrap();
ctx.builder.position_at_end(update_bb);
let new_len = ctx.builder.build_int_z_extend_or_bit_cast(new_len, size_ty, "new_len").unwrap();
dest_arr.store_size(ctx, generator, new_len);
ctx.builder.build_unconditional_branch(cont_bb).unwrap();
ctx.builder.position_at_end(cont_bb);
}
/// Generates a call to `isinf` in IR. Returns an `i1` representing the result.
pub fn call_isinf<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
v: FloatValue<'ctx>,
) -> IntValue<'ctx> {
let intrinsic_fn = ctx.module.get_function("__nac3_isinf").unwrap_or_else(|| {
let fn_type = ctx.ctx.i32_type().fn_type(&[ctx.ctx.f64_type().into()], false);
ctx.module.add_function("__nac3_isinf", fn_type, None)
});
let ret = ctx
.builder
.build_call(intrinsic_fn, &[v.into()], "isinf")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap();
generator.bool_to_i1(ctx, ret)
}
/// Generates a call to `isnan` in IR. Returns an `i1` representing the result.
pub fn call_isnan<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
v: FloatValue<'ctx>,
) -> IntValue<'ctx> {
let intrinsic_fn = ctx.module.get_function("__nac3_isnan").unwrap_or_else(|| {
let fn_type = ctx.ctx.i32_type().fn_type(&[ctx.ctx.f64_type().into()], false);
ctx.module.add_function("__nac3_isnan", fn_type, None)
});
let ret = ctx
.builder
.build_call(intrinsic_fn, &[v.into()], "isnan")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap();
generator.bool_to_i1(ctx, ret)
}
/// Generates a call to `gamma` in IR. Returns an `f64` representing the result.
pub fn call_gamma<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> FloatValue<'ctx> {
let llvm_f64 = ctx.ctx.f64_type();
let intrinsic_fn = ctx.module.get_function("__nac3_gamma").unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
ctx.module.add_function("__nac3_gamma", fn_type, None)
});
ctx.builder
.build_call(intrinsic_fn, &[v.into()], "gamma")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Generates a call to `gammaln` in IR. Returns an `f64` representing the result.
pub fn call_gammaln<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> FloatValue<'ctx> {
let llvm_f64 = ctx.ctx.f64_type();
let intrinsic_fn = ctx.module.get_function("__nac3_gammaln").unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
ctx.module.add_function("__nac3_gammaln", fn_type, None)
});
ctx.builder
.build_call(intrinsic_fn, &[v.into()], "gammaln")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Generates a call to `j0` in IR. Returns an `f64` representing the result.
pub fn call_j0<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> FloatValue<'ctx> {
let llvm_f64 = ctx.ctx.f64_type();
let intrinsic_fn = ctx.module.get_function("__nac3_j0").unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
ctx.module.add_function("__nac3_j0", fn_type, None)
});
ctx.builder
.build_call(intrinsic_fn, &[v.into()], "j0")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Initialize all global `EXN_*` exception IDs in IRRT with the [`SymbolResolver`].
pub fn setup_irrt_exceptions<'ctx>(
ctx: &'ctx Context,
module: &Module<'ctx>,
symbol_resolver: &dyn SymbolResolver,
) {
let exn_id_type = ctx.i32_type();
let errors = &[
("EXN_INDEX_ERROR", "0:IndexError"),
("EXN_VALUE_ERROR", "0:ValueError"),
("EXN_ASSERTION_ERROR", "0:AssertionError"),
("EXN_TYPE_ERROR", "0:TypeError"),
];
for (irrt_name, symbol_name) in errors {
let exn_id = symbol_resolver.get_string_id(symbol_name);
let exn_id = exn_id_type.const_int(exn_id as u64, false).as_basic_value_enum();
let global = module.get_global(irrt_name).unwrap_or_else(|| {
panic!("Exception symbol name '{irrt_name}' should exist in the IRRT LLVM module")
});
global.set_initializer(&exn_id);
}
}
// When [`TypeContext::size_type`] is 32-bits, the function name is "{fn_name}".
// When [`TypeContext::size_type`] is 64-bits, the function name is "{fn_name}64".
#[must_use]
pub fn get_sizet_dependent_function_name<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &CodeGenContext<'_, '_>,
name: &str,
) -> String {
let mut name = name.to_owned();
match generator.get_size_type(ctx.ctx).get_bit_width() {
32 => {}
64 => name.push_str("64"),
bit_width => {
panic!("Unsupported int type bit width {bit_width}, must be either 32-bits or 64-bits")
}
}
name
}
pub fn call_nac3_ndarray_util_assert_shape_no_negative<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndims: Instance<'ctx, Int<SizeT>>,
shape: Instance<'ctx, Ptr<Int<SizeT>>>,
) {
let name = get_sizet_dependent_function_name(
generator,
ctx,
"__nac3_ndarray_util_assert_shape_no_negative",
);
CallFunction::begin(generator, ctx, &name).arg(ndims).arg(shape).returning_void();
}
pub fn call_nac3_ndarray_util_assert_output_shape_same<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray_ndims: Instance<'ctx, Int<SizeT>>,
ndarray_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
output_ndims: Instance<'ctx, Int<SizeT>>,
output_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
) {
let name = get_sizet_dependent_function_name(
generator,
ctx,
"__nac3_ndarray_util_assert_output_shape_same",
);
CallFunction::begin(generator, ctx, &name)
.arg(ndarray_ndims)
.arg(ndarray_shape)
.arg(output_ndims)
.arg(output_shape)
.returning_void();
}
pub fn call_nac3_ndarray_size<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
) -> Instance<'ctx, Int<SizeT>> {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_size");
CallFunction::begin(generator, ctx, &name).arg(ndarray).returning_auto("size")
}
pub fn call_nac3_ndarray_nbytes<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
) -> Instance<'ctx, Int<SizeT>> {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_nbytes");
CallFunction::begin(generator, ctx, &name).arg(ndarray).returning_auto("nbytes")
}
pub fn call_nac3_ndarray_len<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
) -> Instance<'ctx, Int<SizeT>> {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_len");
CallFunction::begin(generator, ctx, &name).arg(ndarray).returning_auto("len")
}
pub fn call_nac3_ndarray_is_c_contiguous<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
) -> Instance<'ctx, Int<Bool>> {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_is_c_contiguous");
CallFunction::begin(generator, ctx, &name).arg(ndarray).returning_auto("is_c_contiguous")
}
pub fn call_nac3_ndarray_get_nth_pelement<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
index: Instance<'ctx, Int<SizeT>>,
) -> Instance<'ctx, Ptr<Int<Byte>>> {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_get_nth_pelement");
CallFunction::begin(generator, ctx, &name).arg(ndarray).arg(index).returning_auto("pelement")
}
pub fn call_nac3_ndarray_get_pelement_by_indices<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
indices: Instance<'ctx, Ptr<Int<SizeT>>>,
) -> Instance<'ctx, Ptr<Int<Byte>>> {
let name =
get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_get_pelement_by_indices");
CallFunction::begin(generator, ctx, &name).arg(ndarray).arg(indices).returning_auto("pelement")
}
pub fn call_nac3_ndarray_set_strides_by_shape<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
) {
let name =
get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_set_strides_by_shape");
CallFunction::begin(generator, ctx, &name).arg(ndarray).returning_void();
}
pub fn call_nac3_ndarray_copy_data<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
src_ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
dst_ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
) {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_copy_data");
CallFunction::begin(generator, ctx, &name).arg(src_ndarray).arg(dst_ndarray).returning_void();
}
pub fn call_nac3_nditer_initialize<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
iter: Instance<'ctx, Ptr<Struct<NDIter>>>,
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
indices: Instance<'ctx, Ptr<Int<SizeT>>>,
) {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_nditer_initialize");
CallFunction::begin(generator, ctx, &name).arg(iter).arg(ndarray).arg(indices).returning_void();
}
pub fn call_nac3_nditer_has_next<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
iter: Instance<'ctx, Ptr<Struct<NDIter>>>,
) -> Instance<'ctx, Int<Bool>> {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_nditer_has_next");
CallFunction::begin(generator, ctx, &name).arg(iter).returning_auto("has_next")
}
pub fn call_nac3_nditer_next<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
iter: Instance<'ctx, Ptr<Struct<NDIter>>>,
) {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_nditer_next");
CallFunction::begin(generator, ctx, &name).arg(iter).returning_void();
}
pub fn call_nac3_ndarray_index<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
num_indices: Instance<'ctx, Int<SizeT>>,
indices: Instance<'ctx, Ptr<Struct<NDIndex>>>,
src_ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
dst_ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
) {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_index");
CallFunction::begin(generator, ctx, &name)
.arg(num_indices)
.arg(indices)
.arg(src_ndarray)
.arg(dst_ndarray)
.returning_void();
}
pub fn call_nac3_ndarray_array_set_and_validate_list_shape<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
list: Instance<'ctx, Ptr<Struct<List<Int<Byte>>>>>,
ndims: Instance<'ctx, Int<SizeT>>,
shape: Instance<'ctx, Ptr<Int<SizeT>>>,
) {
let name = get_sizet_dependent_function_name(
generator,
ctx,
"__nac3_ndarray_array_set_and_validate_list_shape",
);
CallFunction::begin(generator, ctx, &name).arg(list).arg(ndims).arg(shape).returning_void();
}
pub fn call_nac3_ndarray_array_write_list_to_array<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
list: Instance<'ctx, Ptr<Struct<List<Int<Byte>>>>>,
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
) {
let name = get_sizet_dependent_function_name(
generator,
ctx,
"__nac3_ndarray_array_write_list_to_array",
);
CallFunction::begin(generator, ctx, &name).arg(list).arg(ndarray).returning_void();
}
pub fn call_nac3_ndarray_reshape_resolve_and_check_new_shape<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
size: Instance<'ctx, Int<SizeT>>,
new_ndims: Instance<'ctx, Int<SizeT>>,
new_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
) {
let name = get_sizet_dependent_function_name(
generator,
ctx,
"__nac3_ndarray_reshape_resolve_and_check_new_shape",
);
CallFunction::begin(generator, ctx, &name)
.arg(size)
.arg(new_ndims)
.arg(new_shape)
.returning_void();
}
pub fn call_nac3_ndarray_broadcast_to<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
src_ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
dst_ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
) {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_broadcast_to");
CallFunction::begin(generator, ctx, &name).arg(src_ndarray).arg(dst_ndarray).returning_void();
}
pub fn call_nac3_ndarray_broadcast_shapes<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
num_shape_entries: Instance<'ctx, Int<SizeT>>,
shape_entries: Instance<'ctx, Ptr<Struct<ShapeEntry>>>,
dst_ndims: Instance<'ctx, Int<SizeT>>,
dst_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
) {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_broadcast_shapes");
CallFunction::begin(generator, ctx, &name)
.arg(num_shape_entries)
.arg(shape_entries)
.arg(dst_ndims)
.arg(dst_shape)
.returning_void();
}
pub fn call_nac3_ndarray_transpose<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
src_ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
dst_ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
num_axes: Instance<'ctx, Int<SizeT>>,
axes: Instance<'ctx, Ptr<Int<SizeT>>>,
) {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_transpose");
CallFunction::begin(generator, ctx, &name)
.arg(src_ndarray)
.arg(dst_ndarray)
.arg(num_axes)
.arg(axes)
.returning_void();
}
#[allow(clippy::too_many_arguments)]
pub fn call_nac3_ndarray_matmul_calculate_shapes<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
a_ndims: Instance<'ctx, Int<SizeT>>,
a_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
b_ndims: Instance<'ctx, Int<SizeT>>,
b_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
final_ndims: Instance<'ctx, Int<SizeT>>,
new_a_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
new_b_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
dst_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
) {
let name =
get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_matmul_calculate_shapes");
CallFunction::begin(generator, ctx, &name)
.arg(a_ndims)
.arg(a_shape)
.arg(b_ndims)
.arg(b_shape)
.arg(final_ndims)
.arg(new_a_shape)
.arg(new_b_shape)
.arg(dst_shape)
.returning_void();
}

View File

@ -0,0 +1,80 @@
use inkwell::{types::BasicTypeEnum, values::IntValue};
use crate::codegen::{
expr::infer_and_call_function,
irrt::get_usize_dependent_function_name,
values::{ndarray::NDArrayValue, ListValue, ProxyValue, TypedArrayLikeAccessor},
CodeGenContext, CodeGenerator,
};
/// Generates a call to `__nac3_ndarray_array_set_and_validate_list_shape`.
///
/// Deduces the target shape of the `ndarray` from the provided `list`, raising an exception if
/// there is any issue with the resultant `shape`.
///
/// `shape` must be pre-allocated by the caller of this function to `[usize; ndims]`, and must be
/// initialized to all `-1`s.
pub fn call_nac3_ndarray_array_set_and_validate_list_shape<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
list: ListValue<'ctx>,
ndims: IntValue<'ctx>,
shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
) {
let llvm_usize = generator.get_size_type(ctx.ctx);
assert_eq!(list.get_type().element_type().unwrap(), ctx.ctx.i8_type().into());
assert_eq!(ndims.get_type(), llvm_usize);
assert_eq!(
BasicTypeEnum::try_from(shape.element_type(ctx, generator)).unwrap(),
llvm_usize.into()
);
let name = get_usize_dependent_function_name(
generator,
ctx,
"__nac3_ndarray_array_set_and_validate_list_shape",
);
infer_and_call_function(
ctx,
&name,
None,
&[list.as_base_value().into(), ndims.into(), shape.base_ptr(ctx, generator).into()],
None,
None,
);
}
/// Generates a call to `__nac3_ndarray_array_write_list_to_array`.
///
/// Copies the contents stored in `list` into `ndarray`.
///
/// The `ndarray` must fulfill the following preconditions:
///
/// - `ndarray.itemsize`: Must be initialized.
/// - `ndarray.ndims`: Must be initialized.
/// - `ndarray.shape`: Must be initialized.
/// - `ndarray.data`: Must be allocated and contiguous.
pub fn call_nac3_ndarray_array_write_list_to_array<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
list: ListValue<'ctx>,
ndarray: NDArrayValue<'ctx>,
) {
assert_eq!(list.get_type().element_type().unwrap(), ctx.ctx.i8_type().into());
let name = get_usize_dependent_function_name(
generator,
ctx,
"__nac3_ndarray_array_write_list_to_array",
);
infer_and_call_function(
ctx,
&name,
None,
&[list.as_base_value().into(), ndarray.as_base_value().into()],
None,
None,
);
}

View File

@ -0,0 +1,310 @@
use inkwell::{
types::BasicTypeEnum,
values::{BasicValueEnum, IntValue, PointerValue},
AddressSpace,
};
use crate::codegen::{
expr::{create_and_call_function, infer_and_call_function},
irrt::get_usize_dependent_function_name,
types::ProxyType,
values::{ndarray::NDArrayValue, ProxyValue, TypedArrayLikeAccessor},
CodeGenContext, CodeGenerator,
};
/// Generates a call to `__nac3_ndarray_util_assert_shape_no_negative`.
///
/// Assets that `shape` does not contain negative dimensions.
pub fn call_nac3_ndarray_util_assert_shape_no_negative<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
) {
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
assert_eq!(
BasicTypeEnum::try_from(shape.element_type(ctx, generator)).unwrap(),
llvm_usize.into()
);
let name = get_usize_dependent_function_name(
generator,
ctx,
"__nac3_ndarray_util_assert_shape_no_negative",
);
create_and_call_function(
ctx,
&name,
Some(llvm_usize.into()),
&[
(llvm_usize.into(), shape.size(ctx, generator).into()),
(llvm_pusize.into(), shape.base_ptr(ctx, generator).into()),
],
None,
None,
);
}
/// Generates a call to `__nac3_ndarray_util_assert_shape_output_shape_same`.
///
/// Asserts that `ndarray_shape` and `output_shape` are the same in the context of writing output to
/// an `ndarray`.
pub fn call_nac3_ndarray_util_assert_output_shape_same<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
ndarray_shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
output_shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
) {
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
assert_eq!(
BasicTypeEnum::try_from(ndarray_shape.element_type(ctx, generator)).unwrap(),
llvm_usize.into()
);
assert_eq!(
BasicTypeEnum::try_from(output_shape.element_type(ctx, generator)).unwrap(),
llvm_usize.into()
);
let name = get_usize_dependent_function_name(
generator,
ctx,
"__nac3_ndarray_util_assert_output_shape_same",
);
create_and_call_function(
ctx,
&name,
Some(llvm_usize.into()),
&[
(llvm_usize.into(), ndarray_shape.size(ctx, generator).into()),
(llvm_pusize.into(), ndarray_shape.base_ptr(ctx, generator).into()),
(llvm_usize.into(), output_shape.size(ctx, generator).into()),
(llvm_pusize.into(), output_shape.base_ptr(ctx, generator).into()),
],
None,
None,
);
}
/// Generates a call to `__nac3_ndarray_size`.
///
/// Returns a [`usize`][CodeGenerator::get_size_type] value of the number of elements of an
/// `ndarray`, corresponding to the value of `ndarray.size`.
pub fn call_nac3_ndarray_size<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
) -> IntValue<'ctx> {
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_ndarray = ndarray.get_type().as_base_type();
let name = get_usize_dependent_function_name(generator, ctx, "__nac3_ndarray_size");
create_and_call_function(
ctx,
&name,
Some(llvm_usize.into()),
&[(llvm_ndarray.into(), ndarray.as_base_value().into())],
Some("size"),
None,
)
.map(BasicValueEnum::into_int_value)
.unwrap()
}
/// Generates a call to `__nac3_ndarray_nbytes`.
///
/// Returns a [`usize`][CodeGenerator::get_size_type] value of the number of bytes consumed by the
/// data of the `ndarray`, corresponding to the value of `ndarray.nbytes`.
pub fn call_nac3_ndarray_nbytes<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
) -> IntValue<'ctx> {
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_ndarray = ndarray.get_type().as_base_type();
let name = get_usize_dependent_function_name(generator, ctx, "__nac3_ndarray_nbytes");
create_and_call_function(
ctx,
&name,
Some(llvm_usize.into()),
&[(llvm_ndarray.into(), ndarray.as_base_value().into())],
Some("nbytes"),
None,
)
.map(BasicValueEnum::into_int_value)
.unwrap()
}
/// Generates a call to `__nac3_ndarray_len`.
///
/// Returns a [`usize`][CodeGenerator::get_size_type] value of the size of the topmost dimension of
/// the `ndarray`, corresponding to the value of `ndarray.__len__`.
pub fn call_nac3_ndarray_len<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
) -> IntValue<'ctx> {
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_ndarray = ndarray.get_type().as_base_type();
let name = get_usize_dependent_function_name(generator, ctx, "__nac3_ndarray_len");
create_and_call_function(
ctx,
&name,
Some(llvm_usize.into()),
&[(llvm_ndarray.into(), ndarray.as_base_value().into())],
Some("len"),
None,
)
.map(BasicValueEnum::into_int_value)
.unwrap()
}
/// Generates a call to `__nac3_ndarray_is_c_contiguous`.
///
/// Returns an `i1` value indicating whether the `ndarray` is C-contiguous.
pub fn call_nac3_ndarray_is_c_contiguous<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
) -> IntValue<'ctx> {
let llvm_i1 = ctx.ctx.bool_type();
let llvm_ndarray = ndarray.get_type().as_base_type();
let name = get_usize_dependent_function_name(generator, ctx, "__nac3_ndarray_is_c_contiguous");
create_and_call_function(
ctx,
&name,
Some(llvm_i1.into()),
&[(llvm_ndarray.into(), ndarray.as_base_value().into())],
Some("is_c_contiguous"),
None,
)
.map(BasicValueEnum::into_int_value)
.unwrap()
}
/// Generates a call to `__nac3_ndarray_get_nth_pelement`.
///
/// Returns a [`PointerValue`] to the `index`-th flattened element of the `ndarray`.
pub fn call_nac3_ndarray_get_nth_pelement<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
index: IntValue<'ctx>,
) -> PointerValue<'ctx> {
let llvm_i8 = ctx.ctx.i8_type();
let llvm_pi8 = llvm_i8.ptr_type(AddressSpace::default());
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_ndarray = ndarray.get_type().as_base_type();
assert_eq!(index.get_type(), llvm_usize);
let name = get_usize_dependent_function_name(generator, ctx, "__nac3_ndarray_get_nth_pelement");
create_and_call_function(
ctx,
&name,
Some(llvm_pi8.into()),
&[(llvm_ndarray.into(), ndarray.as_base_value().into()), (llvm_usize.into(), index.into())],
Some("pelement"),
None,
)
.map(BasicValueEnum::into_pointer_value)
.unwrap()
}
/// Generates a call to `__nac3_ndarray_get_pelement_by_indices`.
///
/// `indices` must have the same number of elements as the number of dimensions in `ndarray`.
///
/// Returns a [`PointerValue`] to the element indexed by `indices`.
pub fn call_nac3_ndarray_get_pelement_by_indices<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
indices: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
) -> PointerValue<'ctx> {
let llvm_i8 = ctx.ctx.i8_type();
let llvm_pi8 = llvm_i8.ptr_type(AddressSpace::default());
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
let llvm_ndarray = ndarray.get_type().as_base_type();
assert_eq!(
BasicTypeEnum::try_from(indices.element_type(ctx, generator)).unwrap(),
llvm_usize.into()
);
let name =
get_usize_dependent_function_name(generator, ctx, "__nac3_ndarray_get_pelement_by_indices");
create_and_call_function(
ctx,
&name,
Some(llvm_pi8.into()),
&[
(llvm_ndarray.into(), ndarray.as_base_value().into()),
(llvm_pusize.into(), indices.base_ptr(ctx, generator).into()),
],
Some("pelement"),
None,
)
.map(BasicValueEnum::into_pointer_value)
.unwrap()
}
/// Generates a call to `__nac3_ndarray_set_strides_by_shape`.
///
/// Sets `ndarray.strides` assuming that `ndarray.shape` is C-contiguous.
pub fn call_nac3_ndarray_set_strides_by_shape<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
) {
let llvm_ndarray = ndarray.get_type().as_base_type();
let name =
get_usize_dependent_function_name(generator, ctx, "__nac3_ndarray_set_strides_by_shape");
create_and_call_function(
ctx,
&name,
None,
&[(llvm_ndarray.into(), ndarray.as_base_value().into())],
None,
None,
);
}
/// Generates a call to `__nac3_ndarray_copy_data`.
///
/// Copies all elements from `src_ndarray` to `dst_ndarray` using their flattened views. The number
/// of elements in `src_ndarray` must be greater than or equal to the number of elements in
/// `dst_ndarray`.
pub fn call_nac3_ndarray_copy_data<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
src_ndarray: NDArrayValue<'ctx>,
dst_ndarray: NDArrayValue<'ctx>,
) {
let name = get_usize_dependent_function_name(generator, ctx, "__nac3_ndarray_copy_data");
infer_and_call_function(
ctx,
&name,
None,
&[src_ndarray.as_base_value().into(), dst_ndarray.as_base_value().into()],
None,
None,
);
}

View File

@ -0,0 +1,82 @@
use inkwell::values::IntValue;
use crate::codegen::{
expr::infer_and_call_function,
irrt::get_usize_dependent_function_name,
types::{ndarray::ShapeEntryType, ProxyType},
values::{
ndarray::NDArrayValue, ArrayLikeValue, ArraySliceValue, ProxyValue, TypedArrayLikeAccessor,
TypedArrayLikeMutator,
},
CodeGenContext, CodeGenerator,
};
/// Generates a call to `__nac3_ndarray_broadcast_to`.
///
/// Attempts to broadcast `src_ndarray` to the new shape defined by `dst_ndarray`.
///
/// `dst_ndarray` must meet the following preconditions:
///
/// - `dst_ndarray.ndims` must be initialized and matching the length of `dst_ndarray.shape`.
/// - `dst_ndarray.shape` must be initialized and contains the target broadcast shape.
/// - `dst_ndarray.strides` must be allocated and may contain uninitialized values.
pub fn call_nac3_ndarray_broadcast_to<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
src_ndarray: NDArrayValue<'ctx>,
dst_ndarray: NDArrayValue<'ctx>,
) {
let name = get_usize_dependent_function_name(generator, ctx, "__nac3_ndarray_broadcast_to");
infer_and_call_function(
ctx,
&name,
None,
&[src_ndarray.as_base_value().into(), dst_ndarray.as_base_value().into()],
None,
None,
);
}
/// Generates a call to `__nac3_ndarray_broadcast_shapes`.
///
/// Attempts to calculate the resultant shape from broadcasting all shapes in `shape_entries`,
/// writing the result to `dst_shape`.
pub fn call_nac3_ndarray_broadcast_shapes<'ctx, G, Shape>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
num_shape_entries: IntValue<'ctx>,
shape_entries: ArraySliceValue<'ctx>,
dst_ndims: IntValue<'ctx>,
dst_shape: &Shape,
) where
G: CodeGenerator + ?Sized,
Shape: TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>
+ TypedArrayLikeMutator<'ctx, G, IntValue<'ctx>>,
{
let llvm_usize = generator.get_size_type(ctx.ctx);
assert_eq!(num_shape_entries.get_type(), llvm_usize);
assert!(ShapeEntryType::is_type(
generator,
ctx.ctx,
shape_entries.base_ptr(ctx, generator).get_type()
)
.is_ok());
assert_eq!(dst_ndims.get_type(), llvm_usize);
assert_eq!(dst_shape.element_type(ctx, generator), llvm_usize.into());
let name = get_usize_dependent_function_name(generator, ctx, "__nac3_ndarray_broadcast_shapes");
infer_and_call_function(
ctx,
&name,
None,
&[
num_shape_entries.into(),
shape_entries.base_ptr(ctx, generator).into(),
dst_ndims.into(),
dst_shape.base_ptr(ctx, generator).into(),
],
None,
None,
);
}

View File

@ -0,0 +1,34 @@
use crate::codegen::{
expr::infer_and_call_function,
irrt::get_usize_dependent_function_name,
values::{ndarray::NDArrayValue, ArrayLikeValue, ArraySliceValue, ProxyValue},
CodeGenContext, CodeGenerator,
};
/// Generates a call to `__nac3_ndarray_index`.
///
/// Performs [basic indexing](https://numpy.org/doc/stable/user/basics.indexing.html#basic-indexing)
/// on `src_ndarray` using `indices`, writing the result to `dst_ndarray`, corresponding to the
/// operation `dst_ndarray = src_ndarray[indices]`.
pub fn call_nac3_ndarray_index<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
indices: ArraySliceValue<'ctx>,
src_ndarray: NDArrayValue<'ctx>,
dst_ndarray: NDArrayValue<'ctx>,
) {
let name = get_usize_dependent_function_name(generator, ctx, "__nac3_ndarray_index");
infer_and_call_function(
ctx,
&name,
None,
&[
indices.size(ctx, generator).into(),
indices.base_ptr(ctx, generator).into(),
src_ndarray.as_base_value().into(),
dst_ndarray.as_base_value().into(),
],
None,
None,
);
}

View File

@ -0,0 +1,86 @@
use inkwell::{
types::BasicTypeEnum,
values::{BasicValueEnum, IntValue},
AddressSpace,
};
use crate::codegen::{
expr::{create_and_call_function, infer_and_call_function},
irrt::get_usize_dependent_function_name,
types::ProxyType,
values::{
ndarray::{NDArrayValue, NDIterValue},
ProxyValue, TypedArrayLikeAccessor,
},
CodeGenContext, CodeGenerator,
};
/// Generates a call to `__nac3_nditer_initialize`.
///
/// Initializes the `iter` object.
pub fn call_nac3_nditer_initialize<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
iter: NDIterValue<'ctx>,
ndarray: NDArrayValue<'ctx>,
indices: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
) {
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
assert_eq!(
BasicTypeEnum::try_from(indices.element_type(ctx, generator)).unwrap(),
llvm_usize.into()
);
let name = get_usize_dependent_function_name(generator, ctx, "__nac3_nditer_initialize");
create_and_call_function(
ctx,
&name,
None,
&[
(iter.get_type().as_base_type().into(), iter.as_base_value().into()),
(ndarray.get_type().as_base_type().into(), ndarray.as_base_value().into()),
(llvm_pusize.into(), indices.base_ptr(ctx, generator).into()),
],
None,
None,
);
}
/// Generates a call to `__nac3_nditer_initialize_has_element`.
///
/// Returns an `i1` value indicating whether there are elements left to traverse for the `iter`
/// object.
pub fn call_nac3_nditer_has_element<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
iter: NDIterValue<'ctx>,
) -> IntValue<'ctx> {
let name = get_usize_dependent_function_name(generator, ctx, "__nac3_nditer_has_element");
infer_and_call_function(
ctx,
&name,
Some(ctx.ctx.bool_type().into()),
&[iter.as_base_value().into()],
None,
None,
)
.map(BasicValueEnum::into_int_value)
.unwrap()
}
/// Generates a call to `__nac3_nditer_next`.
///
/// Moves `iter` to point to the next element.
pub fn call_nac3_nditer_next<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
iter: NDIterValue<'ctx>,
) {
let name = get_usize_dependent_function_name(generator, ctx, "__nac3_nditer_next");
infer_and_call_function(ctx, &name, None, &[iter.as_base_value().into()], None, None);
}

View File

@ -0,0 +1,66 @@
use inkwell::{types::BasicTypeEnum, values::IntValue};
use crate::codegen::{
expr::infer_and_call_function, irrt::get_usize_dependent_function_name,
values::TypedArrayLikeAccessor, CodeGenContext, CodeGenerator,
};
/// Generates a call to `__nac3_ndarray_matmul_calculate_shapes`.
///
/// Calculates the broadcasted shapes for `a`, `b`, and the `ndarray` holding the final values of
/// `a @ b`.
#[allow(clippy::too_many_arguments)]
pub fn call_nac3_ndarray_matmul_calculate_shapes<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
a_shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
b_shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
final_ndims: IntValue<'ctx>,
new_a_shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
new_b_shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
dst_shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
) {
let llvm_usize = generator.get_size_type(ctx.ctx);
assert_eq!(
BasicTypeEnum::try_from(a_shape.element_type(ctx, generator)).unwrap(),
llvm_usize.into()
);
assert_eq!(
BasicTypeEnum::try_from(b_shape.element_type(ctx, generator)).unwrap(),
llvm_usize.into()
);
assert_eq!(
BasicTypeEnum::try_from(new_a_shape.element_type(ctx, generator)).unwrap(),
llvm_usize.into()
);
assert_eq!(
BasicTypeEnum::try_from(new_b_shape.element_type(ctx, generator)).unwrap(),
llvm_usize.into()
);
assert_eq!(
BasicTypeEnum::try_from(dst_shape.element_type(ctx, generator)).unwrap(),
llvm_usize.into()
);
let name =
get_usize_dependent_function_name(generator, ctx, "__nac3_ndarray_matmul_calculate_shapes");
infer_and_call_function(
ctx,
&name,
None,
&[
a_shape.size(ctx, generator).into(),
a_shape.base_ptr(ctx, generator).into(),
b_shape.size(ctx, generator).into(),
b_shape.base_ptr(ctx, generator).into(),
final_ndims.into(),
new_a_shape.base_ptr(ctx, generator).into(),
new_b_shape.base_ptr(ctx, generator).into(),
dst_shape.base_ptr(ctx, generator).into(),
],
None,
None,
);
}

View File

@ -0,0 +1,17 @@
pub use array::*;
pub use basic::*;
pub use broadcast::*;
pub use indexing::*;
pub use iter::*;
pub use matmul::*;
pub use reshape::*;
pub use transpose::*;
mod array;
mod basic;
mod broadcast;
mod indexing;
mod iter;
mod matmul;
mod reshape;
mod transpose;

View File

@ -0,0 +1,40 @@
use inkwell::values::IntValue;
use crate::codegen::{
expr::infer_and_call_function,
irrt::get_usize_dependent_function_name,
values::{ArrayLikeValue, ArraySliceValue},
CodeGenContext, CodeGenerator,
};
/// Generates a call to `__nac3_ndarray_reshape_resolve_and_check_new_shape`.
///
/// Resolves unknown dimensions in `new_shape` for `numpy.reshape(<ndarray>, new_shape)`, raising an
/// assertion if multiple dimensions are unknown (`-1`).
pub fn call_nac3_ndarray_reshape_resolve_and_check_new_shape<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
size: IntValue<'ctx>,
new_ndims: IntValue<'ctx>,
new_shape: ArraySliceValue<'ctx>,
) {
let llvm_usize = generator.get_size_type(ctx.ctx);
assert_eq!(size.get_type(), llvm_usize);
assert_eq!(new_ndims.get_type(), llvm_usize);
assert_eq!(new_shape.element_type(ctx, generator), llvm_usize.into());
let name = get_usize_dependent_function_name(
generator,
ctx,
"__nac3_ndarray_reshape_resolve_and_check_new_shape",
);
infer_and_call_function(
ctx,
&name,
None,
&[size.into(), new_ndims.into(), new_shape.base_ptr(ctx, generator).into()],
None,
None,
);
}

View File

@ -0,0 +1,48 @@
use inkwell::{values::IntValue, AddressSpace};
use crate::codegen::{
expr::infer_and_call_function,
irrt::get_usize_dependent_function_name,
values::{ndarray::NDArrayValue, ProxyValue, TypedArrayLikeAccessor},
CodeGenContext, CodeGenerator,
};
/// Generates a call to `__nac3_ndarray_transpose`.
///
/// Creates a transpose view of `src_ndarray` and writes the result to `dst_ndarray`.
///
/// `dst_ndarray` must fulfill the following preconditions:
///
/// - `dst_ndarray.ndims` must be initialized and must be equal to `src_ndarray.ndims`.
/// - `dst_ndarray.shape` must be allocated and may contain uninitialized values.
/// - `dst_ndarray.strides` must be allocated and may contain uninitialized values.
pub fn call_nac3_ndarray_transpose<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
src_ndarray: NDArrayValue<'ctx>,
dst_ndarray: NDArrayValue<'ctx>,
axes: Option<&impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>>,
) {
let llvm_usize = generator.get_size_type(ctx.ctx);
assert!(axes.is_none_or(|axes| axes.size(ctx, generator).get_type() == llvm_usize));
assert!(axes.is_none_or(|axes| axes.element_type(ctx, generator) == llvm_usize.into()));
let name = get_usize_dependent_function_name(generator, ctx, "__nac3_ndarray_transpose");
infer_and_call_function(
ctx,
&name,
None,
&[
src_ndarray.as_base_value().into(),
dst_ndarray.as_base_value().into(),
axes.map_or(llvm_usize.const_zero(), |axes| axes.size(ctx, generator)).into(),
axes.map_or(llvm_usize.ptr_type(AddressSpace::default()).const_null(), |axes| {
axes.base_ptr(ctx, generator)
})
.into(),
],
None,
None,
);
}

View File

@ -0,0 +1,56 @@
use inkwell::{
values::{BasicValueEnum, CallSiteValue, IntValue},
IntPredicate,
};
use itertools::Either;
use crate::codegen::{CodeGenContext, CodeGenerator};
/// Invokes the `__nac3_range_slice_len` in IRRT.
///
/// - `start`: The `i32` start value for the slice.
/// - `end`: The `i32` end value for the slice.
/// - `step`: The `i32` step value for the slice.
///
/// Returns an `i32` value of the length of the slice.
pub fn calculate_len_for_slice_range<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
start: IntValue<'ctx>,
end: IntValue<'ctx>,
step: IntValue<'ctx>,
) -> IntValue<'ctx> {
const SYMBOL: &str = "__nac3_range_slice_len";
let llvm_i32 = ctx.ctx.i32_type();
assert_eq!(start.get_type(), llvm_i32);
assert_eq!(end.get_type(), llvm_i32);
assert_eq!(step.get_type(), llvm_i32);
let len_func = ctx.module.get_function(SYMBOL).unwrap_or_else(|| {
let fn_t = llvm_i32.fn_type(&[llvm_i32.into(), llvm_i32.into(), llvm_i32.into()], false);
ctx.module.add_function(SYMBOL, fn_t, None)
});
// assert step != 0, throw exception if not
let not_zero = ctx
.builder
.build_int_compare(IntPredicate::NE, step, step.get_type().const_zero(), "range_step_ne")
.unwrap();
ctx.make_assert(
generator,
not_zero,
"0:ValueError",
"step must not be zero",
[None, None, None],
ctx.current_loc,
);
ctx.builder
.build_call(len_func, &[start.into(), end.into(), step.into()], "calc_len")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
}

View File

@ -0,0 +1,39 @@
use inkwell::values::{BasicValueEnum, CallSiteValue, IntValue};
use itertools::Either;
use nac3parser::ast::Expr;
use crate::{
codegen::{CodeGenContext, CodeGenerator},
typecheck::typedef::Type,
};
/// this function allows index out of range, since python
/// allows index out of range in slice (`a = [1,2,3]; a[1:10] == [2,3]`).
pub fn handle_slice_index_bound<'ctx, G: CodeGenerator>(
i: &Expr<Option<Type>>,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
length: IntValue<'ctx>,
) -> Result<Option<IntValue<'ctx>>, String> {
const SYMBOL: &str = "__nac3_slice_index_bound";
let func = ctx.module.get_function(SYMBOL).unwrap_or_else(|| {
let i32_t = ctx.ctx.i32_type();
let fn_t = i32_t.fn_type(&[i32_t.into(), i32_t.into()], false);
ctx.module.add_function(SYMBOL, fn_t, None)
});
let i = if let Some(v) = generator.gen_expr(ctx, i)? {
v.to_basic_value_enum(ctx, generator, i.custom.unwrap())?
} else {
return Ok(None);
};
Ok(Some(
ctx.builder
.build_call(func, &[i.into(), length.into()], "bounded_ind")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap(),
))
}

View File

@ -0,0 +1,46 @@
use inkwell::values::{BasicValueEnum, CallSiteValue, IntValue, PointerValue};
use itertools::Either;
use super::get_usize_dependent_function_name;
use crate::codegen::{CodeGenContext, CodeGenerator};
/// Generates a call to string equality comparison. Returns an `i1` representing whether the strings are equal.
pub fn call_string_eq<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
str1_ptr: PointerValue<'ctx>,
str1_len: IntValue<'ctx>,
str2_ptr: PointerValue<'ctx>,
str2_len: IntValue<'ctx>,
) -> IntValue<'ctx> {
let llvm_i1 = ctx.ctx.bool_type();
let func_name = get_usize_dependent_function_name(generator, ctx, "nac3_str_eq");
let func = ctx.module.get_function(&func_name).unwrap_or_else(|| {
ctx.module.add_function(
&func_name,
llvm_i1.fn_type(
&[
str1_ptr.get_type().into(),
str1_len.get_type().into(),
str2_ptr.get_type().into(),
str2_len.get_type().into(),
],
false,
),
None,
)
});
ctx.builder
.build_call(
func,
&[str1_ptr.into(), str1_len.into(), str2_ptr.into(), str2_len.into()],
"str_eq_call",
)
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
}

View File

@ -1,39 +1,12 @@
use crate::codegen::CodeGenContext; use inkwell::{
use inkwell::context::Context; intrinsics::Intrinsic,
use inkwell::intrinsics::Intrinsic; types::AnyTypeEnum::IntType,
use inkwell::types::AnyTypeEnum::IntType; values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue, PointerValue},
use inkwell::types::FloatType; AddressSpace,
use inkwell::values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue, PointerValue}; };
use inkwell::AddressSpace;
use itertools::Either; use itertools::Either;
/// Returns the string representation for the floating-point type `ft` when used in intrinsic use super::CodeGenContext;
/// functions.
fn get_float_intrinsic_repr(ctx: &Context, ft: FloatType) -> &'static str {
// Standard LLVM floating-point types
if ft == ctx.f16_type() {
return "f16";
}
if ft == ctx.f32_type() {
return "f32";
}
if ft == ctx.f64_type() {
return "f64";
}
if ft == ctx.f128_type() {
return "f128";
}
// Non-standard floating-point types
if ft == ctx.x86_f80_type() {
return "f80";
}
if ft == ctx.ppc_f128_type() {
return "ppcf128";
}
unreachable!()
}
/// Invokes the [`llvm.va_start`](https://llvm.org/docs/LangRef.html#llvm-va-start-intrinsic) /// Invokes the [`llvm.va_start`](https://llvm.org/docs/LangRef.html#llvm-va-start-intrinsic)
/// intrinsic. /// intrinsic.
@ -52,7 +25,7 @@ pub fn call_va_start<'ctx>(ctx: &CodeGenContext<'ctx, '_>, arglist: PointerValue
ctx.builder.build_call(intrinsic_fn, &[arglist.into()], "").unwrap(); ctx.builder.build_call(intrinsic_fn, &[arglist.into()], "").unwrap();
} }
/// Invokes the [`llvm.va_start`](https://llvm.org/docs/LangRef.html#llvm-va-start-intrinsic) /// Invokes the [`llvm.va_end`](https://llvm.org/docs/LangRef.html#llvm-va-end-intrinsic)
/// intrinsic. /// intrinsic.
pub fn call_va_end<'ctx>(ctx: &CodeGenContext<'ctx, '_>, arglist: PointerValue<'ctx>) { pub fn call_va_end<'ctx>(ctx: &CodeGenContext<'ctx, '_>, arglist: PointerValue<'ctx>) {
const FN_NAME: &str = "llvm.va_end"; const FN_NAME: &str = "llvm.va_end";
@ -183,7 +156,7 @@ pub fn call_memcpy_generic<'ctx>(
dest dest
} else { } else {
ctx.builder ctx.builder
.build_bitcast(dest, llvm_p0i8, "") .build_bit_cast(dest, llvm_p0i8, "")
.map(BasicValueEnum::into_pointer_value) .map(BasicValueEnum::into_pointer_value)
.unwrap() .unwrap()
}; };
@ -191,7 +164,7 @@ pub fn call_memcpy_generic<'ctx>(
src src
} else { } else {
ctx.builder ctx.builder
.build_bitcast(src, llvm_p0i8, "") .build_bit_cast(src, llvm_p0i8, "")
.map(BasicValueEnum::into_pointer_value) .map(BasicValueEnum::into_pointer_value)
.unwrap() .unwrap()
}; };
@ -199,6 +172,49 @@ pub fn call_memcpy_generic<'ctx>(
call_memcpy(ctx, dest, src, len, is_volatile); call_memcpy(ctx, dest, src, len, is_volatile);
} }
/// Invokes the `llvm.memcpy` intrinsic.
///
/// Unlike [`call_memcpy`], this function accepts any type of pointer value. If `dest` or `src` is
/// not a pointer to an integer, the pointer(s) will be cast to `i8*` before invoking `memcpy`.
/// Moreover, `len` now refers to the number of elements to copy (rather than number of bytes to
/// copy).
pub fn call_memcpy_generic_array<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
dest: PointerValue<'ctx>,
src: PointerValue<'ctx>,
len: IntValue<'ctx>,
is_volatile: IntValue<'ctx>,
) {
let llvm_i8 = ctx.ctx.i8_type();
let llvm_p0i8 = llvm_i8.ptr_type(AddressSpace::default());
let llvm_sizeof_expr_t = llvm_i8.size_of().get_type();
let dest_elem_t = dest.get_type().get_element_type();
let src_elem_t = src.get_type().get_element_type();
let dest = if matches!(dest_elem_t, IntType(t) if t.get_bit_width() == 8) {
dest
} else {
ctx.builder
.build_bit_cast(dest, llvm_p0i8, "")
.map(BasicValueEnum::into_pointer_value)
.unwrap()
};
let src = if matches!(src_elem_t, IntType(t) if t.get_bit_width() == 8) {
src
} else {
ctx.builder
.build_bit_cast(src, llvm_p0i8, "")
.map(BasicValueEnum::into_pointer_value)
.unwrap()
};
let len = ctx.builder.build_int_z_extend_or_bit_cast(len, llvm_sizeof_expr_t, "").unwrap();
let len = ctx.builder.build_int_mul(len, src_elem_t.size_of().unwrap(), "").unwrap();
call_memcpy(ctx, dest, src, len, is_volatile);
}
/// Macro to find and generate build call for llvm intrinsic (body of llvm intrinsic function) /// Macro to find and generate build call for llvm intrinsic (body of llvm intrinsic function)
/// ///
/// Arguments: /// Arguments:
@ -341,3 +357,25 @@ pub fn call_float_powi<'ctx>(
.map(Either::unwrap_left) .map(Either::unwrap_left)
.unwrap() .unwrap()
} }
/// Invokes the [`llvm.ctpop`](https://llvm.org/docs/LangRef.html#llvm-ctpop-intrinsic) intrinsic.
pub fn call_int_ctpop<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
src: IntValue<'ctx>,
name: Option<&str>,
) -> IntValue<'ctx> {
const FN_NAME: &str = "llvm.ctpop";
let llvm_src_t = src.get_type();
let intrinsic_fn = Intrinsic::find(FN_NAME)
.and_then(|intrinsic| intrinsic.get_declaration(&ctx.module, &[llvm_src_t.into()]))
.unwrap();
ctx.builder
.build_call(intrinsic_fn, &[src.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
}

View File

@ -1,12 +1,12 @@
use crate::{ use std::{
codegen::classes::{ListType, ProxyType, RangeType}, collections::{HashMap, HashSet},
symbol_resolver::{StaticValue, SymbolResolver}, sync::{
toplevel::{helper::PrimDef, TopLevelContext, TopLevelDef}, atomic::{AtomicBool, Ordering},
typecheck::{ Arc,
type_inferencer::{CodeLocation, PrimitiveStore},
typedef::{CallId, FuncArg, Type, TypeEnum, Unifier},
}, },
thread,
}; };
use crossbeam::channel::{unbounded, Receiver, Sender}; use crossbeam::channel::{unbounded, Receiver, Sender};
use inkwell::{ use inkwell::{
attributes::{Attribute, AttributeLoc}, attributes::{Attribute, AttributeLoc},
@ -24,35 +24,56 @@ use inkwell::{
AddressSpace, IntPredicate, OptimizationLevel, AddressSpace, IntPredicate, OptimizationLevel,
}; };
use itertools::Itertools; use itertools::Itertools;
use model::*;
use nac3parser::ast::{Location, Stmt, StrRef};
use object::ndarray::NDArray;
use parking_lot::{Condvar, Mutex}; use parking_lot::{Condvar, Mutex};
use std::collections::{HashMap, HashSet};
use std::sync::{ use nac3parser::ast::{Location, Stmt, StrRef};
atomic::{AtomicBool, Ordering},
Arc, use crate::{
symbol_resolver::{StaticValue, SymbolResolver},
toplevel::{
helper::{extract_ndims, PrimDef},
numpy::unpack_ndarray_var_tys,
TopLevelContext, TopLevelDef,
},
typecheck::{
type_inferencer::{CodeLocation, PrimitiveStore},
typedef::{CallId, FuncArg, Type, TypeEnum, Unifier},
},
}; };
use std::thread; use concrete_type::{ConcreteType, ConcreteTypeEnum, ConcreteTypeStore};
pub use generator::{CodeGenerator, DefaultCodeGenerator};
use types::{ndarray::NDArrayType, ListType, ProxyType, RangeType, TupleType};
pub mod builtin_fns; pub mod builtin_fns;
pub mod classes;
pub mod concrete_type; pub mod concrete_type;
pub mod expr; pub mod expr;
pub mod extern_fns; pub mod extern_fns;
mod generator; mod generator;
pub mod irrt; pub mod irrt;
pub mod llvm_intrinsics; pub mod llvm_intrinsics;
pub mod model;
pub mod numpy; pub mod numpy;
pub mod object;
pub mod stmt; pub mod stmt;
pub mod types;
pub mod values;
#[cfg(test)] #[cfg(test)]
mod test; mod test;
use concrete_type::{ConcreteType, ConcreteTypeEnum, ConcreteTypeStore}; mod macros {
pub use generator::{CodeGenerator, DefaultCodeGenerator}; /// Codegen-variant of [`std::unreachable`] which accepts an instance of [`CodeGenContext`] as
/// its first argument to provide Python source information to indicate the codegen location
/// causing the assertion.
macro_rules! codegen_unreachable {
($ctx:expr $(,)?) => {
std::unreachable!("unreachable code while processing {}", &$ctx.current_loc)
};
($ctx:expr, $($arg:tt)*) => {
std::unreachable!("unreachable code while processing {}: {}", &$ctx.current_loc, std::format!("{}", std::format_args!($($arg)+)))
};
}
pub(crate) use codegen_unreachable;
}
#[derive(Default)] #[derive(Default)]
pub struct StaticValueStore { pub struct StaticValueStore {
@ -207,7 +228,7 @@ pub struct CodeGenContext<'ctx, 'a> {
pub current_loc: Location, pub current_loc: Location,
} }
impl<'ctx, 'a> CodeGenContext<'ctx, 'a> { impl CodeGenContext<'_, '_> {
/// Whether the [current basic block][Builder::get_insert_block] referenced by `builder` /// Whether the [current basic block][Builder::get_insert_block] referenced by `builder`
/// contains a [terminator statement][BasicBlock::get_terminator]. /// contains a [terminator statement][BasicBlock::get_terminator].
pub fn is_terminated(&self) -> bool { pub fn is_terminated(&self) -> bool {
@ -493,7 +514,13 @@ fn get_llvm_type<'ctx, G: CodeGenerator + ?Sized>(
} }
TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => { TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
Ptr(Struct(NDArray)).get_type(generator, ctx).as_basic_type_enum() let (dtype, ndims) = unpack_ndarray_var_tys(unifier, ty);
let ndims = extract_ndims(unifier, ndims);
let element_type = get_llvm_type(
ctx, module, generator, unifier, top_level, type_cache, dtype,
);
NDArrayType::new(generator, ctx, element_type, ndims).as_base_type().into()
} }
_ => unreachable!( _ => unreachable!(
@ -547,7 +574,7 @@ fn get_llvm_type<'ctx, G: CodeGenerator + ?Sized>(
get_llvm_type(ctx, module, generator, unifier, top_level, type_cache, *ty) get_llvm_type(ctx, module, generator, unifier, top_level, type_cache, *ty)
}) })
.collect_vec(); .collect_vec();
ctx.struct_type(&fields, false).into() TupleType::new(generator, ctx, &fields).as_base_type().into()
} }
TVirtual { .. } => unimplemented!(), TVirtual { .. } => unimplemented!(),
_ => unreachable!("{}", ty_enum.get_type_name()), _ => unreachable!("{}", ty_enum.get_type_name()),
@ -831,10 +858,9 @@ pub fn gen_func_impl<
builder.position_at_end(init_bb); builder.position_at_end(init_bb);
let body_bb = context.append_basic_block(fn_val, "body"); let body_bb = context.append_basic_block(fn_val, "body");
// Store non-vararg argument values into local variables
let mut var_assignment = HashMap::new(); let mut var_assignment = HashMap::new();
let offset = u32::from(has_sret); let offset = u32::from(has_sret);
// Store non-vararg argument values into local variables
for (n, arg) in args.iter().enumerate().filter(|(_, arg)| !arg.is_vararg) { for (n, arg) in args.iter().enumerate().filter(|(_, arg)| !arg.is_vararg) {
let param = fn_val.get_nth_param((n as u32) + offset).unwrap(); let param = fn_val.get_nth_param((n as u32) + offset).unwrap();
let local_type = get_llvm_type( let local_type = get_llvm_type(
@ -1098,3 +1124,106 @@ fn gen_in_range_check<'ctx>(
fn get_va_count_arg_name(arg_name: StrRef) -> StrRef { fn get_va_count_arg_name(arg_name: StrRef) -> StrRef {
format!("__{}_va_count", &arg_name).into() format!("__{}_va_count", &arg_name).into()
} }
/// Returns the alignment of the type.
///
/// This is necessary as `get_alignment` is not implemented as part of [`BasicType`].
pub fn get_type_alignment<'ctx>(ty: impl Into<BasicTypeEnum<'ctx>>) -> IntValue<'ctx> {
match ty.into() {
BasicTypeEnum::ArrayType(ty) => ty.get_alignment(),
BasicTypeEnum::FloatType(ty) => ty.get_alignment(),
BasicTypeEnum::IntType(ty) => ty.get_alignment(),
BasicTypeEnum::PointerType(ty) => ty.get_alignment(),
BasicTypeEnum::StructType(ty) => ty.get_alignment(),
BasicTypeEnum::VectorType(ty) => ty.get_alignment(),
}
}
/// Inserts an `alloca` instruction with allocation `size` given in bytes and the alignment of the
/// given type.
///
/// The returned [`PointerValue`] will have a type of `i8*`, a size of at least `size`, and will be
/// aligned with the alignment of `align_ty`.
pub fn type_aligned_alloca<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
align_ty: impl Into<BasicTypeEnum<'ctx>>,
size: IntValue<'ctx>,
name: Option<&str>,
) -> PointerValue<'ctx> {
/// Round `val` up to its modulo `power_of_two`.
fn round_up<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
val: IntValue<'ctx>,
power_of_two: IntValue<'ctx>,
) -> IntValue<'ctx> {
debug_assert_eq!(
val.get_type().get_bit_width(),
power_of_two.get_type().get_bit_width(),
"`val` ({}) and `power_of_two` ({}) must be the same type",
val.get_type(),
power_of_two.get_type(),
);
let llvm_val_t = val.get_type();
let max_rem =
ctx.builder.build_int_sub(power_of_two, llvm_val_t.const_int(1, false), "").unwrap();
ctx.builder
.build_and(
ctx.builder.build_int_add(val, max_rem, "").unwrap(),
ctx.builder.build_not(max_rem, "").unwrap(),
"",
)
.unwrap()
}
let llvm_i8 = ctx.ctx.i8_type();
let llvm_pi8 = llvm_i8.ptr_type(AddressSpace::default());
let llvm_usize = generator.get_size_type(ctx.ctx);
let align_ty = align_ty.into();
let size = ctx.builder.build_int_truncate_or_bit_cast(size, llvm_usize, "").unwrap();
debug_assert_eq!(
size.get_type().get_bit_width(),
llvm_usize.get_bit_width(),
"Expected size_t ({}) for parameter `size` of `aligned_alloca`, got {}",
llvm_usize,
size.get_type(),
);
let alignment = get_type_alignment(align_ty);
let alignment = ctx.builder.build_int_truncate_or_bit_cast(alignment, llvm_usize, "").unwrap();
if ctx.registry.llvm_options.opt_level == OptimizationLevel::None {
let alignment_bitcount = llvm_intrinsics::call_int_ctpop(ctx, alignment, None);
ctx.make_assert(
generator,
ctx.builder
.build_int_compare(
IntPredicate::EQ,
alignment_bitcount,
alignment_bitcount.get_type().const_int(1, false),
"",
)
.unwrap(),
"0:AssertionError",
"Expected power-of-two alignment for aligned_alloca, got {0}",
[Some(alignment), None, None],
ctx.current_loc,
);
}
let buffer_size = round_up(ctx, size, alignment);
let aligned_slices = ctx.builder.build_int_unsigned_div(buffer_size, alignment, "").unwrap();
// Just to be absolutely sure, alloca in [i8 x alignment] slices
let buffer = ctx.builder.build_array_alloca(align_ty, aligned_slices, "").unwrap();
ctx.builder
.build_bit_cast(buffer, llvm_pi8, name.unwrap_or_default())
.map(BasicValueEnum::into_pointer_value)
.unwrap()
}

View File

@ -1,42 +0,0 @@
use inkwell::{
context::Context,
types::{BasicType, BasicTypeEnum},
values::BasicValueEnum,
};
use crate::codegen::CodeGenerator;
use super::*;
/// A [`Model`] of any [`BasicTypeEnum`].
///
/// Use this when it is infeasible to use model abstractions.
#[derive(Debug, Clone, Copy)]
pub struct Any<'ctx>(pub BasicTypeEnum<'ctx>);
impl<'ctx> Model<'ctx> for Any<'ctx> {
type Value = BasicValueEnum<'ctx>;
type Type = BasicTypeEnum<'ctx>;
fn get_type<G: CodeGenerator + ?Sized>(
&self,
_generator: &G,
_ctx: &'ctx Context,
) -> Self::Type {
self.0
}
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
&self,
_generator: &mut G,
_ctx: &'ctx Context,
ty: T,
) -> Result<(), ModelError> {
let ty = ty.as_basic_type_enum();
if ty == self.0 {
Ok(())
} else {
Err(ModelError(format!("Expecting {}, but got {}", self.0, ty)))
}
}
}

View File

@ -1,143 +0,0 @@
use std::fmt;
use inkwell::{
context::Context,
types::{ArrayType, BasicType, BasicTypeEnum},
values::{ArrayValue, IntValue},
};
use crate::codegen::{CodeGenContext, CodeGenerator};
use super::*;
/// Trait for Rust structs identifying length values for [`Array`].
pub trait LenKind: fmt::Debug + Clone + Copy {
fn get_length(&self) -> u32;
}
/// A statically known length.
#[derive(Debug, Clone, Copy, Default)]
pub struct Len<const N: u32>;
/// A dynamically known length.
#[derive(Debug, Clone, Copy)]
pub struct AnyLen(pub u32);
impl<const N: u32> LenKind for Len<N> {
fn get_length(&self) -> u32 {
N
}
}
impl LenKind for AnyLen {
fn get_length(&self) -> u32 {
self.0
}
}
/// A Model for an [`ArrayType`].
///
/// `Len` should be of a [`LenKind`] and `Item` should be a of [`Model`].
#[derive(Debug, Clone, Copy, Default)]
pub struct Array<Len, Item> {
/// Length of this array.
pub len: Len,
/// [`Model`] of the array items.
pub item: Item,
}
impl<'ctx, Len: LenKind, Item: Model<'ctx>> Model<'ctx> for Array<Len, Item> {
type Value = ArrayValue<'ctx>;
type Type = ArrayType<'ctx>;
fn get_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context) -> Self::Type {
self.item.get_type(generator, ctx).array_type(self.len.get_length())
}
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
ty: T,
) -> Result<(), ModelError> {
let ty = ty.as_basic_type_enum();
let BasicTypeEnum::ArrayType(ty) = ty else {
return Err(ModelError(format!("Expecting ArrayType, but got {ty:?}")));
};
if ty.len() != self.len.get_length() {
return Err(ModelError(format!(
"Expecting ArrayType with size {}, but got an ArrayType with size {}",
ty.len(),
self.len.get_length()
)));
}
self.item
.check_type(generator, ctx, ty.get_element_type())
.map_err(|err| err.under_context("an ArrayType"))?;
Ok(())
}
}
impl<'ctx, Len: LenKind, Item: Model<'ctx>> Instance<'ctx, Ptr<Array<Len, Item>>> {
/// Get the pointer to the `i`-th (0-based) array element.
pub fn gep(
&self,
ctx: &CodeGenContext<'ctx, '_>,
i: IntValue<'ctx>,
) -> Instance<'ctx, Ptr<Item>> {
let zero = ctx.ctx.i32_type().const_zero();
let ptr = unsafe { ctx.builder.build_in_bounds_gep(self.value, &[zero, i], "").unwrap() };
Ptr(self.model.0.item).believe_value(ptr)
}
/// Like `gep` but `i` is a constant.
pub fn gep_const(&self, ctx: &CodeGenContext<'ctx, '_>, i: u64) -> Instance<'ctx, Ptr<Item>> {
assert!(
i < u64::from(self.model.0.len.get_length()),
"Index {i} is out of bounds. Array length = {}",
self.model.0.len.get_length()
);
let i = ctx.ctx.i32_type().const_int(i, false);
self.gep(ctx, i)
}
/// Convenience function equivalent to `.gep(...).load(...)`.
pub fn get<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
i: IntValue<'ctx>,
) -> Instance<'ctx, Item> {
self.gep(ctx, i).load(generator, ctx)
}
/// Like `get` but `i` is a constant.
pub fn get_const<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
i: u64,
) -> Instance<'ctx, Item> {
self.gep_const(ctx, i).load(generator, ctx)
}
/// Convenience function equivalent to `.gep(...).store(...)`.
pub fn set(
&self,
ctx: &CodeGenContext<'ctx, '_>,
i: IntValue<'ctx>,
value: Instance<'ctx, Item>,
) {
self.gep(ctx, i).store(ctx, value);
}
/// Like `set` but `i` is a constant.
pub fn set_const(&self, ctx: &CodeGenContext<'ctx, '_>, i: u64, value: Instance<'ctx, Item>) {
self.gep_const(ctx, i).store(ctx, value);
}
}

View File

@ -1,202 +0,0 @@
use std::fmt;
use inkwell::{context::Context, types::*, values::*};
use itertools::Itertools;
use super::*;
use crate::codegen::{CodeGenContext, CodeGenerator};
/// A error type for reporting any [`Model`]-related error (e.g., a [`BasicType`] mismatch).
#[derive(Debug, Clone)]
pub struct ModelError(pub String);
impl ModelError {
// Append a context message to the error.
pub(super) fn under_context(mut self, context: &str) -> Self {
self.0.push_str(" ... in ");
self.0.push_str(context);
self
}
}
/// Trait for Rust structs identifying [`BasicType`]s in the context of a known [`CodeGenerator`] and [`CodeGenContext`].
///
/// For instance,
/// - [`Int<Int32>`] identifies an [`IntType`] with 32-bits.
/// - [`Int<SizeT>`] identifies an [`IntType`] with bit-width [`CodeGenerator::get_size_type`].
/// - [`Ptr<Int<SizeT>>`] identifies a [`PointerType`] that points to an [`IntType`] with bit-width [`CodeGenerator::get_size_type`].
/// - [`Int<AnyInt>`] identifies an [`IntType`] with bit-width of whatever is set in the [`AnyInt`] object.
/// - [`Any`] identifies a [`BasicType`] set in the [`Any`] object itself.
///
/// You can get the [`BasicType`] out of a model with [`Model::get_type`].
///
/// Furthermore, [`Instance<'ctx, M>`] is a simple structure that carries a [`BasicValue`] with [`BasicType`] identified by model `M`.
///
/// The main purpose of this abstraction is to have a more Rust type-safe way to use Inkwell and give type-hints for programmers.
///
/// ### Notes on `Default` trait
///
/// For some models like [`Int<Int32>`] or [`Int<SizeT>`], they have a [`Default`] trait since just by looking at their types, it is possible
/// to tell the [`BasicType`]s they are identifying.
///
/// This can be used to create strongly-typed interfaces accepting only values of a specific [`BasicType`] without having to worry about
/// writing debug assertions to check, for example, if the programmer has passed in an [`IntValue`] with the wrong bit-width.
/// ```ignore
/// fn give_me_i32_and_get_a_size_t_back<'ctx>(i32: Instance<'ctx, Int<Int32>>) -> Instance<'ctx, Int<SizeT>> {
/// // code...
/// }
/// ```
///
/// ### Notes on converting between Inkwell and model.
///
/// Suppose you have an [`IntValue`], and you want to pass it into a function that takes a [`Instance<'ctx, Int<Int32>>`]. You can do use
/// [`Model::check_value`] or [`Model::believe_value`].
/// ```ignore
/// let my_value: IntValue<'ctx>;
///
/// let my_value = Int(Int32).check_value(my_value).unwrap(); // Panics if `my_value` is not 32-bit with a descriptive error message.
///
/// // or, if you are absolutely certain that `my_value` is 32-bit and doing extra checks is a waste of time:
/// let my_value = Int(Int32).believe_value(my_value);
/// ```
pub trait Model<'ctx>: fmt::Debug + Clone + Copy {
/// The [`BasicType`] *variant* this model is identifying.
type Type: BasicType<'ctx>;
/// The [`BasicValue`] type of the [`BasicType`] of this model.
type Value: BasicValue<'ctx> + TryFrom<BasicValueEnum<'ctx>>;
/// Return the [`BasicType`] of this model.
#[must_use]
fn get_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context) -> Self::Type;
/// Get the number of bytes of the [`BasicType`] of this model.
fn sizeof<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
) -> IntValue<'ctx> {
self.get_type(generator, ctx).size_of().unwrap()
}
/// Check if a [`BasicType`] matches the [`BasicType`] of this model.
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
ty: T,
) -> Result<(), ModelError>;
/// Create an instance from a value.
///
/// Caller must make sure the type of `value` and the type of this `model` are equivalent.
#[must_use]
fn believe_value(&self, value: Self::Value) -> Instance<'ctx, Self> {
Instance { model: *self, value }
}
/// Check if a [`BasicValue`]'s type is equivalent to the type of this model.
/// Wrap the [`BasicValue`] into an [`Instance`] if it is.
fn check_value<V: BasicValue<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
value: V,
) -> Result<Instance<'ctx, Self>, ModelError> {
let value = value.as_basic_value_enum();
self.check_type(generator, ctx, value.get_type())
.map_err(|err| err.under_context(format!("the value {value:?}").as_str()))?;
let Ok(value) = Self::Value::try_from(value) else {
unreachable!("check_type() has bad implementation")
};
Ok(self.believe_value(value))
}
// Allocate a value on the stack and return its pointer.
fn alloca<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
) -> Instance<'ctx, Ptr<Self>> {
let p = ctx.builder.build_alloca(self.get_type(generator, ctx.ctx), "").unwrap();
Ptr(*self).believe_value(p)
}
// Allocate an array on the stack and return its pointer.
fn array_alloca<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
len: IntValue<'ctx>,
) -> Instance<'ctx, Ptr<Self>> {
let p = ctx.builder.build_array_alloca(self.get_type(generator, ctx.ctx), len, "").unwrap();
Ptr(*self).believe_value(p)
}
fn var_alloca<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&str>,
) -> Result<Instance<'ctx, Ptr<Self>>, String> {
let ty = self.get_type(generator, ctx.ctx).as_basic_type_enum();
let p = generator.gen_var_alloc(ctx, ty, name)?;
Ok(Ptr(*self).believe_value(p))
}
fn array_var_alloca<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
len: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> Result<Instance<'ctx, Ptr<Self>>, String> {
// TODO: Remove ArraySliceValue
let ty = self.get_type(generator, ctx.ctx).as_basic_type_enum();
let p = generator.gen_array_var_alloc(ctx, ty, len, name)?;
Ok(Ptr(*self).believe_value(PointerValue::from(p)))
}
/// Allocate a constant array.
fn const_array<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
values: &[Instance<'ctx, Self>],
) -> Instance<'ctx, Array<AnyLen, Self>> {
macro_rules! make {
($t:expr, $into_value:expr) => {
$t.const_array(
&values
.iter()
.map(|x| $into_value(x.value.as_basic_value_enum()))
.collect_vec(),
)
};
}
let value = match self.get_type(generator, ctx).as_basic_type_enum() {
BasicTypeEnum::ArrayType(t) => make!(t, BasicValueEnum::into_array_value),
BasicTypeEnum::IntType(t) => make!(t, BasicValueEnum::into_int_value),
BasicTypeEnum::FloatType(t) => make!(t, BasicValueEnum::into_float_value),
BasicTypeEnum::PointerType(t) => make!(t, BasicValueEnum::into_pointer_value),
BasicTypeEnum::StructType(t) => make!(t, BasicValueEnum::into_struct_value),
BasicTypeEnum::VectorType(t) => make!(t, BasicValueEnum::into_vector_value),
};
Array { len: AnyLen(values.len() as u32), item: *self }
.check_value(generator, ctx, value)
.unwrap()
}
}
#[derive(Debug, Clone, Copy)]
pub struct Instance<'ctx, M: Model<'ctx>> {
/// The model of this instance.
pub model: M,
/// The value of this instance.
///
/// It is guaranteed the [`BasicType`] of `value` is consistent with that of `model`.
pub value: M::Value,
}

View File

@ -1,90 +0,0 @@
use std::fmt;
use inkwell::{
context::Context,
types::{BasicType, FloatType},
values::FloatValue,
};
use crate::codegen::CodeGenerator;
use super::*;
pub trait FloatKind<'ctx>: fmt::Debug + Clone + Copy {
fn get_float_type<G: CodeGenerator + ?Sized>(
&self,
generator: &G,
ctx: &'ctx Context,
) -> FloatType<'ctx>;
}
#[derive(Debug, Clone, Copy, Default)]
pub struct Float32;
#[derive(Debug, Clone, Copy, Default)]
pub struct Float64;
impl<'ctx> FloatKind<'ctx> for Float32 {
fn get_float_type<G: CodeGenerator + ?Sized>(
&self,
_generator: &G,
ctx: &'ctx Context,
) -> FloatType<'ctx> {
ctx.f32_type()
}
}
impl<'ctx> FloatKind<'ctx> for Float64 {
fn get_float_type<G: CodeGenerator + ?Sized>(
&self,
_generator: &G,
ctx: &'ctx Context,
) -> FloatType<'ctx> {
ctx.f64_type()
}
}
#[derive(Debug, Clone, Copy)]
pub struct AnyFloat<'ctx>(FloatType<'ctx>);
impl<'ctx> FloatKind<'ctx> for AnyFloat<'ctx> {
fn get_float_type<G: CodeGenerator + ?Sized>(
&self,
_generator: &G,
_ctx: &'ctx Context,
) -> FloatType<'ctx> {
self.0
}
}
#[derive(Debug, Clone, Copy, Default)]
pub struct Float<N>(pub N);
impl<'ctx, N: FloatKind<'ctx>> Model<'ctx> for Float<N> {
type Value = FloatValue<'ctx>;
type Type = FloatType<'ctx>;
fn get_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context) -> Self::Type {
self.0.get_float_type(generator, ctx)
}
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
ty: T,
) -> Result<(), ModelError> {
let ty = ty.as_basic_type_enum();
let Ok(ty) = FloatType::try_from(ty) else {
return Err(ModelError(format!("Expecting FloatType, but got {ty:?}")));
};
let exp_ty = self.0.get_float_type(generator, ctx);
// TODO: Inkwell does not have get_bit_width for FloatType?
if ty != exp_ty {
return Err(ModelError(format!("Expecting {exp_ty:?}, but got {ty:?}")));
}
Ok(())
}
}

View File

@ -1,122 +0,0 @@
use inkwell::{
attributes::{Attribute, AttributeLoc},
types::{BasicMetadataTypeEnum, BasicType, FunctionType},
values::{AnyValue, BasicMetadataValueEnum, BasicValue, BasicValueEnum, CallSiteValue},
};
use itertools::Itertools;
use crate::codegen::{CodeGenContext, CodeGenerator};
use super::*;
#[derive(Debug, Clone, Copy)]
struct Arg<'ctx> {
ty: BasicMetadataTypeEnum<'ctx>,
val: BasicMetadataValueEnum<'ctx>,
}
/// A convenience structure to construct & call an LLVM function.
///
/// ### Usage
///
/// The syntax is like this:
/// ```ignore
/// let result = CallFunction::begin("my_function_name")
/// .attrs(...)
/// .arg(arg1)
/// .arg(arg2)
/// .arg(arg3)
/// .returning("my_function_result", Int32);
/// ```
///
/// The function `my_function_name` is called when `.returning()` (or its variants) is called, returning
/// the result as an `Instance<'ctx, Int<Int32>>`.
///
/// If `my_function_name` has not been declared in `ctx.module`, once `.returning()` is called, a function
/// declaration of `my_function_name` is added to `ctx.module`, where the [`FunctionType`] is deduced from
/// the argument types and returning type.
pub struct CallFunction<'ctx, 'a, 'b, 'c, 'd, G: CodeGenerator + ?Sized> {
generator: &'d mut G,
ctx: &'b CodeGenContext<'ctx, 'a>,
/// Function name
name: &'c str,
/// Call arguments
args: Vec<Arg<'ctx>>,
/// LLVM function Attributes
attrs: Vec<&'static str>,
}
impl<'ctx, 'a, 'b, 'c, 'd, G: CodeGenerator + ?Sized> CallFunction<'ctx, 'a, 'b, 'c, 'd, G> {
pub fn begin(generator: &'d mut G, ctx: &'b CodeGenContext<'ctx, 'a>, name: &'c str) -> Self {
CallFunction { generator, ctx, name, args: Vec::new(), attrs: Vec::new() }
}
/// Push a list of LLVM function attributes to the function declaration.
#[must_use]
pub fn attrs(mut self, attrs: Vec<&'static str>) -> Self {
self.attrs = attrs;
self
}
/// Push a call argument to the function call.
#[allow(clippy::needless_pass_by_value)]
#[must_use]
pub fn arg<M: Model<'ctx>>(mut self, arg: Instance<'ctx, M>) -> Self {
let arg = Arg {
ty: arg.model.get_type(self.generator, self.ctx.ctx).as_basic_type_enum().into(),
val: arg.value.as_basic_value_enum().into(),
};
self.args.push(arg);
self
}
/// Call the function and expect the function to return a value of type of `return_model`.
#[must_use]
pub fn returning<M: Model<'ctx>>(self, name: &str, return_model: M) -> Instance<'ctx, M> {
let ret_ty = return_model.get_type(self.generator, self.ctx.ctx);
let ret = self.call(|tys| ret_ty.fn_type(tys, false), name);
let ret = BasicValueEnum::try_from(ret.as_any_value_enum()).unwrap(); // Must work
let ret = return_model.check_value(self.generator, self.ctx.ctx, ret).unwrap(); // Must work
ret
}
/// Like [`CallFunction::returning_`] but `return_model` is automatically inferred.
#[must_use]
pub fn returning_auto<M: Model<'ctx> + Default>(self, name: &str) -> Instance<'ctx, M> {
self.returning(name, M::default())
}
/// Call the function and expect the function to return a void-type.
pub fn returning_void(self) {
let ret_ty = self.ctx.ctx.void_type();
let _ = self.call(|tys| ret_ty.fn_type(tys, false), "");
}
fn call<F>(&self, make_fn_type: F, return_value_name: &str) -> CallSiteValue<'ctx>
where
F: FnOnce(&[BasicMetadataTypeEnum<'ctx>]) -> FunctionType<'ctx>,
{
// Get the LLVM function.
let func = self.ctx.module.get_function(self.name).unwrap_or_else(|| {
// Declare the function if it doesn't exist.
let tys = self.args.iter().map(|arg| arg.ty).collect_vec();
let func_type = make_fn_type(&tys);
let func = self.ctx.module.add_function(self.name, func_type, None);
for attr in &self.attrs {
func.add_attribute(
AttributeLoc::Function,
self.ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id(attr), 0),
);
}
func
});
let vals = self.args.iter().map(|arg| arg.val).collect_vec();
self.ctx.builder.build_call(func, &vals, return_value_name).unwrap()
}
}

View File

@ -1,417 +0,0 @@
use std::{cmp::Ordering, fmt};
use inkwell::{
context::Context,
types::{BasicType, IntType},
values::IntValue,
IntPredicate,
};
use crate::codegen::{CodeGenContext, CodeGenerator};
use super::*;
pub trait IntKind<'ctx>: fmt::Debug + Clone + Copy {
fn get_int_type<G: CodeGenerator + ?Sized>(
&self,
generator: &G,
ctx: &'ctx Context,
) -> IntType<'ctx>;
}
#[derive(Debug, Clone, Copy, Default)]
pub struct Bool;
#[derive(Debug, Clone, Copy, Default)]
pub struct Byte;
#[derive(Debug, Clone, Copy, Default)]
pub struct Int32;
#[derive(Debug, Clone, Copy, Default)]
pub struct Int64;
#[derive(Debug, Clone, Copy, Default)]
pub struct SizeT;
impl<'ctx> IntKind<'ctx> for Bool {
fn get_int_type<G: CodeGenerator + ?Sized>(
&self,
_generator: &G,
ctx: &'ctx Context,
) -> IntType<'ctx> {
ctx.bool_type()
}
}
impl<'ctx> IntKind<'ctx> for Byte {
fn get_int_type<G: CodeGenerator + ?Sized>(
&self,
_generator: &G,
ctx: &'ctx Context,
) -> IntType<'ctx> {
ctx.i8_type()
}
}
impl<'ctx> IntKind<'ctx> for Int32 {
fn get_int_type<G: CodeGenerator + ?Sized>(
&self,
_generator: &G,
ctx: &'ctx Context,
) -> IntType<'ctx> {
ctx.i32_type()
}
}
impl<'ctx> IntKind<'ctx> for Int64 {
fn get_int_type<G: CodeGenerator + ?Sized>(
&self,
_generator: &G,
ctx: &'ctx Context,
) -> IntType<'ctx> {
ctx.i64_type()
}
}
impl<'ctx> IntKind<'ctx> for SizeT {
fn get_int_type<G: CodeGenerator + ?Sized>(
&self,
generator: &G,
ctx: &'ctx Context,
) -> IntType<'ctx> {
generator.get_size_type(ctx)
}
}
#[derive(Debug, Clone, Copy)]
pub struct AnyInt<'ctx>(pub IntType<'ctx>);
impl<'ctx> IntKind<'ctx> for AnyInt<'ctx> {
fn get_int_type<G: CodeGenerator + ?Sized>(
&self,
_generator: &G,
_ctx: &'ctx Context,
) -> IntType<'ctx> {
self.0
}
}
#[derive(Debug, Clone, Copy, Default)]
pub struct Int<N>(pub N);
impl<'ctx, N: IntKind<'ctx>> Model<'ctx> for Int<N> {
type Value = IntValue<'ctx>;
type Type = IntType<'ctx>;
fn get_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context) -> Self::Type {
self.0.get_int_type(generator, ctx)
}
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
ty: T,
) -> Result<(), ModelError> {
let ty = ty.as_basic_type_enum();
let Ok(ty) = IntType::try_from(ty) else {
return Err(ModelError(format!("Expecting IntType, but got {ty:?}")));
};
let exp_ty = self.0.get_int_type(generator, ctx);
if ty.get_bit_width() != exp_ty.get_bit_width() {
return Err(ModelError(format!(
"Expecting IntType to have {} bit(s), but got {} bit(s)",
exp_ty.get_bit_width(),
ty.get_bit_width()
)));
}
Ok(())
}
}
impl<'ctx, N: IntKind<'ctx>> Int<N> {
pub fn const_int<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
value: u64,
) -> Instance<'ctx, Self> {
let value = self.get_type(generator, ctx).const_int(value, false);
self.believe_value(value)
}
pub fn const_0<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
) -> Instance<'ctx, Self> {
let value = self.get_type(generator, ctx).const_zero();
self.believe_value(value)
}
pub fn const_1<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
) -> Instance<'ctx, Self> {
self.const_int(generator, ctx, 1)
}
pub fn const_all_ones<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
) -> Instance<'ctx, Self> {
let value = self.get_type(generator, ctx).const_all_ones();
self.believe_value(value)
}
pub fn s_extend_or_bit_cast<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
value: IntValue<'ctx>,
) -> Instance<'ctx, Self> {
assert!(
value.get_type().get_bit_width()
<= self.0.get_int_type(generator, ctx.ctx).get_bit_width()
);
let value = ctx
.builder
.build_int_s_extend_or_bit_cast(value, self.get_type(generator, ctx.ctx), "")
.unwrap();
self.believe_value(value)
}
pub fn s_extend<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
value: IntValue<'ctx>,
) -> Instance<'ctx, Self> {
assert!(
value.get_type().get_bit_width()
< self.0.get_int_type(generator, ctx.ctx).get_bit_width()
);
let value =
ctx.builder.build_int_s_extend(value, self.get_type(generator, ctx.ctx), "").unwrap();
self.believe_value(value)
}
pub fn z_extend_or_bit_cast<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
value: IntValue<'ctx>,
) -> Instance<'ctx, Self> {
assert!(
value.get_type().get_bit_width()
<= self.0.get_int_type(generator, ctx.ctx).get_bit_width()
);
let value = ctx
.builder
.build_int_z_extend_or_bit_cast(value, self.get_type(generator, ctx.ctx), "")
.unwrap();
self.believe_value(value)
}
pub fn z_extend<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
value: IntValue<'ctx>,
) -> Instance<'ctx, Self> {
assert!(
value.get_type().get_bit_width()
< self.0.get_int_type(generator, ctx.ctx).get_bit_width()
);
let value =
ctx.builder.build_int_z_extend(value, self.get_type(generator, ctx.ctx), "").unwrap();
self.believe_value(value)
}
pub fn truncate_or_bit_cast<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
value: IntValue<'ctx>,
) -> Instance<'ctx, Self> {
assert!(
value.get_type().get_bit_width()
>= self.0.get_int_type(generator, ctx.ctx).get_bit_width()
);
let value = ctx
.builder
.build_int_truncate_or_bit_cast(value, self.get_type(generator, ctx.ctx), "")
.unwrap();
self.believe_value(value)
}
pub fn truncate<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
value: IntValue<'ctx>,
) -> Instance<'ctx, Self> {
assert!(
value.get_type().get_bit_width()
> self.0.get_int_type(generator, ctx.ctx).get_bit_width()
);
let value =
ctx.builder.build_int_truncate(value, self.get_type(generator, ctx.ctx), "").unwrap();
self.believe_value(value)
}
/// `sext` or `trunc` an int to this model's int type. Does nothing if equal bit-widths.
pub fn s_extend_or_truncate<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
value: IntValue<'ctx>,
) -> Instance<'ctx, Self> {
let their_width = value.get_type().get_bit_width();
let our_width = self.0.get_int_type(generator, ctx.ctx).get_bit_width();
match their_width.cmp(&our_width) {
Ordering::Less => self.s_extend(generator, ctx, value),
Ordering::Equal => self.believe_value(value),
Ordering::Greater => self.truncate(generator, ctx, value),
}
}
/// `zext` or `trunc` an int to this model's int type. Does nothing if equal bit-widths.
pub fn z_extend_or_truncate<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
value: IntValue<'ctx>,
) -> Instance<'ctx, Self> {
let their_width = value.get_type().get_bit_width();
let our_width = self.0.get_int_type(generator, ctx.ctx).get_bit_width();
match their_width.cmp(&our_width) {
Ordering::Less => self.z_extend(generator, ctx, value),
Ordering::Equal => self.believe_value(value),
Ordering::Greater => self.truncate(generator, ctx, value),
}
}
}
impl Int<Bool> {
#[must_use]
pub fn const_false<'ctx, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
) -> Instance<'ctx, Self> {
self.const_int(generator, ctx, 0)
}
#[must_use]
pub fn const_true<'ctx, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
) -> Instance<'ctx, Self> {
self.const_int(generator, ctx, 1)
}
}
impl<'ctx, N: IntKind<'ctx>> Instance<'ctx, Int<N>> {
pub fn s_extend_or_bit_cast<NewN: IntKind<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
to_int_kind: NewN,
) -> Instance<'ctx, Int<NewN>> {
Int(to_int_kind).s_extend_or_bit_cast(generator, ctx, self.value)
}
pub fn s_extend<NewN: IntKind<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
to_int_kind: NewN,
) -> Instance<'ctx, Int<NewN>> {
Int(to_int_kind).s_extend(generator, ctx, self.value)
}
pub fn z_extend_or_bit_cast<NewN: IntKind<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
to_int_kind: NewN,
) -> Instance<'ctx, Int<NewN>> {
Int(to_int_kind).z_extend_or_bit_cast(generator, ctx, self.value)
}
pub fn z_extend<NewN: IntKind<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
to_int_kind: NewN,
) -> Instance<'ctx, Int<NewN>> {
Int(to_int_kind).z_extend(generator, ctx, self.value)
}
pub fn truncate_or_bit_cast<NewN: IntKind<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
to_int_kind: NewN,
) -> Instance<'ctx, Int<NewN>> {
Int(to_int_kind).truncate_or_bit_cast(generator, ctx, self.value)
}
pub fn truncate<NewN: IntKind<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
to_int_kind: NewN,
) -> Instance<'ctx, Int<NewN>> {
Int(to_int_kind).truncate(generator, ctx, self.value)
}
pub fn s_extend_or_truncate<NewN: IntKind<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
to_int_kind: NewN,
) -> Instance<'ctx, Int<NewN>> {
Int(to_int_kind).s_extend_or_truncate(generator, ctx, self.value)
}
pub fn z_extend_or_truncate<NewN: IntKind<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
to_int_kind: NewN,
) -> Instance<'ctx, Int<NewN>> {
Int(to_int_kind).z_extend_or_truncate(generator, ctx, self.value)
}
#[must_use]
pub fn add(&self, ctx: &CodeGenContext<'ctx, '_>, other: Self) -> Self {
let value = ctx.builder.build_int_add(self.value, other.value, "").unwrap();
self.model.believe_value(value)
}
#[must_use]
pub fn sub(&self, ctx: &CodeGenContext<'ctx, '_>, other: Self) -> Self {
let value = ctx.builder.build_int_sub(self.value, other.value, "").unwrap();
self.model.believe_value(value)
}
#[must_use]
pub fn mul(&self, ctx: &CodeGenContext<'ctx, '_>, other: Self) -> Self {
let value = ctx.builder.build_int_mul(self.value, other.value, "").unwrap();
self.model.believe_value(value)
}
pub fn compare(
&self,
ctx: &CodeGenContext<'ctx, '_>,
op: IntPredicate,
other: Self,
) -> Instance<'ctx, Int<Bool>> {
let value = ctx.builder.build_int_compare(op, self.value, other.value, "").unwrap();
Int(Bool).believe_value(value)
}
}

View File

@ -1,17 +0,0 @@
mod any;
mod array;
mod core;
mod float;
pub mod function;
mod int;
mod ptr;
mod structure;
pub mod util;
pub use any::*;
pub use array::*;
pub use core::*;
pub use float::*;
pub use int::*;
pub use ptr::*;
pub use structure::*;

View File

@ -1,219 +0,0 @@
use inkwell::{
context::Context,
types::{BasicType, BasicTypeEnum, PointerType},
values::{IntValue, PointerValue},
AddressSpace,
};
use crate::codegen::{llvm_intrinsics::call_memcpy_generic, CodeGenContext, CodeGenerator};
use super::*;
/// A model for [`PointerType`].
///
/// `Item` is the element type this pointer is pointing to, and should be of a [`Model`].
///
// TODO: LLVM 15: `Item` is a Rust type-hint for the LLVM type of value the `.store()/.load()` family
// of functions return. If a truly opaque pointer is needed, tell the programmer to use `OpaquePtr`.
#[derive(Debug, Clone, Copy, Default)]
pub struct Ptr<Item>(pub Item);
/// An opaque pointer. Like [`Ptr`] but without any Rust type-hints about its element type.
///
/// `.load()/.store()` is not available for [`Instance`]s of opaque pointers.
pub type OpaquePtr = Ptr<()>;
// TODO: LLVM 15: `Item: Model<'ctx>` don't even need to be a model anymore. It will only be
// a type-hint for the `.load()/.store()` functions for the `pointee_ty`.
//
// See https://thedan64.github.io/inkwell/inkwell/builder/struct.Builder.html#method.build_load.
impl<'ctx, Item: Model<'ctx>> Model<'ctx> for Ptr<Item> {
type Value = PointerValue<'ctx>;
type Type = PointerType<'ctx>;
fn get_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context) -> Self::Type {
// TODO: LLVM 15: ctx.ptr_type(AddressSpace::default())
self.0.get_type(generator, ctx).ptr_type(AddressSpace::default())
}
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
ty: T,
) -> Result<(), ModelError> {
let ty = ty.as_basic_type_enum();
let Ok(ty) = PointerType::try_from(ty) else {
return Err(ModelError(format!("Expecting PointerType, but got {ty:?}")));
};
let elem_ty = ty.get_element_type();
let Ok(elem_ty) = BasicTypeEnum::try_from(elem_ty) else {
return Err(ModelError(format!(
"Expecting pointer element type to be a BasicTypeEnum, but got {elem_ty:?}"
)));
};
// TODO: inkwell `get_element_type()` will be deprecated.
// Remove the check for `get_element_type()` when the time comes.
self.0
.check_type(generator, ctx, elem_ty)
.map_err(|err| err.under_context("a PointerType"))?;
Ok(())
}
}
impl<'ctx, Item: Model<'ctx>> Ptr<Item> {
/// Return a ***constant*** nullptr.
pub fn nullptr<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
) -> Instance<'ctx, Ptr<Item>> {
let ptr = self.get_type(generator, ctx).const_null();
self.believe_value(ptr)
}
/// Cast a pointer into this model with [`inkwell::builder::Builder::build_pointer_cast`]
pub fn pointer_cast<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
ptr: PointerValue<'ctx>,
) -> Instance<'ctx, Ptr<Item>> {
// TODO: LLVM 15: Write in an impl where `Item` does not have to be `Model<'ctx>`.
// TODO: LLVM 15: This function will only have to be:
// ```
// return self.believe_value(ptr);
// ```
let t = self.get_type(generator, ctx.ctx);
let ptr = ctx.builder.build_pointer_cast(ptr, t, "").unwrap();
self.believe_value(ptr)
}
}
impl<'ctx, Item: Model<'ctx>> Instance<'ctx, Ptr<Item>> {
/// Offset the pointer by [`inkwell::builder::Builder::build_in_bounds_gep`].
#[must_use]
pub fn offset(
&self,
ctx: &CodeGenContext<'ctx, '_>,
offset: IntValue<'ctx>,
) -> Instance<'ctx, Ptr<Item>> {
let p = unsafe { ctx.builder.build_in_bounds_gep(self.value, &[offset], "").unwrap() };
self.model.believe_value(p)
}
/// Offset the pointer by [`inkwell::builder::Builder::build_in_bounds_gep`] by a constant offset.
#[must_use]
pub fn offset_const(
&self,
ctx: &CodeGenContext<'ctx, '_>,
offset: u64,
) -> Instance<'ctx, Ptr<Item>> {
let offset = ctx.ctx.i32_type().const_int(offset, false);
self.offset(ctx, offset)
}
pub fn set_index(
&self,
ctx: &CodeGenContext<'ctx, '_>,
index: IntValue<'ctx>,
value: Instance<'ctx, Item>,
) {
self.offset(ctx, index).store(ctx, value);
}
pub fn set_index_const(
&self,
ctx: &CodeGenContext<'ctx, '_>,
index: u64,
value: Instance<'ctx, Item>,
) {
self.offset_const(ctx, index).store(ctx, value);
}
pub fn get_index<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
index: IntValue<'ctx>,
) -> Instance<'ctx, Item> {
self.offset(ctx, index).load(generator, ctx)
}
pub fn get_index_const<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
index: u64,
) -> Instance<'ctx, Item> {
self.offset_const(ctx, index).load(generator, ctx)
}
/// Load the value with [`inkwell::builder::Builder::build_load`].
pub fn load<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
) -> Instance<'ctx, Item> {
let value = ctx.builder.build_load(self.value, "").unwrap();
self.model.0.check_value(generator, ctx.ctx, value).unwrap() // If unwrap() panics, there is a logic error.
}
/// Store a value with [`inkwell::builder::Builder::build_store`].
pub fn store(&self, ctx: &CodeGenContext<'ctx, '_>, value: Instance<'ctx, Item>) {
ctx.builder.build_store(self.value, value.value).unwrap();
}
/// Return a casted pointer of element type `NewElement` with [`inkwell::builder::Builder::build_pointer_cast`].
pub fn pointer_cast<NewItem: Model<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
new_item: NewItem,
) -> Instance<'ctx, Ptr<NewItem>> {
// TODO: LLVM 15: Write in an impl where `Item` does not have to be `Model<'ctx>`.
Ptr(new_item).pointer_cast(generator, ctx, self.value)
}
/// Cast this pointer to `uint8_t*`
pub fn cast_to_pi8<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
) -> Instance<'ctx, Ptr<Int<Byte>>> {
Ptr(Int(Byte)).pointer_cast(generator, ctx, self.value)
}
/// Check if the pointer is null with [`inkwell::builder::Builder::build_is_null`].
pub fn is_null(&self, ctx: &CodeGenContext<'ctx, '_>) -> Instance<'ctx, Int<Bool>> {
let value = ctx.builder.build_is_null(self.value, "").unwrap();
Int(Bool).believe_value(value)
}
/// Check if the pointer is not null with [`inkwell::builder::Builder::build_is_not_null`].
pub fn is_not_null(&self, ctx: &CodeGenContext<'ctx, '_>) -> Instance<'ctx, Int<Bool>> {
let value = ctx.builder.build_is_not_null(self.value, "").unwrap();
Int(Bool).believe_value(value)
}
/// `memcpy` from another pointer.
pub fn copy_from<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
source: Self,
num_items: IntValue<'ctx>,
) {
// Force extend `num_items` and `itemsize` to `i64` so their types would match.
let itemsize = self.model.sizeof(generator, ctx.ctx);
let itemsize = Int(Int64).z_extend_or_truncate(generator, ctx, itemsize);
let num_items = Int(Int64).z_extend_or_truncate(generator, ctx, num_items);
let totalsize = itemsize.mul(ctx, num_items);
let is_volatile = ctx.ctx.bool_type().const_zero(); // is_volatile = false
call_memcpy_generic(ctx, self.value, source.value, totalsize.value, is_volatile);
}
}

View File

@ -1,359 +0,0 @@
use std::fmt;
use inkwell::{
context::Context,
types::{BasicType, BasicTypeEnum, StructType},
values::{BasicValueEnum, StructValue},
};
use crate::codegen::{CodeGenContext, CodeGenerator};
use super::*;
/// A traveral that traverses a Rust `struct` that is used to declare an LLVM's struct's field types.
pub trait FieldTraversal<'ctx> {
/// Output type of [`FieldTraversal::add`].
type Out<M>;
/// Traverse through the type of a declared field and do something with it.
///
/// * `name` - The cosmetic name of the LLVM field. Used for debugging.
/// * `model` - The [`Model`] representing the LLVM type of this field.
fn add<M: Model<'ctx>>(&mut self, name: &'static str, model: M) -> Self::Out<M>;
/// Like [`FieldTraversal::add`] but [`Model`] is automatically inferred from its [`Default`] trait.
fn add_auto<M: Model<'ctx> + Default>(&mut self, name: &'static str) -> Self::Out<M> {
self.add(name, M::default())
}
}
/// Descriptor of an LLVM struct field.
#[derive(Debug, Clone, Copy)]
pub struct GepField<M> {
/// The GEP index of this field. This is the index to use with `build_gep`.
pub gep_index: u64,
/// The cosmetic name of this field.
pub name: &'static str,
/// The [`Model`] of this field's type.
pub model: M,
}
/// A traversal to calculate the GEP index of fields.
pub struct GepFieldTraversal {
/// The current GEP index.
gep_index_counter: u64,
}
impl<'ctx> FieldTraversal<'ctx> for GepFieldTraversal {
type Out<M> = GepField<M>;
fn add<M: Model<'ctx>>(&mut self, name: &'static str, model: M) -> Self::Out<M> {
let gep_index = self.gep_index_counter;
self.gep_index_counter += 1;
Self::Out { gep_index, name, model }
}
}
/// A traversal to collect the field types of a struct.
///
/// This is used to collect field types and construct the LLVM struct type with [`Context::struct_type`].
struct TypeFieldTraversal<'ctx, 'a, G: CodeGenerator + ?Sized> {
generator: &'a G,
ctx: &'ctx Context,
/// The collected field types so far in exact order.
field_types: Vec<BasicTypeEnum<'ctx>>,
}
impl<'ctx, 'a, G: CodeGenerator + ?Sized> FieldTraversal<'ctx> for TypeFieldTraversal<'ctx, 'a, G> {
type Out<M> = (); // Checking types return nothing.
fn add<M: Model<'ctx>>(&mut self, _name: &'static str, model: M) -> Self::Out<M> {
let t = model.get_type(self.generator, self.ctx).as_basic_type_enum();
self.field_types.push(t);
}
}
/// A traversal to check the types of fields.
struct CheckTypeFieldTraversal<'ctx, 'a, G: CodeGenerator + ?Sized> {
generator: &'a mut G,
ctx: &'ctx Context,
/// The current GEP index, so we can tell the index of the field we are checking
/// and report the GEP index.
gep_index_counter: u32,
/// The [`StructType`] to check.
scrutinee: StructType<'ctx>,
/// The list of collected errors so far.
errors: Vec<ModelError>,
}
impl<'ctx, 'a, G: CodeGenerator + ?Sized> FieldTraversal<'ctx>
for CheckTypeFieldTraversal<'ctx, 'a, G>
{
type Out<M> = (); // Checking types return nothing.
fn add<M: Model<'ctx>>(&mut self, name: &'static str, model: M) -> Self::Out<M> {
let gep_index = self.gep_index_counter;
self.gep_index_counter += 1;
if let Some(t) = self.scrutinee.get_field_type_at_index(gep_index) {
if let Err(err) = model.check_type(self.generator, self.ctx, t) {
self.errors
.push(err.under_context(format!("field #{gep_index} '{name}'").as_str()));
}
} // Otherwise, it will be caught by Struct's `check_type`.
}
}
/// A trait for Rust structs identifying LLVM structures.
///
/// ### Example
///
/// Suppose you want to define this structure:
/// ```c
/// template <typename T>
/// struct ContiguousNDArray {
/// size_t ndims;
/// size_t* shape;
/// T* data;
/// }
/// ```
///
/// This is how it should be done:
/// ```ignore
/// pub struct ContiguousNDArrayFields<'ctx, F: FieldTraversal<'ctx>, Item: Model<'ctx>> {
/// pub ndims: F::Out<Int<SizeT>>,
/// pub shape: F::Out<Ptr<Int<SizeT>>>,
/// pub data: F::Out<Ptr<Item>>,
/// }
///
/// /// An ndarray without strides and non-opaque `data` field in NAC3.
/// #[derive(Debug, Clone, Copy)]
/// pub struct ContiguousNDArray<M> {
/// /// [`Model`] of the items.
/// pub item: M,
/// }
///
/// impl<'ctx, Item: Model<'ctx>> StructKind<'ctx> for ContiguousNDArray<Item> {
/// type Fields<F: FieldTraversal<'ctx>> = ContiguousNDArrayFields<'ctx, F, Item>;
///
/// fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
/// // The order of `traversal.add*` is important
/// Self::Fields {
/// ndims: traversal.add_auto("ndims"),
/// shape: traversal.add_auto("shape"),
/// data: traversal.add("data", Ptr(self.item)),
/// }
/// }
/// }
/// ```
///
/// The [`FieldTraversal`] here is a mechanism to allow the fields of `ContiguousNDArrayFields` to be
/// traversed to do useful work such as:
///
/// - To create the [`StructType`] of `ContiguousNDArray` by collecting [`BasicType`]s of the fields.
/// - To enable the `.gep(ctx, |f| f.ndims).store(ctx, ...)` syntax.
///
/// Suppose now that you have defined `ContiguousNDArray` and you want to allocate a `ContiguousNDArray`
/// with dtype `float64` in LLVM, this is how you do it:
/// ```ignore
/// type F64NDArray = Struct<ContiguousNDArray<Float<Float64>>>; // Type alias for leaner documentation
/// let model: F64NDArray = Struct(ContigousNDArray { item: Float(Float64) });
/// let ndarray: Instance<'ctx, Ptr<F64NDArray>> = model.alloca(generator, ctx);
/// ```
///
/// ...and here is how you may manipulate/access `ndarray`:
///
/// (NOTE: some arguments have been omitted)
///
/// ```ignore
/// // Get `&ndarray->data`
/// ndarray.gep(|f| f.data); // type: Instance<'ctx, Ptr<Float<Float64>>>
///
/// // Get `ndarray->ndims`
/// ndarray.get(|f| f.ndims); // type: Instance<'ctx, Int<SizeT>>
///
/// // Get `&ndarray->ndims`
/// ndarray.gep(|f| f.ndims); // type: Instance<'ctx, Ptr<Int<SizeT>>>
///
/// // Get `ndarray->shape[0]`
/// ndarray.get(|f| f.shape).get_index_const(0); // Instance<'ctx, Int<SizeT>>
///
/// // Get `&ndarray->shape[2]`
/// ndarray.get(|f| f.shape).offset_const(2); // Instance<'ctx, Ptr<Int<SizeT>>>
///
/// // Do `ndarray->ndims = 3;`
/// let num_3 = Int(SizeT).const_int(3);
/// ndarray.set(|f| f.ndims, num_3);
/// ```
pub trait StructKind<'ctx>: fmt::Debug + Clone + Copy {
/// The associated fields of this struct.
type Fields<F: FieldTraversal<'ctx>>;
/// Traverse through all fields of this [`StructKind`].
///
/// Only used internally in this module for implementing other components.
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F>;
/// Get a convenience structure to get a struct field's GEP index through its corresponding Rust field.
///
/// Only used internally in this module for implementing other components.
fn fields(&self) -> Self::Fields<GepFieldTraversal> {
self.traverse_fields(&mut GepFieldTraversal { gep_index_counter: 0 })
}
/// Get the LLVM [`StructType`] of this [`StructKind`].
fn get_struct_type<G: CodeGenerator + ?Sized>(
&self,
generator: &G,
ctx: &'ctx Context,
) -> StructType<'ctx> {
let mut traversal = TypeFieldTraversal { generator, ctx, field_types: Vec::new() };
self.traverse_fields(&mut traversal);
ctx.struct_type(&traversal.field_types, false)
}
}
/// A model for LLVM struct.
///
/// `S` should be of a [`StructKind`].
#[derive(Debug, Clone, Copy, Default)]
pub struct Struct<S>(pub S);
impl<'ctx, S: StructKind<'ctx>> Struct<S> {
/// Create a constant struct value from its fields.
///
/// This function also validates `fields` and panic when there is something wrong.
pub fn const_struct<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
fields: &[BasicValueEnum<'ctx>],
) -> Instance<'ctx, Self> {
// NOTE: There *could* have been a functor `F<M> = Instance<'ctx, M>` for `S::Fields<F>`
// to create a more user-friendly interface, but Rust's type system is not sophisticated enough
// and if you try doing that Rust would force you put lifetimes everywhere.
let val = ctx.const_struct(fields, false);
self.check_value(generator, ctx, val).unwrap()
}
}
impl<'ctx, S: StructKind<'ctx>> Model<'ctx> for Struct<S> {
type Value = StructValue<'ctx>;
type Type = StructType<'ctx>;
fn get_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context) -> Self::Type {
self.0.get_struct_type(generator, ctx)
}
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
ty: T,
) -> Result<(), ModelError> {
let ty = ty.as_basic_type_enum();
let Ok(ty) = StructType::try_from(ty) else {
return Err(ModelError(format!("Expecting StructType, but got {ty:?}")));
};
// Check each field individually.
let mut traversal = CheckTypeFieldTraversal {
generator,
ctx,
gep_index_counter: 0,
errors: Vec::new(),
scrutinee: ty,
};
self.0.traverse_fields(&mut traversal);
// Check the number of fields.
let exp_num_fields = traversal.gep_index_counter;
let got_num_fields = u32::try_from(ty.get_field_types().len()).unwrap();
if exp_num_fields != got_num_fields {
return Err(ModelError(format!(
"Expecting StructType with {exp_num_fields} field(s), but got {got_num_fields}"
)));
}
if !traversal.errors.is_empty() {
// Currently, only the first error is reported.
return Err(traversal.errors[0].clone());
}
Ok(())
}
}
impl<'ctx, S: StructKind<'ctx>> Instance<'ctx, Struct<S>> {
/// Get a field with [`StructValue::get_field_at_index`].
pub fn get_field<G: CodeGenerator + ?Sized, M, GetField>(
&self,
generator: &mut G,
ctx: &'ctx Context,
get_field: GetField,
) -> Instance<'ctx, M>
where
M: Model<'ctx>,
GetField: FnOnce(S::Fields<GepFieldTraversal>) -> GepField<M>,
{
let field = get_field(self.model.0.fields());
let val = self.value.get_field_at_index(field.gep_index as u32).unwrap();
field.model.check_value(generator, ctx, val).unwrap()
}
}
impl<'ctx, S: StructKind<'ctx>> Instance<'ctx, Ptr<Struct<S>>> {
/// Get a pointer to a field with [`Builder::build_in_bounds_gep`].
pub fn gep<M, GetField>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
get_field: GetField,
) -> Instance<'ctx, Ptr<M>>
where
M: Model<'ctx>,
GetField: FnOnce(S::Fields<GepFieldTraversal>) -> GepField<M>,
{
let field = get_field(self.model.0 .0.fields());
let llvm_i32 = ctx.ctx.i32_type();
let ptr = unsafe {
ctx.builder
.build_in_bounds_gep(
self.value,
&[llvm_i32.const_zero(), llvm_i32.const_int(field.gep_index, false)],
field.name,
)
.unwrap()
};
Ptr(field.model).believe_value(ptr)
}
/// Convenience function equivalent to `.gep(...).load(...)`.
pub fn get<M, GetField, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
get_field: GetField,
) -> Instance<'ctx, M>
where
M: Model<'ctx>,
GetField: FnOnce(S::Fields<GepFieldTraversal>) -> GepField<M>,
{
self.gep(ctx, get_field).load(generator, ctx)
}
/// Convenience function equivalent to `.gep(...).store(...)`.
pub fn set<M, GetField>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
get_field: GetField,
value: Instance<'ctx, M>,
) where
M: Model<'ctx>,
GetField: FnOnce(S::Fields<GepFieldTraversal>) -> GepField<M>,
{
self.gep(ctx, get_field).store(ctx, value);
}
}

View File

@ -1,42 +0,0 @@
use crate::codegen::{
stmt::{gen_for_callback_incrementing, BreakContinueHooks},
CodeGenContext, CodeGenerator,
};
use super::*;
/// Like [`gen_for_callback_incrementing`] with [`Model`] abstractions.
///
/// `stop` is not included.
pub fn gen_for_model<'ctx, 'a, G, F, N>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
start: Instance<'ctx, Int<N>>,
stop: Instance<'ctx, Int<N>>,
step: Instance<'ctx, Int<N>>,
body: F,
) -> Result<(), String>
where
G: CodeGenerator + ?Sized,
F: FnOnce(
&mut G,
&mut CodeGenContext<'ctx, 'a>,
BreakContinueHooks<'ctx>,
Instance<'ctx, Int<N>>,
) -> Result<(), String>,
N: IntKind<'ctx> + Default,
{
let int_model = Int(N::default());
gen_for_callback_incrementing(
generator,
ctx,
None,
start.value,
(stop.value, false),
|g, ctx, hooks, i| {
let i = int_model.believe_value(i);
body(g, ctx, hooks, i)
},
step.value,
)
}

View File

@ -1,23 +1,27 @@
use crate::{
codegen::{
model::*,
object::{
any::AnyObject,
ndarray::{nditer::NDIterHandle, shape_util::parse_numpy_int_sequence, NDArrayObject},
},
stmt::gen_for_callback,
CodeGenContext, CodeGenerator,
},
symbol_resolver::ValueEnum,
toplevel::{helper::extract_ndims, numpy::unpack_ndarray_var_tys, DefinitionId},
typecheck::typedef::{FunSignature, Type},
};
use inkwell::{ use inkwell::{
values::{BasicValue, BasicValueEnum, PointerValue}, values::{BasicValue, BasicValueEnum, PointerValue},
IntPredicate, IntPredicate,
}; };
use nac3parser::ast::StrRef; use nac3parser::ast::StrRef;
use super::{
macros::codegen_unreachable,
stmt::gen_for_callback,
types::ndarray::{NDArrayType, NDIterType},
values::{ndarray::shape::parse_numpy_int_sequence, ProxyValue},
CodeGenContext, CodeGenerator,
};
use crate::{
symbol_resolver::ValueEnum,
toplevel::{
helper::{arraylike_flatten_element_type, extract_ndims},
numpy::unpack_ndarray_var_tys,
DefinitionId,
},
typecheck::typedef::{FunSignature, Type},
};
/// Generates LLVM IR for `ndarray.empty`. /// Generates LLVM IR for `ndarray.empty`.
pub fn gen_ndarray_empty<'ctx>( pub fn gen_ndarray_empty<'ctx>(
context: &mut CodeGenContext<'ctx, '_>, context: &mut CodeGenContext<'ctx, '_>,
@ -33,12 +37,14 @@ pub fn gen_ndarray_empty<'ctx>(
let shape_arg = args[0].1.clone().to_basic_value_enum(context, generator, shape_ty)?; let shape_arg = args[0].1.clone().to_basic_value_enum(context, generator, shape_ty)?;
let (dtype, ndims) = unpack_ndarray_var_tys(&mut context.unifier, fun.0.ret); let (dtype, ndims) = unpack_ndarray_var_tys(&mut context.unifier, fun.0.ret);
let llvm_dtype = context.get_llvm_type(generator, dtype);
let ndims = extract_ndims(&context.unifier, ndims); let ndims = extract_ndims(&context.unifier, ndims);
let shape = AnyObject { value: shape_arg, ty: shape_ty }; let shape = parse_numpy_int_sequence(generator, context, (shape_ty, shape_arg));
let (_, shape) = parse_numpy_int_sequence(generator, context, shape);
let ndarray = NDArrayObject::make_np_empty(generator, context, dtype, ndims, shape); let ndarray = NDArrayType::new(generator, context.ctx, llvm_dtype, ndims)
Ok(ndarray.instance.value) .construct_numpy_empty(generator, context, &shape, None);
Ok(ndarray.as_base_value())
} }
/// Generates LLVM IR for `ndarray.zeros`. /// Generates LLVM IR for `ndarray.zeros`.
@ -56,12 +62,14 @@ pub fn gen_ndarray_zeros<'ctx>(
let shape_arg = args[0].1.clone().to_basic_value_enum(context, generator, shape_ty)?; let shape_arg = args[0].1.clone().to_basic_value_enum(context, generator, shape_ty)?;
let (dtype, ndims) = unpack_ndarray_var_tys(&mut context.unifier, fun.0.ret); let (dtype, ndims) = unpack_ndarray_var_tys(&mut context.unifier, fun.0.ret);
let llvm_dtype = context.get_llvm_type(generator, dtype);
let ndims = extract_ndims(&context.unifier, ndims); let ndims = extract_ndims(&context.unifier, ndims);
let shape = AnyObject { value: shape_arg, ty: shape_ty }; let shape = parse_numpy_int_sequence(generator, context, (shape_ty, shape_arg));
let (_, shape) = parse_numpy_int_sequence(generator, context, shape);
let ndarray = NDArrayObject::make_np_zeros(generator, context, dtype, ndims, shape); let ndarray = NDArrayType::new(generator, context.ctx, llvm_dtype, ndims)
Ok(ndarray.instance.value) .construct_numpy_zeros(generator, context, dtype, &shape, None);
Ok(ndarray.as_base_value())
} }
/// Generates LLVM IR for `ndarray.ones`. /// Generates LLVM IR for `ndarray.ones`.
@ -79,12 +87,14 @@ pub fn gen_ndarray_ones<'ctx>(
let shape_arg = args[0].1.clone().to_basic_value_enum(context, generator, shape_ty)?; let shape_arg = args[0].1.clone().to_basic_value_enum(context, generator, shape_ty)?;
let (dtype, ndims) = unpack_ndarray_var_tys(&mut context.unifier, fun.0.ret); let (dtype, ndims) = unpack_ndarray_var_tys(&mut context.unifier, fun.0.ret);
let llvm_dtype = context.get_llvm_type(generator, dtype);
let ndims = extract_ndims(&context.unifier, ndims); let ndims = extract_ndims(&context.unifier, ndims);
let shape = AnyObject { value: shape_arg, ty: shape_ty }; let shape = parse_numpy_int_sequence(generator, context, (shape_ty, shape_arg));
let (_, shape) = parse_numpy_int_sequence(generator, context, shape);
let ndarray = NDArrayObject::make_np_ones(generator, context, dtype, ndims, shape); let ndarray = NDArrayType::new(generator, context.ctx, llvm_dtype, ndims)
Ok(ndarray.instance.value) .construct_numpy_ones(generator, context, dtype, &shape, None);
Ok(ndarray.as_base_value())
} }
/// Generates LLVM IR for `ndarray.full`. /// Generates LLVM IR for `ndarray.full`.
@ -105,13 +115,19 @@ pub fn gen_ndarray_full<'ctx>(
args[1].1.clone().to_basic_value_enum(context, generator, fill_value_ty)?; args[1].1.clone().to_basic_value_enum(context, generator, fill_value_ty)?;
let (dtype, ndims) = unpack_ndarray_var_tys(&mut context.unifier, fun.0.ret); let (dtype, ndims) = unpack_ndarray_var_tys(&mut context.unifier, fun.0.ret);
let llvm_dtype = context.get_llvm_type(generator, dtype);
let ndims = extract_ndims(&context.unifier, ndims); let ndims = extract_ndims(&context.unifier, ndims);
let shape = AnyObject { value: shape_arg, ty: shape_ty }; let shape = parse_numpy_int_sequence(generator, context, (shape_ty, shape_arg));
let (_, shape) = parse_numpy_int_sequence(generator, context, shape);
let ndarray = let ndarray = NDArrayType::new(generator, context.ctx, llvm_dtype, ndims).construct_numpy_full(
NDArrayObject::make_np_full(generator, context, dtype, ndims, shape, fill_value_arg); generator,
Ok(ndarray.instance.value) context,
&shape,
fill_value_arg,
None,
);
Ok(ndarray.as_base_value())
} }
pub fn gen_ndarray_array<'ctx>( pub fn gen_ndarray_array<'ctx>(
@ -145,13 +161,12 @@ pub fn gen_ndarray_array<'ctx>(
let (_, ndims) = unpack_ndarray_var_tys(&mut context.unifier, fun.0.ret); let (_, ndims) = unpack_ndarray_var_tys(&mut context.unifier, fun.0.ret);
let ndims = extract_ndims(&context.unifier, ndims); let ndims = extract_ndims(&context.unifier, ndims);
let object = AnyObject { value: obj_arg, ty: obj_ty }; let copy = generator.bool_to_i1(context, copy_arg.into_int_value());
// NAC3 booleans are i8. let ndarray = NDArrayType::from_unifier_type(generator, context, fun.0.ret)
let copy = Int(Bool).truncate(generator, context, copy_arg.into_int_value()); .construct_numpy_array(generator, context, (obj_ty, obj_arg), copy, None)
let ndarray = NDArrayObject::make_np_array(generator, context, object, copy)
.atleast_nd(generator, context, ndims); .atleast_nd(generator, context, ndims);
Ok(ndarray.instance.value) Ok(ndarray.as_base_value())
} }
/// Generates LLVM IR for `ndarray.eye`. /// Generates LLVM IR for `ndarray.eye`.
@ -192,21 +207,25 @@ pub fn gen_ndarray_eye<'ctx>(
let (dtype, _) = unpack_ndarray_var_tys(&mut context.unifier, fun.0.ret); let (dtype, _) = unpack_ndarray_var_tys(&mut context.unifier, fun.0.ret);
let nrows = Int(Int32) let llvm_usize = generator.get_size_type(context.ctx);
.check_value(generator, context.ctx, nrows_arg) let llvm_dtype = context.get_llvm_type(generator, dtype);
.unwrap()
.s_extend_or_bit_cast(generator, context, SizeT);
let ncols = Int(Int32)
.check_value(generator, context.ctx, ncols_arg)
.unwrap()
.s_extend_or_bit_cast(generator, context, SizeT);
let offset = Int(Int32)
.check_value(generator, context.ctx, offset_arg)
.unwrap()
.s_extend_or_bit_cast(generator, context, SizeT);
let ndarray = NDArrayObject::make_np_eye(generator, context, dtype, nrows, ncols, offset); let nrows = context
Ok(ndarray.instance.value) .builder
.build_int_s_extend_or_bit_cast(nrows_arg.into_int_value(), llvm_usize, "")
.unwrap();
let ncols = context
.builder
.build_int_s_extend_or_bit_cast(ncols_arg.into_int_value(), llvm_usize, "")
.unwrap();
let offset = context
.builder
.build_int_s_extend_or_bit_cast(offset_arg.into_int_value(), llvm_usize, "")
.unwrap();
let ndarray = NDArrayType::new(generator, context.ctx, llvm_dtype, 2)
.construct_numpy_eye(generator, context, dtype, nrows, ncols, offset, None);
Ok(ndarray.as_base_value())
} }
/// Generates LLVM IR for `ndarray.identity`. /// Generates LLVM IR for `ndarray.identity`.
@ -220,15 +239,21 @@ pub fn gen_ndarray_identity<'ctx>(
assert!(obj.is_none()); assert!(obj.is_none());
assert_eq!(args.len(), 1); assert_eq!(args.len(), 1);
let (dtype, _) = unpack_ndarray_var_tys(&mut context.unifier, fun.0.ret);
let n_ty = fun.0.args[0].ty; let n_ty = fun.0.args[0].ty;
let n_arg = args[0].1.clone().to_basic_value_enum(context, generator, n_ty)?; let n_arg = args[0].1.clone().to_basic_value_enum(context, generator, n_ty)?;
let n = Int(Int32).check_value(generator, context.ctx, n_arg).unwrap(); let (dtype, _) = unpack_ndarray_var_tys(&mut context.unifier, fun.0.ret);
let n = n.s_extend_or_bit_cast(generator, context, SizeT);
let ndarray = NDArrayObject::make_np_identity(generator, context, dtype, n); let llvm_usize = generator.get_size_type(context.ctx);
Ok(ndarray.instance.value) let llvm_dtype = context.get_llvm_type(generator, dtype);
let n = context
.builder
.build_int_s_extend_or_bit_cast(n_arg.into_int_value(), llvm_usize, "")
.unwrap();
let ndarray = NDArrayType::new(generator, context.ctx, llvm_dtype, 2)
.construct_numpy_identity(generator, context, dtype, n, None);
Ok(ndarray.as_base_value())
} }
/// Generates LLVM IR for `ndarray.copy`. /// Generates LLVM IR for `ndarray.copy`.
@ -246,10 +271,10 @@ pub fn gen_ndarray_copy<'ctx>(
let this_arg = let this_arg =
obj.as_ref().unwrap().1.clone().to_basic_value_enum(context, generator, this_ty)?; obj.as_ref().unwrap().1.clone().to_basic_value_enum(context, generator, this_ty)?;
let this = AnyObject { value: this_arg, ty: this_ty }; let this = NDArrayType::from_unifier_type(generator, context, this_ty)
let this = NDArrayObject::from_object(generator, context, this); .map_value(this_arg.into_pointer_value(), None);
let ndarray = this.make_copy(generator, context); let ndarray = this.make_copy(generator, context);
Ok(ndarray.instance.value) Ok(ndarray.as_base_value())
} }
/// Generates LLVM IR for `ndarray.fill`. /// Generates LLVM IR for `ndarray.fill`.
@ -269,8 +294,8 @@ pub fn gen_ndarray_fill<'ctx>(
let value_ty = fun.0.args[0].ty; let value_ty = fun.0.args[0].ty;
let value_arg = args[0].1.clone().to_basic_value_enum(context, generator, value_ty)?; let value_arg = args[0].1.clone().to_basic_value_enum(context, generator, value_ty)?;
let this = AnyObject { value: this_arg, ty: this_ty }; let this = NDArrayType::from_unifier_type(generator, context, this_ty)
let this = NDArrayObject::from_object(generator, context, this); .map_value(this_arg.into_pointer_value(), None);
this.fill(generator, context, value_arg); this.fill(generator, context, value_arg);
Ok(()) Ok(())
} }
@ -284,36 +309,32 @@ pub fn gen_ndarray_fill<'ctx>(
pub fn ndarray_dot<'ctx, G: CodeGenerator + ?Sized>( pub fn ndarray_dot<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G, generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>, ctx: &mut CodeGenContext<'ctx, '_>,
x1: (Type, BasicValueEnum<'ctx>), (x1_ty, x1): (Type, BasicValueEnum<'ctx>),
x2: (Type, BasicValueEnum<'ctx>), (x2_ty, x2): (Type, BasicValueEnum<'ctx>),
) -> Result<BasicValueEnum<'ctx>, String> { ) -> Result<BasicValueEnum<'ctx>, String> {
const FN_NAME: &str = "ndarray_dot"; const FN_NAME: &str = "ndarray_dot";
let (x1_ty, x1) = x1;
let (x2_ty, x2) = x2;
match (x1, x2) { match (x1, x2) {
(BasicValueEnum::PointerValue(_), BasicValueEnum::PointerValue(_)) => { (BasicValueEnum::PointerValue(n1), BasicValueEnum::PointerValue(n2)) => {
let a = AnyObject { ty: x1_ty, value: x1 }; let a = NDArrayType::from_unifier_type(generator, ctx, x1_ty).map_value(n1, None);
let b = AnyObject { ty: x2_ty, value: x2 }; let b = NDArrayType::from_unifier_type(generator, ctx, x2_ty).map_value(n2, None);
let a = NDArrayObject::from_object(generator, ctx, a);
let b = NDArrayObject::from_object(generator, ctx, b);
// TODO: General `np.dot()` https://numpy.org/doc/stable/reference/generated/numpy.dot.html. // TODO: General `np.dot()` https://numpy.org/doc/stable/reference/generated/numpy.dot.html.
assert_eq!(a.ndims, 1); assert_eq!(a.get_type().ndims(), 1);
assert_eq!(b.ndims, 1); assert_eq!(b.get_type().ndims(), 1);
let common_dtype = a.dtype; let common_dtype = arraylike_flatten_element_type(&mut ctx.unifier, x1_ty);
// Check shapes. // Check shapes.
let a_size = a.size(generator, ctx); let a_size = a.size(generator, ctx);
let b_size = b.size(generator, ctx); let b_size = b.size(generator, ctx);
let same_shape = a_size.compare(ctx, IntPredicate::EQ, b_size); let same_shape =
ctx.builder.build_int_compare(IntPredicate::EQ, a_size, b_size, "").unwrap();
ctx.make_assert( ctx.make_assert(
generator, generator,
same_shape.value, same_shape,
"0:ValueError", "0:ValueError",
"shapes ({0},) and ({1},) not aligned: {0} (dim 0) != {1} (dim 1)", "shapes ({0},) and ({1},) not aligned: {0} (dim 0) != {1} (dim 1)",
[Some(a_size.value), Some(b_size.value), None], [Some(a_size), Some(b_size), None],
ctx.current_loc, ctx.current_loc,
); );
@ -328,17 +349,17 @@ pub fn ndarray_dot<'ctx, G: CodeGenerator + ?Sized>(
ctx, ctx,
Some("np_dot"), Some("np_dot"),
|generator, ctx| { |generator, ctx| {
let a_iter = NDIterHandle::new(generator, ctx, a); let a_iter = NDIterType::new(generator, ctx.ctx).construct(generator, ctx, a);
let b_iter = NDIterHandle::new(generator, ctx, b); let b_iter = NDIterType::new(generator, ctx.ctx).construct(generator, ctx, b);
Ok((a_iter, b_iter)) Ok((a_iter, b_iter))
}, },
|generator, ctx, (a_iter, _b_iter)| { |generator, ctx, (a_iter, _b_iter)| {
// Only a_iter drives the condition, b_iter should have the same status. // Only a_iter drives the condition, b_iter should have the same status.
Ok(a_iter.has_next(generator, ctx).value) Ok(a_iter.has_element(generator, ctx))
}, },
|generator, ctx, _hooks, (a_iter, b_iter)| { |_, ctx, _hooks, (a_iter, b_iter)| {
let a_scalar = a_iter.get_scalar(generator, ctx).value; let a_scalar = a_iter.get_scalar(ctx);
let b_scalar = b_iter.get_scalar(generator, ctx).value; let b_scalar = b_iter.get_scalar(ctx);
let old_result = ctx.builder.build_load(result, "").unwrap(); let old_result = ctx.builder.build_load(result, "").unwrap();
let new_result: BasicValueEnum<'ctx> = match old_result { let new_result: BasicValueEnum<'ctx> = match old_result {
@ -348,12 +369,14 @@ pub fn ndarray_dot<'ctx, G: CodeGenerator + ?Sized>(
let x = ctx.builder.build_int_mul(a_scalar, b_scalar, "").unwrap(); let x = ctx.builder.build_int_mul(a_scalar, b_scalar, "").unwrap();
ctx.builder.build_int_add(old_result, x, "").unwrap().into() ctx.builder.build_int_add(old_result, x, "").unwrap().into()
} }
BasicValueEnum::FloatValue(old_result) => { BasicValueEnum::FloatValue(old_result) => {
let a_scalar = a_scalar.into_float_value(); let a_scalar = a_scalar.into_float_value();
let b_scalar = b_scalar.into_float_value(); let b_scalar = b_scalar.into_float_value();
let x = ctx.builder.build_float_mul(a_scalar, b_scalar, "").unwrap(); let x = ctx.builder.build_float_mul(a_scalar, b_scalar, "").unwrap();
ctx.builder.build_float_add(old_result, x, "").unwrap().into() ctx.builder.build_float_add(old_result, x, "").unwrap().into()
} }
_ => { _ => {
panic!("Unrecognized dtype: {}", ctx.unifier.stringify(common_dtype)); panic!("Unrecognized dtype: {}", ctx.unifier.stringify(common_dtype));
} }
@ -372,13 +395,17 @@ pub fn ndarray_dot<'ctx, G: CodeGenerator + ?Sized>(
Ok(ctx.builder.build_load(result, "").unwrap()) Ok(ctx.builder.build_load(result, "").unwrap())
} }
(BasicValueEnum::IntValue(e1), BasicValueEnum::IntValue(e2)) => { (BasicValueEnum::IntValue(e1), BasicValueEnum::IntValue(e2)) => {
Ok(ctx.builder.build_int_mul(e1, e2, "").unwrap().as_basic_value_enum()) Ok(ctx.builder.build_int_mul(e1, e2, "").unwrap().as_basic_value_enum())
} }
(BasicValueEnum::FloatValue(e1), BasicValueEnum::FloatValue(e2)) => { (BasicValueEnum::FloatValue(e1), BasicValueEnum::FloatValue(e2)) => {
Ok(ctx.builder.build_float_mul(e1, e2, "").unwrap().as_basic_value_enum()) Ok(ctx.builder.build_float_mul(e1, e2, "").unwrap().as_basic_value_enum())
} }
_ => unreachable!(
_ => codegen_unreachable!(
ctx,
"{FN_NAME}() not supported for '{}'", "{FN_NAME}() not supported for '{}'",
format!("'{}'", ctx.unifier.stringify(x1_ty)) format!("'{}'", ctx.unifier.stringify(x1_ty))
), ),

View File

@ -1,12 +0,0 @@
use inkwell::values::BasicValueEnum;
use crate::typecheck::typedef::Type;
/// A NAC3 LLVM Python object of any type.
#[derive(Debug, Clone, Copy)]
pub struct AnyObject<'ctx> {
/// Typechecker type of the object.
pub ty: Type,
/// LLVM value of the object.
pub value: BasicValueEnum<'ctx>,
}

View File

@ -1,87 +0,0 @@
use crate::{
codegen::{model::*, CodeGenContext, CodeGenerator},
typecheck::typedef::{iter_type_vars, Type, TypeEnum},
};
use super::any::AnyObject;
/// Fields of [`List`]
pub struct ListFields<'ctx, F: FieldTraversal<'ctx>, Item: Model<'ctx>> {
/// Array pointer to content
pub items: F::Out<Ptr<Item>>,
/// Number of items in the array
pub len: F::Out<Int<SizeT>>,
}
/// A list in NAC3.
#[derive(Debug, Clone, Copy, Default)]
pub struct List<Item> {
/// Model of the list items
pub item: Item,
}
impl<'ctx, Item: Model<'ctx>> StructKind<'ctx> for List<Item> {
type Fields<F: FieldTraversal<'ctx>> = ListFields<'ctx, F, Item>;
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
Self::Fields {
items: traversal.add("items", Ptr(self.item)),
len: traversal.add_auto("len"),
}
}
}
impl<'ctx, Item: Model<'ctx>> Instance<'ctx, Ptr<Struct<List<Item>>>> {
/// Cast the items pointer to `uint8_t*`.
pub fn with_pi8_items<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Instance<'ctx, Ptr<Struct<List<Int<Byte>>>>> {
self.pointer_cast(generator, ctx, Struct(List { item: Int(Byte) }))
}
}
/// A NAC3 Python List object.
#[derive(Debug, Clone, Copy)]
pub struct ListObject<'ctx> {
/// Typechecker type of the list items
pub item_type: Type,
pub instance: Instance<'ctx, Ptr<Struct<List<Any<'ctx>>>>>,
}
impl<'ctx> ListObject<'ctx> {
/// Create a [`ListObject`] from an LLVM value and its typechecker [`Type`].
pub fn from_object<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
object: AnyObject<'ctx>,
) -> Self {
// Check typechecker type and extract `item_type`
let item_type = match &*ctx.unifier.get_ty(object.ty) {
TypeEnum::TObj { obj_id, params, .. }
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
{
iter_type_vars(params).next().unwrap().ty // Extract `item_type`
}
_ => {
panic!("Expecting type to be a list, but got {}", ctx.unifier.stringify(object.ty))
}
};
let plist = Ptr(Struct(List { item: Any(ctx.get_llvm_type(generator, item_type)) }));
// Create object
let value = plist.check_value(generator, ctx.ctx, object.value).unwrap();
ListObject { item_type, instance: value }
}
/// Get the `len()` of this list.
pub fn len<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Instance<'ctx, Int<SizeT>> {
self.instance.get(generator, ctx, |f| f.len)
}
}

View File

@ -1,5 +0,0 @@
pub mod any;
pub mod list;
pub mod ndarray;
pub mod tuple;
pub mod utils;

View File

@ -1,184 +0,0 @@
use super::NDArrayObject;
use crate::{
codegen::{
irrt::{
call_nac3_ndarray_array_set_and_validate_list_shape,
call_nac3_ndarray_array_write_list_to_array,
},
model::*,
object::{any::AnyObject, list::ListObject},
stmt::gen_if_else_expr_callback,
CodeGenContext, CodeGenerator,
},
toplevel::helper::{arraylike_flatten_element_type, arraylike_get_ndims},
typecheck::typedef::{Type, TypeEnum},
};
/// Get the expected `dtype` and `ndims` of the ndarray returned by `np_array(list)`.
fn get_list_object_dtype_and_ndims<'ctx>(
ctx: &mut CodeGenContext<'ctx, '_>,
list: ListObject<'ctx>,
) -> (Type, u64) {
let dtype = arraylike_flatten_element_type(&mut ctx.unifier, list.item_type);
let ndims = arraylike_get_ndims(&mut ctx.unifier, list.item_type);
let ndims = ndims + 1; // To count `list` itself.
(dtype, ndims)
}
impl<'ctx> NDArrayObject<'ctx> {
/// Implementation of `np_array(<list>, copy=True)`
fn make_np_array_list_copy_true_impl<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
list: ListObject<'ctx>,
) -> Self {
let (dtype, ndims_int) = get_list_object_dtype_and_ndims(ctx, list);
let list_value = list.instance.with_pi8_items(generator, ctx);
// Validate `list` has a consistent shape.
// Raise an exception if `list` is something abnormal like `[[1, 2], [3]]`.
// If `list` has a consistent shape, deduce the shape and write it to `shape`.
let ndims = Int(SizeT).const_int(generator, ctx.ctx, ndims_int);
let shape = Int(SizeT).array_alloca(generator, ctx, ndims.value);
call_nac3_ndarray_array_set_and_validate_list_shape(
generator, ctx, list_value, ndims, shape,
);
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, ndims_int);
ndarray.copy_shape_from_array(generator, ctx, shape);
ndarray.create_data(generator, ctx);
// Copy all contents from the list.
call_nac3_ndarray_array_write_list_to_array(generator, ctx, list_value, ndarray.instance);
ndarray
}
/// Implementation of `np_array(<list>, copy=None)`
fn make_np_array_list_copy_none_impl<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
list: ListObject<'ctx>,
) -> Self {
// np_array without copying is only possible `list` is not nested.
//
// If `list` is `list[T]`, we can create an ndarray with `data` set
// to the array pointer of `list`.
//
// If `list` is `list[list[T]]` or worse, copy.
let (dtype, ndims) = get_list_object_dtype_and_ndims(ctx, list);
if ndims == 1 {
// `list` is not nested
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, 1);
// Set data
let data = list.instance.get(generator, ctx, |f| f.items).cast_to_pi8(generator, ctx);
ndarray.instance.set(ctx, |f| f.data, data);
// ndarray->shape[0] = list->len;
let shape = ndarray.instance.get(generator, ctx, |f| f.shape);
let list_len = list.instance.get(generator, ctx, |f| f.len);
shape.set_index_const(ctx, 0, list_len);
// Set strides, the `data` is contiguous
ndarray.set_strides_contiguous(generator, ctx);
ndarray
} else {
// `list` is nested, copy
NDArrayObject::make_np_array_list_copy_true_impl(generator, ctx, list)
}
}
/// Implementation of `np_array(<list>, copy=copy)`
fn make_np_array_list_impl<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
list: ListObject<'ctx>,
copy: Instance<'ctx, Int<Bool>>,
) -> Self {
let (dtype, ndims) = get_list_object_dtype_and_ndims(ctx, list);
let ndarray = gen_if_else_expr_callback(
generator,
ctx,
|_generator, _ctx| Ok(copy.value),
|generator, ctx| {
let ndarray =
NDArrayObject::make_np_array_list_copy_true_impl(generator, ctx, list);
Ok(Some(ndarray.instance.value))
},
|generator, ctx| {
let ndarray =
NDArrayObject::make_np_array_list_copy_none_impl(generator, ctx, list);
Ok(Some(ndarray.instance.value))
},
)
.unwrap()
.unwrap();
NDArrayObject::from_value_and_unpacked_types(generator, ctx, ndarray, dtype, ndims)
}
/// Implementation of `np_array(<ndarray>, copy=copy)`.
pub fn make_np_array_ndarray_impl<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: NDArrayObject<'ctx>,
copy: Instance<'ctx, Int<Bool>>,
) -> Self {
let ndarray_val = gen_if_else_expr_callback(
generator,
ctx,
|_generator, _ctx| Ok(copy.value),
|generator, ctx| {
let ndarray = ndarray.make_copy(generator, ctx); // Force copy
Ok(Some(ndarray.instance.value))
},
|_generator, _ctx| {
// No need to copy. Return `ndarray` itself.
Ok(Some(ndarray.instance.value))
},
)
.unwrap()
.unwrap();
NDArrayObject::from_value_and_unpacked_types(
generator,
ctx,
ndarray_val,
ndarray.dtype,
ndarray.ndims,
)
}
/// Create a new ndarray like `np.array()`.
///
/// NOTE: The `ndmin` argument is not here. You may want to
/// do [`NDArrayObject::atleast_nd`] to achieve that.
pub fn make_np_array<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
object: AnyObject<'ctx>,
copy: Instance<'ctx, Int<Bool>>,
) -> Self {
match &*ctx.unifier.get_ty(object.ty) {
TypeEnum::TObj { obj_id, .. }
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
{
let list = ListObject::from_object(generator, ctx, object);
NDArrayObject::make_np_array_list_impl(generator, ctx, list, copy)
}
TypeEnum::TObj { obj_id, .. }
if *obj_id == ctx.primitives.ndarray.obj_id(&ctx.unifier).unwrap() =>
{
let ndarray = NDArrayObject::from_object(generator, ctx, object);
NDArrayObject::make_np_array_ndarray_impl(generator, ctx, ndarray, copy)
}
_ => panic!("Unrecognized object type: {}", ctx.unifier.stringify(object.ty)), // Typechecker ensures this
}
}
}

View File

@ -1,135 +0,0 @@
use itertools::Itertools;
use crate::codegen::{
irrt::{call_nac3_ndarray_broadcast_shapes, call_nac3_ndarray_broadcast_to},
model::*,
CodeGenContext, CodeGenerator,
};
use super::NDArrayObject;
/// Fields of [`ShapeEntry`]
pub struct ShapeEntryFields<'ctx, F: FieldTraversal<'ctx>> {
pub ndims: F::Out<Int<SizeT>>,
pub shape: F::Out<Ptr<Int<SizeT>>>,
}
/// An IRRT structure used in broadcasting.
#[derive(Debug, Clone, Copy, Default)]
pub struct ShapeEntry;
impl<'ctx> StructKind<'ctx> for ShapeEntry {
type Fields<F: FieldTraversal<'ctx>> = ShapeEntryFields<'ctx, F>;
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
Self::Fields { ndims: traversal.add_auto("ndims"), shape: traversal.add_auto("shape") }
}
}
impl<'ctx> NDArrayObject<'ctx> {
/// Create a broadcast view on this ndarray with a target shape.
///
/// The input shape will be checked to make sure that it contains no negative values.
///
/// * `target_ndims` - The ndims type after broadcasting to the given shape.
/// The caller has to figure this out for this function.
/// * `target_shape` - An array pointer pointing to the target shape.
#[must_use]
pub fn broadcast_to<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
target_ndims: u64,
target_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
) -> Self {
let broadcast_ndarray = NDArrayObject::alloca(generator, ctx, self.dtype, target_ndims);
broadcast_ndarray.copy_shape_from_array(generator, ctx, target_shape);
call_nac3_ndarray_broadcast_to(generator, ctx, self.instance, broadcast_ndarray.instance);
broadcast_ndarray
}
}
/// A result produced by [`broadcast_all_ndarrays`]
#[derive(Debug, Clone)]
pub struct BroadcastAllResult<'ctx> {
/// The statically known `ndims` of the broadcast result.
pub ndims: u64,
/// The broadcasting shape.
pub shape: Instance<'ctx, Ptr<Int<SizeT>>>,
/// Broadcasted views on the inputs.
///
/// All of them will have `shape` [`BroadcastAllResult::shape`] and
/// `ndims` [`BroadcastAllResult::ndims`]. The length of the vector
/// is the same as the input.
pub ndarrays: Vec<NDArrayObject<'ctx>>,
}
/// Helper function to call `call_nac3_ndarray_broadcast_shapes`
fn broadcast_shapes<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
in_shape_entries: &[(Instance<'ctx, Ptr<Int<SizeT>>>, u64)], // (shape, shape's length/ndims)
broadcast_ndims: u64,
broadcast_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
) {
// Prepare input shape entries to be passed to `call_nac3_ndarray_broadcast_shapes`.
let num_shape_entries =
Int(SizeT).const_int(generator, ctx.ctx, u64::try_from(in_shape_entries.len()).unwrap());
let shape_entries = Struct(ShapeEntry).array_alloca(generator, ctx, num_shape_entries.value);
for (i, (in_shape, in_ndims)) in in_shape_entries.iter().enumerate() {
let pshape_entry = shape_entries.offset_const(ctx, i as u64);
let in_ndims = Int(SizeT).const_int(generator, ctx.ctx, *in_ndims);
pshape_entry.set(ctx, |f| f.ndims, in_ndims);
pshape_entry.set(ctx, |f| f.shape, *in_shape);
}
let broadcast_ndims = Int(SizeT).const_int(generator, ctx.ctx, broadcast_ndims);
call_nac3_ndarray_broadcast_shapes(
generator,
ctx,
num_shape_entries,
shape_entries,
broadcast_ndims,
broadcast_shape,
);
}
impl<'ctx> NDArrayObject<'ctx> {
/// Broadcast all ndarrays according to `np.broadcast()` and return a [`BroadcastAllResult`]
/// containing all the information of the result of the broadcast operation.
pub fn broadcast<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarrays: &[Self],
) -> BroadcastAllResult<'ctx> {
assert!(!ndarrays.is_empty());
// Infer the broadcast output ndims.
let broadcast_ndims_int = ndarrays.iter().map(|ndarray| ndarray.ndims).max().unwrap();
let broadcast_ndims = Int(SizeT).const_int(generator, ctx.ctx, broadcast_ndims_int);
let broadcast_shape = Int(SizeT).array_alloca(generator, ctx, broadcast_ndims.value);
let shape_entries = ndarrays
.iter()
.map(|ndarray| (ndarray.instance.get(generator, ctx, |f| f.shape), ndarray.ndims))
.collect_vec();
broadcast_shapes(generator, ctx, &shape_entries, broadcast_ndims_int, broadcast_shape);
// Broadcast all the inputs to shape `dst_shape`.
let broadcast_ndarrays: Vec<_> = ndarrays
.iter()
.map(|ndarray| {
ndarray.broadcast_to(generator, ctx, broadcast_ndims_int, broadcast_shape)
})
.collect_vec();
BroadcastAllResult {
ndims: broadcast_ndims_int,
shape: broadcast_shape,
ndarrays: broadcast_ndarrays,
}
}
}

View File

@ -1,134 +0,0 @@
use crate::{
codegen::{model::*, CodeGenContext, CodeGenerator},
typecheck::typedef::Type,
};
use super::NDArrayObject;
/// Fields of [`ContiguousNDArray`]
pub struct ContiguousNDArrayFields<'ctx, F: FieldTraversal<'ctx>, Item: Model<'ctx>> {
pub ndims: F::Out<Int<SizeT>>,
pub shape: F::Out<Ptr<Int<SizeT>>>,
pub data: F::Out<Ptr<Item>>,
}
/// An ndarray without strides and non-opaque `data` field in NAC3.
#[derive(Debug, Clone, Copy)]
pub struct ContiguousNDArray<M> {
/// [`Model`] of the items.
pub item: M,
}
impl<'ctx, Item: Model<'ctx>> StructKind<'ctx> for ContiguousNDArray<Item> {
type Fields<F: FieldTraversal<'ctx>> = ContiguousNDArrayFields<'ctx, F, Item>;
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
Self::Fields {
ndims: traversal.add_auto("ndims"),
shape: traversal.add_auto("shape"),
data: traversal.add("data", Ptr(self.item)),
}
}
}
impl<'ctx> NDArrayObject<'ctx> {
/// Create a [`ContiguousNDArray`] from the contents of this ndarray.
///
/// This function may or may not be expensive depending on if this ndarray has contiguous data.
///
/// If this ndarray is not C-contiguous, this function will allocate memory on the stack for the `data` field of
/// the returned [`ContiguousNDArray`] and copy contents of this ndarray to there.
///
/// If this ndarray is C-contiguous, contents of this ndarray will not be copied. The created [`ContiguousNDArray`]
/// will share memory with this ndarray.
///
/// The `item_model` sets the [`Model`] of the returned [`ContiguousNDArray`]'s `Item` model for type-safety, and
/// should match the `ctx.get_llvm_type()` of this ndarray's `dtype`. Otherwise this function panics. Use model [`Any`]
/// if you don't care/cannot know the [`Model`] in advance.
pub fn make_contiguous_ndarray<G: CodeGenerator + ?Sized, Item: Model<'ctx>>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
item_model: Item,
) -> Instance<'ctx, Ptr<Struct<ContiguousNDArray<Item>>>> {
// Sanity check on `self.dtype` and `item_model`.
let dtype_llvm = ctx.get_llvm_type(generator, self.dtype);
item_model.check_type(generator, ctx.ctx, dtype_llvm).unwrap();
let cdarray_model = Struct(ContiguousNDArray { item: item_model });
let current_bb = ctx.builder.get_insert_block().unwrap();
let then_bb = ctx.ctx.insert_basic_block_after(current_bb, "then_bb");
let else_bb = ctx.ctx.insert_basic_block_after(then_bb, "else_bb");
let end_bb = ctx.ctx.insert_basic_block_after(else_bb, "end_bb");
// Allocate and setup the resulting [`ContiguousNDArray`].
let result = cdarray_model.alloca(generator, ctx);
// Set ndims and shape.
let ndims = self.ndims_llvm(generator, ctx.ctx);
result.set(ctx, |f| f.ndims, ndims);
let shape = self.instance.get(generator, ctx, |f| f.shape);
result.set(ctx, |f| f.shape, shape);
let is_contiguous = self.is_c_contiguous(generator, ctx);
ctx.builder.build_conditional_branch(is_contiguous.value, then_bb, else_bb).unwrap();
// Inserting into then_bb; This ndarray is contiguous.
ctx.builder.position_at_end(then_bb);
let data = self.instance.get(generator, ctx, |f| f.data);
let data = data.pointer_cast(generator, ctx, item_model);
result.set(ctx, |f| f.data, data);
ctx.builder.build_unconditional_branch(end_bb).unwrap();
// Inserting into else_bb; This ndarray is not contiguous. Do a full-copy on `data`.
// `make_copy` produces an ndarray with contiguous `data`.
ctx.builder.position_at_end(else_bb);
let copied_ndarray = self.make_copy(generator, ctx);
let data = copied_ndarray.instance.get(generator, ctx, |f| f.data);
let data = data.pointer_cast(generator, ctx, item_model);
result.set(ctx, |f| f.data, data);
ctx.builder.build_unconditional_branch(end_bb).unwrap();
// Reposition to end_bb for continuation
ctx.builder.position_at_end(end_bb);
result
}
/// Create an [`NDArrayObject`] from a [`ContiguousNDArray`].
///
/// The operation is super cheap. The newly created [`NDArrayObject`] will share the
/// same memory as the [`ContiguousNDArray`].
///
/// `ndims` has to be provided as [`NDArrayObject`] requires a statically known `ndims` value, despite
/// the fact that the information should be contained within the [`ContiguousNDArray`].
pub fn from_contiguous_ndarray<G: CodeGenerator + ?Sized, Item: Model<'ctx>>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
carray: Instance<'ctx, Ptr<Struct<ContiguousNDArray<Item>>>>,
dtype: Type,
ndims: u64,
) -> Self {
// Sanity check on `dtype` and `contiguous_array`'s `Item` model.
let dtype_llvm = ctx.get_llvm_type(generator, dtype);
carray.model.0 .0.item.check_type(generator, ctx.ctx, dtype_llvm).unwrap();
// TODO: Debug assert `ndims == carray.ndims` to catch bugs.
// Allocate the resulting ndarray.
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, ndims);
// Copy shape and update strides
let shape = carray.get(generator, ctx, |f| f.shape);
ndarray.copy_shape_from_array(generator, ctx, shape);
ndarray.set_strides_contiguous(generator, ctx);
// Share data
let data = carray.get(generator, ctx, |f| f.data).pointer_cast(generator, ctx, Int(Byte));
ndarray.instance.set(ctx, |f| f.data, data);
ndarray
}
}

View File

@ -1,176 +0,0 @@
use inkwell::{values::BasicValueEnum, IntPredicate};
use crate::{
codegen::{
irrt::call_nac3_ndarray_util_assert_shape_no_negative, model::*, CodeGenContext,
CodeGenerator,
},
typecheck::typedef::Type,
};
use super::NDArrayObject;
/// Get the zero value in `np.zeros()` of a `dtype`.
fn ndarray_zero_value<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
) -> BasicValueEnum<'ctx> {
if [ctx.primitives.int32, ctx.primitives.uint32]
.iter()
.any(|ty| ctx.unifier.unioned(dtype, *ty))
{
ctx.ctx.i32_type().const_zero().into()
} else if [ctx.primitives.int64, ctx.primitives.uint64]
.iter()
.any(|ty| ctx.unifier.unioned(dtype, *ty))
{
ctx.ctx.i64_type().const_zero().into()
} else if ctx.unifier.unioned(dtype, ctx.primitives.float) {
ctx.ctx.f64_type().const_zero().into()
} else if ctx.unifier.unioned(dtype, ctx.primitives.bool) {
ctx.ctx.bool_type().const_zero().into()
} else if ctx.unifier.unioned(dtype, ctx.primitives.str) {
ctx.gen_string(generator, "").into()
} else {
panic!("unrecognized dtype: {}", ctx.unifier.stringify(dtype));
}
}
/// Get the one value in `np.ones()` of a `dtype`.
fn ndarray_one_value<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
) -> BasicValueEnum<'ctx> {
if [ctx.primitives.int32, ctx.primitives.uint32]
.iter()
.any(|ty| ctx.unifier.unioned(dtype, *ty))
{
let is_signed = ctx.unifier.unioned(dtype, ctx.primitives.int32);
ctx.ctx.i32_type().const_int(1, is_signed).into()
} else if [ctx.primitives.int64, ctx.primitives.uint64]
.iter()
.any(|ty| ctx.unifier.unioned(dtype, *ty))
{
let is_signed = ctx.unifier.unioned(dtype, ctx.primitives.int64);
ctx.ctx.i64_type().const_int(1, is_signed).into()
} else if ctx.unifier.unioned(dtype, ctx.primitives.float) {
ctx.ctx.f64_type().const_float(1.0).into()
} else if ctx.unifier.unioned(dtype, ctx.primitives.bool) {
ctx.ctx.bool_type().const_int(1, false).into()
} else if ctx.unifier.unioned(dtype, ctx.primitives.str) {
ctx.gen_string(generator, "1").into()
} else {
panic!("unrecognized dtype: {}", ctx.unifier.stringify(dtype));
}
}
impl<'ctx> NDArrayObject<'ctx> {
/// Create an ndarray like `np.empty`.
pub fn make_np_empty<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
ndims: u64,
shape: Instance<'ctx, Ptr<Int<SizeT>>>,
) -> Self {
// Validate `shape`
let ndims_llvm = Int(SizeT).const_int(generator, ctx.ctx, ndims);
call_nac3_ndarray_util_assert_shape_no_negative(generator, ctx, ndims_llvm, shape);
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, ndims);
ndarray.copy_shape_from_array(generator, ctx, shape);
ndarray.create_data(generator, ctx);
ndarray
}
/// Create an ndarray like `np.full`.
pub fn make_np_full<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
ndims: u64,
shape: Instance<'ctx, Ptr<Int<SizeT>>>,
fill_value: BasicValueEnum<'ctx>,
) -> Self {
let ndarray = NDArrayObject::make_np_empty(generator, ctx, dtype, ndims, shape);
ndarray.fill(generator, ctx, fill_value);
ndarray
}
/// Create an ndarray like `np.zero`.
pub fn make_np_zeros<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
ndims: u64,
shape: Instance<'ctx, Ptr<Int<SizeT>>>,
) -> Self {
let fill_value = ndarray_zero_value(generator, ctx, dtype);
NDArrayObject::make_np_full(generator, ctx, dtype, ndims, shape, fill_value)
}
/// Create an ndarray like `np.ones`.
pub fn make_np_ones<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
ndims: u64,
shape: Instance<'ctx, Ptr<Int<SizeT>>>,
) -> Self {
let fill_value = ndarray_one_value(generator, ctx, dtype);
NDArrayObject::make_np_full(generator, ctx, dtype, ndims, shape, fill_value)
}
/// Create an ndarray like `np.eye`.
pub fn make_np_eye<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
nrows: Instance<'ctx, Int<SizeT>>,
ncols: Instance<'ctx, Int<SizeT>>,
offset: Instance<'ctx, Int<SizeT>>,
) -> Self {
let ndzero = ndarray_zero_value(generator, ctx, dtype);
let ndone = ndarray_one_value(generator, ctx, dtype);
let ndarray = NDArrayObject::alloca_dynamic_shape(generator, ctx, dtype, &[nrows, ncols]);
// Create data and make the matrix like look np.eye()
ndarray.create_data(generator, ctx);
ndarray
.foreach(generator, ctx, |generator, ctx, _hooks, nditer| {
// NOTE: rows and cols can never be zero here, since this ndarray's `np.size` would be zero
// and this loop would not execute.
// Load up `row_i` and `col_i` from indices.
let row_i = nditer.get_indices().get_index_const(generator, ctx, 0);
let col_i = nditer.get_indices().get_index_const(generator, ctx, 1);
let be_one = row_i.add(ctx, offset).compare(ctx, IntPredicate::EQ, col_i);
let value = ctx.builder.build_select(be_one.value, ndone, ndzero, "value").unwrap();
let p = nditer.get_pointer(generator, ctx);
ctx.builder.build_store(p, value).unwrap();
Ok(())
})
.unwrap();
ndarray
}
/// Create an ndarray like `np.identity`.
pub fn make_np_identity<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
size: Instance<'ctx, Int<SizeT>>,
) -> Self {
// Convenient implementation
let offset = Int(SizeT).const_0(generator, ctx.ctx);
NDArrayObject::make_np_eye(generator, ctx, dtype, size, size, offset)
}
}

View File

@ -1,226 +0,0 @@
use crate::codegen::{
irrt::call_nac3_ndarray_index,
model::*,
object::utils::slice::{RustSlice, Slice},
CodeGenContext, CodeGenerator,
};
use super::NDArrayObject;
pub type NDIndexType = Byte;
/// Fields of [`NDIndex`]
#[derive(Debug, Clone, Copy)]
pub struct NDIndexFields<'ctx, F: FieldTraversal<'ctx>> {
pub type_: F::Out<Int<NDIndexType>>, // Defined to be uint8_t in IRRT
pub data: F::Out<Ptr<Int<Byte>>>,
}
/// An IRRT representation of an ndarray subscript index.
#[derive(Debug, Clone, Copy, Default, PartialEq, Eq)]
pub struct NDIndex;
impl<'ctx> StructKind<'ctx> for NDIndex {
type Fields<F: FieldTraversal<'ctx>> = NDIndexFields<'ctx, F>;
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
Self::Fields { type_: traversal.add_auto("type"), data: traversal.add_auto("data") }
}
}
// A convenience enum representing a [`NDIndex`].
#[derive(Debug, Clone)]
pub enum RustNDIndex<'ctx> {
SingleElement(Instance<'ctx, Int<Int32>>),
Slice(RustSlice<'ctx, Int32>),
NewAxis,
Ellipsis,
}
impl<'ctx> RustNDIndex<'ctx> {
/// Get the value to set `NDIndex::type` for this variant.
fn get_type_id(&self) -> u64 {
// Defined in IRRT, must be in sync
match self {
RustNDIndex::SingleElement(_) => 0,
RustNDIndex::Slice(_) => 1,
RustNDIndex::NewAxis => 2,
RustNDIndex::Ellipsis => 3,
}
}
/// Write the contents to an LLVM [`NDIndex`].
fn write_to_ndindex<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
dst_ndindex_ptr: Instance<'ctx, Ptr<Struct<NDIndex>>>,
) {
// Set `dst_ndindex_ptr->type`
dst_ndindex_ptr.gep(ctx, |f| f.type_).store(
ctx,
Int(NDIndexType::default()).const_int(generator, ctx.ctx, self.get_type_id()),
);
// Set `dst_ndindex_ptr->data`
match self {
RustNDIndex::SingleElement(in_index) => {
let index_ptr = Int(Int32).alloca(generator, ctx);
index_ptr.store(ctx, *in_index);
dst_ndindex_ptr
.gep(ctx, |f| f.data)
.store(ctx, index_ptr.pointer_cast(generator, ctx, Int(Byte)));
}
RustNDIndex::Slice(in_rust_slice) => {
let user_slice_ptr = Struct(Slice(Int32)).alloca(generator, ctx);
in_rust_slice.write_to_slice(generator, ctx, user_slice_ptr);
dst_ndindex_ptr
.gep(ctx, |f| f.data)
.store(ctx, user_slice_ptr.pointer_cast(generator, ctx, Int(Byte)));
}
RustNDIndex::NewAxis | RustNDIndex::Ellipsis => {}
}
}
/// Allocate an array of `NDIndex`es on the stack and return the array pointer.
pub fn make_ndindices<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
in_ndindices: &[RustNDIndex<'ctx>],
) -> (Instance<'ctx, Int<SizeT>>, Instance<'ctx, Ptr<Struct<NDIndex>>>) {
let ndindex_model = Struct(NDIndex);
let num_ndindices = Int(SizeT).const_int(generator, ctx.ctx, in_ndindices.len() as u64);
let ndindices = ndindex_model.array_alloca(generator, ctx, num_ndindices.value);
for (i, in_ndindex) in in_ndindices.iter().enumerate() {
let pndindex = ndindices.offset_const(ctx, i as u64);
in_ndindex.write_to_ndindex(generator, ctx, pndindex);
}
(num_ndindices, ndindices)
}
}
impl<'ctx> NDArrayObject<'ctx> {
/// Get the expected `ndims` after indexing with `indices`.
#[must_use]
fn deduce_ndims_after_indexing_with(&self, indices: &[RustNDIndex<'ctx>]) -> u64 {
let mut ndims = self.ndims;
for index in indices {
match index {
RustNDIndex::SingleElement(_) => {
ndims -= 1; // Single elements decrements ndims
}
RustNDIndex::NewAxis => {
ndims += 1; // `np.newaxis` / `none` adds a new axis
}
RustNDIndex::Ellipsis | RustNDIndex::Slice(_) => {}
}
}
ndims
}
/// Index into the ndarray, and return a newly-allocated view on this ndarray.
///
/// This function behaves like NumPy's ndarray indexing, but if the indices index
/// into a single element, an unsized ndarray is returned.
#[must_use]
pub fn index<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
indices: &[RustNDIndex<'ctx>],
) -> Self {
let dst_ndims = self.deduce_ndims_after_indexing_with(indices);
let dst_ndarray = NDArrayObject::alloca(generator, ctx, self.dtype, dst_ndims);
let (num_indices, indices) = RustNDIndex::make_ndindices(generator, ctx, indices);
call_nac3_ndarray_index(
generator,
ctx,
num_indices,
indices,
self.instance,
dst_ndarray.instance,
);
dst_ndarray
}
}
pub mod util {
use itertools::Itertools;
use nac3parser::ast::{Expr, ExprKind};
use crate::{
codegen::{
expr::gen_slice, model::*, object::utils::slice::RustSlice, CodeGenContext,
CodeGenerator,
},
typecheck::typedef::Type,
};
use super::RustNDIndex;
/// Generate LLVM code to transform an ndarray subscript expression to
/// its list of [`RustNDIndex`]
///
/// i.e.,
/// ```python
/// my_ndarray[::3, 1, :2:]
/// ^^^^^^^^^^^ Then these into a three `RustNDIndex`es
/// ```
pub fn gen_ndarray_subscript_ndindices<'ctx, G: CodeGenerator>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
subscript: &Expr<Option<Type>>,
) -> Result<Vec<RustNDIndex<'ctx>>, String> {
// TODO: Support https://numpy.org/doc/stable/user/basics.indexing.html#dimensional-indexing-tools
// Annoying notes about `slice`
// - `my_array[5]`
// - slice is a `Constant`
// - `my_array[:5]`
// - slice is a `Slice`
// - `my_array[:]`
// - slice is a `Slice`, but lower upper step would all be `Option::None`
// - `my_array[:, :]`
// - slice is now a `Tuple` of two `Slice`-s
//
// In summary:
// - when there is a comma "," within [], `slice` will be a `Tuple` of the entries.
// - when there is not comma "," within [] (i.e., just a single entry), `slice` will be that entry itself.
//
// So we first "flatten" out the slice expression
let index_exprs = match &subscript.node {
ExprKind::Tuple { elts, .. } => elts.iter().collect_vec(),
_ => vec![subscript],
};
// Process all index expressions
let mut rust_ndindices: Vec<RustNDIndex> = Vec::with_capacity(index_exprs.len()); // Not using iterators here because `?` is used here.
for index_expr in index_exprs {
// NOTE: Currently nac3core's slices do not have an object representation,
// so the code/implementation looks awkward - we have to do pattern matching on the expression
let ndindex = if let ExprKind::Slice { lower, upper, step } = &index_expr.node {
// Handle slices
let (lower, upper, step) = gen_slice(generator, ctx, lower, upper, step)?;
RustNDIndex::Slice(RustSlice { int_kind: Int32, start: lower, stop: upper, step })
} else {
// Treat and handle everything else as a single element index.
let index = generator.gen_expr(ctx, index_expr)?.unwrap().to_basic_value_enum(
ctx,
generator,
ctx.primitives.int32, // Must be int32, this checks for illegal values
)?;
let index = Int(Int32).check_value(generator, ctx.ctx, index).unwrap();
RustNDIndex::SingleElement(index)
};
rust_ndindices.push(ndindex);
}
Ok(rust_ndindices)
}
}

View File

@ -1,220 +0,0 @@
use inkwell::values::BasicValueEnum;
use itertools::Itertools;
use crate::{
codegen::{
object::ndarray::{AnyObject, NDArrayObject},
stmt::gen_for_callback,
CodeGenContext, CodeGenerator,
},
typecheck::typedef::Type,
};
use super::{nditer::NDIterHandle, NDArrayOut, ScalarOrNDArray};
impl<'ctx> NDArrayObject<'ctx> {
/// Generate LLVM IR to broadcast `ndarray`s together, and starmap through them with `mapping` elementwise.
///
/// `mapping` is an LLVM IR generator. The input of `mapping` is the list of elements when iterating through
/// the input `ndarrays` after broadcasting. The output of `mapping` is the result of the elementwise operation.
///
/// `out` specifies whether the result should be a new ndarray or to be written an existing ndarray.
pub fn broadcast_starmap<'a, G, MappingFn>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
ndarrays: &[Self],
out: NDArrayOut<'ctx>,
mapping: MappingFn,
) -> Result<Self, String>
where
G: CodeGenerator + ?Sized,
MappingFn: FnOnce(
&mut G,
&mut CodeGenContext<'ctx, 'a>,
&[BasicValueEnum<'ctx>],
) -> Result<BasicValueEnum<'ctx>, String>,
{
// Broadcast inputs
let broadcast_result = NDArrayObject::broadcast(generator, ctx, ndarrays);
let out_ndarray = match out {
NDArrayOut::NewNDArray { dtype } => {
// Create a new ndarray based on the broadcast shape.
let result_ndarray =
NDArrayObject::alloca(generator, ctx, dtype, broadcast_result.ndims);
result_ndarray.copy_shape_from_array(generator, ctx, broadcast_result.shape);
result_ndarray.create_data(generator, ctx);
result_ndarray
}
NDArrayOut::WriteToNDArray { ndarray: result_ndarray } => {
// Use an existing ndarray.
// Check that its shape is compatible with the broadcast shape.
result_ndarray.assert_can_be_written_by_out(
generator,
ctx,
broadcast_result.ndims,
broadcast_result.shape,
);
result_ndarray
}
};
// Map element-wise and store results into `mapped_ndarray`.
let nditer = NDIterHandle::new(generator, ctx, out_ndarray);
gen_for_callback(
generator,
ctx,
Some("broadcast_starmap"),
|generator, ctx| {
// Create NDIters for all broadcasted input ndarrays.
let other_nditers = broadcast_result
.ndarrays
.iter()
.map(|ndarray| NDIterHandle::new(generator, ctx, *ndarray))
.collect_vec();
Ok((nditer, other_nditers))
},
|generator, ctx, (out_nditer, _in_nditers)| {
// We can simply use `out_nditer`'s `has_next()`.
// `in_nditers`' `has_next()`s should return the same value.
Ok(out_nditer.has_next(generator, ctx).value)
},
|generator, ctx, _hooks, (out_nditer, in_nditers)| {
// Get all the scalars from the broadcasted input ndarrays, pass them to `mapping`,
// and write to `out_ndarray`.
let in_scalars = in_nditers
.iter()
.map(|nditer| nditer.get_scalar(generator, ctx).value)
.collect_vec();
let result = mapping(generator, ctx, &in_scalars)?;
let p = out_nditer.get_pointer(generator, ctx);
ctx.builder.build_store(p, result).unwrap();
Ok(())
},
|generator, ctx, (out_nditer, in_nditers)| {
// Advance all iterators
out_nditer.next(generator, ctx);
in_nditers.iter().for_each(|nditer| nditer.next(generator, ctx));
Ok(())
},
)?;
Ok(out_ndarray)
}
/// Map through this ndarray with an elementwise function.
pub fn map<'a, G, Mapping>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
out: NDArrayOut<'ctx>,
mapping: Mapping,
) -> Result<Self, String>
where
G: CodeGenerator + ?Sized,
Mapping: FnOnce(
&mut G,
&mut CodeGenContext<'ctx, 'a>,
BasicValueEnum<'ctx>,
) -> Result<BasicValueEnum<'ctx>, String>,
{
NDArrayObject::broadcast_starmap(
generator,
ctx,
&[*self],
out,
|generator, ctx, scalars| mapping(generator, ctx, scalars[0]),
)
}
}
impl<'ctx> ScalarOrNDArray<'ctx> {
/// Starmap through a list of inputs using `mapping`, where an input could be an ndarray, a scalar.
///
/// This function is very helpful when implementing NumPy functions that takes on either scalars or ndarrays or a mix of them
/// as their inputs and produces either an ndarray with broadcast, or a scalar if all its inputs are all scalars.
///
/// For example ,this function can be used to implement `np.add`, which has the following behaviors:
/// - `np.add(3, 4) = 7` # (scalar, scalar) -> scalar
/// - `np.add(3, np.array([4, 5, 6]))` # (scalar, ndarray) -> ndarray; the first `scalar` is converted into an ndarray and broadcasted.
/// - `np.add(np.array([[1], [2], [3]]), np.array([[4, 5, 6]]))` # (ndarray, ndarray) -> ndarray; there is broadcasting.
///
/// ## Details:
///
/// If `inputs` are all [`ScalarOrNDArray::Scalar`], the output will be a [`ScalarOrNDArray::Scalar`] with type `ret_dtype`.
///
/// Otherwise (if there are any [`ScalarOrNDArray::NDArray`] in `inputs`), all inputs will be 'as-ndarray'-ed into ndarrays,
/// then all inputs (now all ndarrays) will be passed to [`NDArrayObject::broadcasting_starmap`] and **create** a new ndarray
/// with dtype `ret_dtype`.
pub fn broadcasting_starmap<'a, G, MappingFn>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
inputs: &[ScalarOrNDArray<'ctx>],
ret_dtype: Type,
mapping: MappingFn,
) -> Result<ScalarOrNDArray<'ctx>, String>
where
G: CodeGenerator + ?Sized,
MappingFn: FnOnce(
&mut G,
&mut CodeGenContext<'ctx, 'a>,
&[BasicValueEnum<'ctx>],
) -> Result<BasicValueEnum<'ctx>, String>,
{
// Check if all inputs are Scalars
let all_scalars: Option<Vec<_>> = inputs.iter().map(AnyObject::try_from).try_collect().ok();
if let Some(scalars) = all_scalars {
let scalars = scalars.iter().map(|scalar| scalar.value).collect_vec();
let value = mapping(generator, ctx, &scalars)?;
Ok(ScalarOrNDArray::Scalar(AnyObject { ty: ret_dtype, value }))
} else {
// Promote all input to ndarrays and map through them.
let inputs = inputs.iter().map(|input| input.to_ndarray(generator, ctx)).collect_vec();
let ndarray = NDArrayObject::broadcast_starmap(
generator,
ctx,
&inputs,
NDArrayOut::NewNDArray { dtype: ret_dtype },
mapping,
)?;
Ok(ScalarOrNDArray::NDArray(ndarray))
}
}
/// Map through this [`ScalarOrNDArray`] with an elementwise function.
///
/// If this is a scalar, `mapping` will directly act on the scalar. This function will return a [`ScalarOrNDArray::Scalar`] of that result.
///
/// If this is an ndarray, `mapping` will be applied to the elements of the ndarray. A new ndarray of the results will be created and
/// returned as a [`ScalarOrNDArray::NDArray`].
pub fn map<'a, G, Mapping>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
ret_dtype: Type,
mapping: Mapping,
) -> Result<ScalarOrNDArray<'ctx>, String>
where
G: CodeGenerator + ?Sized,
Mapping: FnOnce(
&mut G,
&mut CodeGenContext<'ctx, 'a>,
BasicValueEnum<'ctx>,
) -> Result<BasicValueEnum<'ctx>, String>,
{
ScalarOrNDArray::broadcasting_starmap(
generator,
ctx,
&[*self],
ret_dtype,
|generator, ctx, scalars| mapping(generator, ctx, scalars[0]),
)
}
}

View File

@ -1,218 +0,0 @@
use std::cmp::max;
use nac3parser::ast::Operator;
use util::gen_for_model;
use crate::{
codegen::{
expr::gen_binop_expr_with_values, irrt::call_nac3_ndarray_matmul_calculate_shapes,
model::*, object::ndarray::indexing::RustNDIndex, CodeGenContext, CodeGenerator,
},
typecheck::{magic_methods::Binop, typedef::Type},
};
use super::{NDArrayObject, NDArrayOut};
/// Perform `np.einsum("...ij,...jk->...ik", in_a, in_b)`.
///
/// `dst_dtype` defines the dtype of the returned ndarray.
fn matmul_at_least_2d<'ctx, G: CodeGenerator>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dst_dtype: Type,
in_a: NDArrayObject<'ctx>,
in_b: NDArrayObject<'ctx>,
) -> NDArrayObject<'ctx> {
assert!(in_a.ndims >= 2);
assert!(in_b.ndims >= 2);
// Deduce ndims of the result of matmul.
let ndims_int = max(in_a.ndims, in_b.ndims);
let ndims = Int(SizeT).const_int(generator, ctx.ctx, ndims_int);
let num_0 = Int(SizeT).const_int(generator, ctx.ctx, 0);
let num_1 = Int(SizeT).const_int(generator, ctx.ctx, 1);
// Broadcasts `in_a.shape[:-2]` and `in_b.shape[:-2]` together and allocate the
// destination ndarray to store the result of matmul.
let (lhs, rhs, dst) = {
let in_lhs_ndims = in_a.ndims_llvm(generator, ctx.ctx);
let in_lhs_shape = in_a.instance.get(generator, ctx, |f| f.shape);
let in_rhs_ndims = in_b.ndims_llvm(generator, ctx.ctx);
let in_rhs_shape = in_b.instance.get(generator, ctx, |f| f.shape);
let lhs_shape = Int(SizeT).array_alloca(generator, ctx, ndims.value);
let rhs_shape = Int(SizeT).array_alloca(generator, ctx, ndims.value);
let dst_shape = Int(SizeT).array_alloca(generator, ctx, ndims.value);
// Matmul dimension compatibility is checked here.
call_nac3_ndarray_matmul_calculate_shapes(
generator,
ctx,
in_lhs_ndims,
in_lhs_shape,
in_rhs_ndims,
in_rhs_shape,
ndims,
lhs_shape,
rhs_shape,
dst_shape,
);
let lhs = in_a.broadcast_to(generator, ctx, ndims_int, lhs_shape);
let rhs = in_b.broadcast_to(generator, ctx, ndims_int, rhs_shape);
let dst = NDArrayObject::alloca(generator, ctx, dst_dtype, ndims_int);
dst.copy_shape_from_array(generator, ctx, dst_shape);
dst.create_data(generator, ctx);
(lhs, rhs, dst)
};
let len = lhs.instance.get(generator, ctx, |f| f.shape).get_index_const(
generator,
ctx,
ndims_int - 1,
);
let at_row = ndims_int - 2;
let at_col = ndims_int - 1;
let dst_dtype_llvm = ctx.get_llvm_type(generator, dst_dtype);
let dst_zero = dst_dtype_llvm.const_zero();
dst.foreach(generator, ctx, |generator, ctx, _, hdl| {
let pdst_ij = hdl.get_pointer(generator, ctx);
ctx.builder.build_store(pdst_ij, dst_zero).unwrap();
let indices = hdl.get_indices();
let i = indices.get_index_const(generator, ctx, at_row);
let j = indices.get_index_const(generator, ctx, at_col);
gen_for_model(generator, ctx, num_0, len, num_1, |generator, ctx, _, k| {
// `indices` is modified to index into `a` and `b`, and restored.
indices.set_index_const(ctx, at_row, i);
indices.set_index_const(ctx, at_col, k);
let a_ik = lhs.get_scalar_by_indices(generator, ctx, indices);
indices.set_index_const(ctx, at_row, k);
indices.set_index_const(ctx, at_col, j);
let b_kj = rhs.get_scalar_by_indices(generator, ctx, indices);
// Restore `indices`.
indices.set_index_const(ctx, at_row, i);
indices.set_index_const(ctx, at_col, j);
// x = a_[...]ik * b_[...]kj
let x = gen_binop_expr_with_values(
generator,
ctx,
(&Some(lhs.dtype), a_ik.value),
Binop::normal(Operator::Mult),
(&Some(rhs.dtype), b_kj.value),
ctx.current_loc,
)?
.unwrap()
.to_basic_value_enum(ctx, generator, dst_dtype)?;
// dst_[...]ij += x
let dst_ij = ctx.builder.build_load(pdst_ij, "").unwrap();
let dst_ij = gen_binop_expr_with_values(
generator,
ctx,
(&Some(dst_dtype), dst_ij),
Binop::normal(Operator::Add),
(&Some(dst_dtype), x),
ctx.current_loc,
)?
.unwrap()
.to_basic_value_enum(ctx, generator, dst_dtype)?;
ctx.builder.build_store(pdst_ij, dst_ij).unwrap();
Ok(())
})
})
.unwrap();
dst
}
impl<'ctx> NDArrayObject<'ctx> {
/// Perform `np.matmul` according to the rules in
/// <https://numpy.org/doc/stable/reference/generated/numpy.matmul.html>.
///
/// This function always return an [`NDArrayObject`]. You may want to use [`NDArrayObject::split_unsized`]
/// to handle when the output could be a scalar.
///
/// `dst_dtype` defines the dtype of the returned ndarray.
pub fn matmul<G: CodeGenerator>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
a: Self,
b: Self,
out: NDArrayOut<'ctx>,
) -> Self {
// Sanity check, but type inference should prevent this.
assert!(a.ndims > 0 && b.ndims > 0, "np.matmul disallows scalar input");
/*
If both arguments are 2-D they are multiplied like conventional matrices.
If either argument is N-D, N > 2, it is treated as a stack of matrices residing in the last two indices and broadcast accordingly.
If the first argument is 1-D, it is promoted to a matrix by prepending a 1 to its dimensions. After matrix multiplication the prepended 1 is removed.
If the second argument is 1-D, it is promoted to a matrix by appending a 1 to its dimensions. After matrix multiplication the appended 1 is removed.
*/
let new_a = if a.ndims == 1 {
// Prepend 1 to its dimensions
a.index(generator, ctx, &[RustNDIndex::NewAxis, RustNDIndex::Ellipsis])
} else {
a
};
let new_b = if b.ndims == 1 {
// Append 1 to its dimensions
b.index(generator, ctx, &[RustNDIndex::Ellipsis, RustNDIndex::NewAxis])
} else {
b
};
// NOTE: `result` will always be a newly allocated ndarray.
// Current implementation cannot do in-place matrix muliplication.
let mut result = matmul_at_least_2d(generator, ctx, out.get_dtype(), new_a, new_b);
// Postprocessing on the result to remove prepended/appended axes.
let mut postindices = vec![];
let zero = Int(Int32).const_0(generator, ctx.ctx);
if a.ndims == 1 {
// Remove the prepended 1
postindices.push(RustNDIndex::SingleElement(zero));
}
if b.ndims == 1 {
// Remove the appended 1
postindices.push(RustNDIndex::Ellipsis);
postindices.push(RustNDIndex::SingleElement(zero));
}
if !postindices.is_empty() {
result = result.index(generator, ctx, &postindices);
}
match out {
NDArrayOut::NewNDArray { .. } => result,
NDArrayOut::WriteToNDArray { ndarray: out_ndarray } => {
let result_shape = result.instance.get(generator, ctx, |f| f.shape);
out_ndarray.assert_can_be_written_by_out(
generator,
ctx,
result.ndims,
result_shape,
);
out_ndarray.copy_data_from(generator, ctx, result);
out_ndarray
}
}
}
}

View File

@ -1,668 +0,0 @@
pub mod array;
pub mod broadcast;
pub mod contiguous;
pub mod factory;
pub mod indexing;
pub mod map;
pub mod matmul;
pub mod nditer;
pub mod shape_util;
pub mod view;
use inkwell::{
context::Context,
types::BasicType,
values::{BasicValue, BasicValueEnum, PointerValue},
AddressSpace,
};
use crate::{
codegen::{
irrt::{
call_nac3_ndarray_copy_data, call_nac3_ndarray_get_nth_pelement,
call_nac3_ndarray_get_pelement_by_indices, call_nac3_ndarray_is_c_contiguous,
call_nac3_ndarray_len, call_nac3_ndarray_nbytes,
call_nac3_ndarray_set_strides_by_shape, call_nac3_ndarray_size,
call_nac3_ndarray_util_assert_output_shape_same,
},
model::*,
CodeGenContext, CodeGenerator,
},
toplevel::{
helper::{create_ndims, extract_ndims},
numpy::{make_ndarray_ty, unpack_ndarray_var_tys},
},
typecheck::typedef::{Type, TypeEnum},
};
use super::{any::AnyObject, tuple::TupleObject};
/// Fields of [`NDArray`]
pub struct NDArrayFields<'ctx, F: FieldTraversal<'ctx>> {
pub data: F::Out<Ptr<Int<Byte>>>,
pub itemsize: F::Out<Int<SizeT>>,
pub ndims: F::Out<Int<SizeT>>,
pub shape: F::Out<Ptr<Int<SizeT>>>,
pub strides: F::Out<Ptr<Int<SizeT>>>,
}
/// A strided ndarray in NAC3.
///
/// See IRRT implementation for details about its fields.
#[derive(Debug, Clone, Copy, Default)]
pub struct NDArray;
impl<'ctx> StructKind<'ctx> for NDArray {
type Fields<F: FieldTraversal<'ctx>> = NDArrayFields<'ctx, F>;
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
Self::Fields {
data: traversal.add_auto("data"),
itemsize: traversal.add_auto("itemsize"),
ndims: traversal.add_auto("ndims"),
shape: traversal.add_auto("shape"),
strides: traversal.add_auto("strides"),
}
}
}
/// A NAC3 Python ndarray object.
#[derive(Debug, Clone, Copy)]
pub struct NDArrayObject<'ctx> {
pub dtype: Type,
pub ndims: u64,
pub instance: Instance<'ctx, Ptr<Struct<NDArray>>>,
}
impl<'ctx> NDArrayObject<'ctx> {
/// Attempt to convert an [`AnyObject`] into an [`NDArrayObject`].
pub fn from_object<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
object: AnyObject<'ctx>,
) -> NDArrayObject<'ctx> {
let (dtype, ndims) = unpack_ndarray_var_tys(&mut ctx.unifier, object.ty);
let ndims = extract_ndims(&ctx.unifier, ndims);
Self::from_value_and_unpacked_types(generator, ctx, object.value, dtype, ndims)
}
/// Like [`NDArrayObject::from_object`] but you directly supply the ndarray's
/// `dtype` and `ndims`.
pub fn from_value_and_unpacked_types<V: BasicValue<'ctx>, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
value: V,
dtype: Type,
ndims: u64,
) -> Self {
let value = Ptr(Struct(NDArray)).check_value(generator, ctx.ctx, value).unwrap();
NDArrayObject { dtype, ndims, instance: value }
}
/// Get this ndarray's `ndims` as an LLVM constant.
pub fn ndims_llvm<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
) -> Instance<'ctx, Int<SizeT>> {
Int(SizeT).const_int(generator, ctx, self.ndims)
}
/// Get the typechecker ndarray type of this [`NDArrayObject`].
pub fn get_type(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> Type {
let ndims = create_ndims(&mut ctx.unifier, self.ndims);
make_ndarray_ty(&mut ctx.unifier, &ctx.primitives, Some(self.dtype), Some(ndims))
}
/// Forget that this is an ndarray and convert into an [`AnyObject`].
pub fn to_any(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> AnyObject<'ctx> {
let ty = self.get_type(ctx);
AnyObject { value: self.instance.value.as_basic_value_enum(), ty }
}
/// Allocate an ndarray on the stack given its `ndims` and `dtype`.
///
/// `shape` and `strides` will be automatically allocated onto the stack.
///
/// The returned ndarray's content will be:
/// - `data`: uninitialized.
/// - `itemsize`: set to the `sizeof()` of `dtype`.
/// - `ndims`: set to the value of `ndims`.
/// - `shape`: allocated with an array of length `ndims` with uninitialized values.
/// - `strides`: allocated with an array of length `ndims` with uninitialized values.
pub fn alloca<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
ndims: u64,
) -> Self {
let ndarray = Struct(NDArray).alloca(generator, ctx);
let itemsize = ctx.get_llvm_type(generator, dtype).size_of().unwrap();
let itemsize = Int(SizeT).z_extend_or_truncate(generator, ctx, itemsize);
ndarray.set(ctx, |f| f.itemsize, itemsize);
let ndims_val = Int(SizeT).const_int(generator, ctx.ctx, ndims);
ndarray.set(ctx, |f| f.ndims, ndims_val);
let shape = Int(SizeT).array_alloca(generator, ctx, ndims_val.value);
ndarray.set(ctx, |f| f.shape, shape);
let strides = Int(SizeT).array_alloca(generator, ctx, ndims_val.value);
ndarray.set(ctx, |f| f.strides, strides);
NDArrayObject { dtype, ndims, instance: ndarray }
}
/// Convenience function. Allocate an [`NDArrayObject`] with a statically known shape.
///
/// The returned [`NDArrayObject`]'s `data` and `strides` are uninitialized.
pub fn alloca_constant_shape<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
shape: &[u64],
) -> Self {
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, shape.len() as u64);
// Write shape
let dst_shape = ndarray.instance.get(generator, ctx, |f| f.shape);
for (i, dim) in shape.iter().enumerate() {
let dim = Int(SizeT).const_int(generator, ctx.ctx, *dim);
dst_shape.offset_const(ctx, i as u64).store(ctx, dim);
}
ndarray
}
/// Convenience function. Allocate an [`NDArrayObject`] with a dynamically known shape.
///
/// The returned [`NDArrayObject`]'s `data` and `strides` are uninitialized.
pub fn alloca_dynamic_shape<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
shape: &[Instance<'ctx, Int<SizeT>>],
) -> Self {
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, shape.len() as u64);
// Write shape
let dst_shape = ndarray.instance.get(generator, ctx, |f| f.shape);
for (i, dim) in shape.iter().enumerate() {
dst_shape.offset_const(ctx, i as u64).store(ctx, *dim);
}
ndarray
}
/// Initialize an ndarray's `data` by allocating a buffer on the stack.
/// The allocated data buffer is considered to be *owned* by the ndarray.
///
/// `strides` of the ndarray will also be updated with `set_strides_by_shape`.
///
/// `shape` and `itemsize` of the ndarray ***must*** be initialized first.
pub fn create_data<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) {
let nbytes = self.nbytes(generator, ctx);
let data = Int(Byte).array_alloca(generator, ctx, nbytes.value);
self.instance.set(ctx, |f| f.data, data);
self.set_strides_contiguous(generator, ctx);
}
/// Copy shape dimensions from an array.
pub fn copy_shape_from_array<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
shape: Instance<'ctx, Ptr<Int<SizeT>>>,
) {
let num_items = self.ndims_llvm(generator, ctx.ctx).value;
self.instance.get(generator, ctx, |f| f.shape).copy_from(generator, ctx, shape, num_items);
}
/// Copy shape dimensions from an ndarray.
/// Panics if `ndims` mismatches.
pub fn copy_shape_from_ndarray<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
src_ndarray: NDArrayObject<'ctx>,
) {
assert_eq!(self.ndims, src_ndarray.ndims);
let src_shape = src_ndarray.instance.get(generator, ctx, |f| f.shape);
self.copy_shape_from_array(generator, ctx, src_shape);
}
/// Copy strides dimensions from an array.
pub fn copy_strides_from_array<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
strides: Instance<'ctx, Ptr<Int<SizeT>>>,
) {
let num_items = self.ndims_llvm(generator, ctx.ctx).value;
self.instance
.get(generator, ctx, |f| f.strides)
.copy_from(generator, ctx, strides, num_items);
}
/// Copy strides dimensions from an ndarray.
/// Panics if `ndims` mismatches.
pub fn copy_strides_from_ndarray<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
src_ndarray: NDArrayObject<'ctx>,
) {
assert_eq!(self.ndims, src_ndarray.ndims);
let src_strides = src_ndarray.instance.get(generator, ctx, |f| f.strides);
self.copy_strides_from_array(generator, ctx, src_strides);
}
/// Get the `np.size()` of this ndarray.
pub fn size<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Instance<'ctx, Int<SizeT>> {
call_nac3_ndarray_size(generator, ctx, self.instance)
}
/// Get the `ndarray.nbytes` of this ndarray.
pub fn nbytes<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Instance<'ctx, Int<SizeT>> {
call_nac3_ndarray_nbytes(generator, ctx, self.instance)
}
/// Get the `len()` of this ndarray.
pub fn len<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Instance<'ctx, Int<SizeT>> {
call_nac3_ndarray_len(generator, ctx, self.instance)
}
/// Check if this ndarray is C-contiguous.
///
/// See NumPy's `flags["C_CONTIGUOUS"]`: <https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flags.html#numpy.ndarray.flags>
pub fn is_c_contiguous<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Instance<'ctx, Int<Bool>> {
call_nac3_ndarray_is_c_contiguous(generator, ctx, self.instance)
}
/// Get the pointer to the n-th (0-based) element.
///
/// The returned pointer has the element type of the LLVM type of this ndarray's `dtype`.
pub fn get_nth_pelement<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
nth: Instance<'ctx, Int<SizeT>>,
) -> PointerValue<'ctx> {
let elem_ty = ctx.get_llvm_type(generator, self.dtype);
let p = call_nac3_ndarray_get_nth_pelement(generator, ctx, self.instance, nth);
ctx.builder
.build_pointer_cast(p.value, elem_ty.ptr_type(AddressSpace::default()), "")
.unwrap()
}
/// Get the n-th (0-based) scalar.
pub fn get_nth_scalar<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
nth: Instance<'ctx, Int<SizeT>>,
) -> AnyObject<'ctx> {
let ptr = self.get_nth_pelement(generator, ctx, nth);
let value = ctx.builder.build_load(ptr, "").unwrap();
AnyObject { ty: self.dtype, value }
}
/// Get the pointer to the element indexed by `indices`.
///
/// The returned pointer has the element type of the LLVM type of this ndarray's `dtype`.
pub fn get_pelement_by_indices<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
indices: Instance<'ctx, Ptr<Int<SizeT>>>,
) -> PointerValue<'ctx> {
let elem_ty = ctx.get_llvm_type(generator, self.dtype);
let p = call_nac3_ndarray_get_pelement_by_indices(generator, ctx, self.instance, indices);
ctx.builder
.build_pointer_cast(p.value, elem_ty.ptr_type(AddressSpace::default()), "")
.unwrap()
}
/// Get the scalar indexed by `indices`.
pub fn get_scalar_by_indices<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
indices: Instance<'ctx, Ptr<Int<SizeT>>>,
) -> AnyObject<'ctx> {
let ptr = self.get_pelement_by_indices(generator, ctx, indices);
let value = ctx.builder.build_load(ptr, "").unwrap();
AnyObject { ty: self.dtype, value }
}
/// Call [`call_nac3_ndarray_set_strides_by_shape`] on this ndarray to update `strides`.
///
/// Update the ndarray's strides to make the ndarray contiguous.
pub fn set_strides_contiguous<G: CodeGenerator + ?Sized>(
self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) {
call_nac3_ndarray_set_strides_by_shape(generator, ctx, self.instance);
}
/// Clone/Copy this ndarray - Allocate a new ndarray with the same shape as this ndarray and copy the contents over.
///
/// The new ndarray will own its data and will be C-contiguous.
#[must_use]
pub fn make_copy<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Self {
let clone = NDArrayObject::alloca(generator, ctx, self.dtype, self.ndims);
let shape = self.instance.gep(ctx, |f| f.shape).load(generator, ctx);
clone.copy_shape_from_array(generator, ctx, shape);
clone.create_data(generator, ctx);
clone.copy_data_from(generator, ctx, *self);
clone
}
/// Copy data from another ndarray.
///
/// This ndarray and `src` is that their `np.size()` should be the same. Their shapes
/// do not matter. The copying order is determined by how their flattened views look.
///
/// Panics if the `dtype`s of ndarrays are different.
pub fn copy_data_from<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
src: NDArrayObject<'ctx>,
) {
assert!(ctx.unifier.unioned(self.dtype, src.dtype), "self and src dtype should match");
call_nac3_ndarray_copy_data(generator, ctx, src.instance, self.instance);
}
/// Returns true if this ndarray is unsized - `ndims == 0` and only contains a scalar.
#[must_use]
pub fn is_unsized(&self) -> bool {
self.ndims == 0
}
/// If this ndarray is unsized, return its sole value as an [`AnyObject`].
/// Otherwise, do nothing and return the ndarray itself.
pub fn split_unsized<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> ScalarOrNDArray<'ctx> {
if self.is_unsized() {
// NOTE: `np.size(self) == 0` here is never possible.
let zero = Int(SizeT).const_0(generator, ctx.ctx);
let value = self.get_nth_scalar(generator, ctx, zero).value;
ScalarOrNDArray::Scalar(AnyObject { ty: self.dtype, value })
} else {
ScalarOrNDArray::NDArray(*self)
}
}
/// Fill the ndarray with a scalar.
///
/// `fill_value` must have the same LLVM type as the `dtype` of this ndarray.
pub fn fill<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
value: BasicValueEnum<'ctx>,
) {
self.foreach(generator, ctx, |generator, ctx, _hooks, nditer| {
let p = nditer.get_pointer(generator, ctx);
ctx.builder.build_store(p, value).unwrap();
Ok(())
})
.unwrap();
}
/// Create the shape tuple of this ndarray like `np.shape(<ndarray>)`.
///
/// The returned integers in the tuple are in int32.
pub fn make_shape_tuple<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> TupleObject<'ctx> {
// TODO: Return a tuple of SizeT
let mut objects = Vec::with_capacity(self.ndims as usize);
for i in 0..self.ndims {
let dim = self
.instance
.get(generator, ctx, |f| f.shape)
.get_index_const(generator, ctx, i)
.truncate_or_bit_cast(generator, ctx, Int32);
objects.push(AnyObject {
ty: ctx.primitives.int32,
value: dim.value.as_basic_value_enum(),
});
}
TupleObject::from_objects(generator, ctx, objects)
}
/// Create the strides tuple of this ndarray like `<ndarray>.strides`.
///
/// The returned integers in the tuple are in int32.
pub fn make_strides_tuple<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> TupleObject<'ctx> {
// TODO: Return a tuple of SizeT.
let mut objects = Vec::with_capacity(self.ndims as usize);
for i in 0..self.ndims {
let dim = self
.instance
.get(generator, ctx, |f| f.strides)
.get_index_const(generator, ctx, i)
.truncate_or_bit_cast(generator, ctx, Int32);
objects.push(AnyObject {
ty: ctx.primitives.int32,
value: dim.value.as_basic_value_enum(),
});
}
TupleObject::from_objects(generator, ctx, objects)
}
/// Create an unsized ndarray to contain `object`.
pub fn make_unsized<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
object: AnyObject<'ctx>,
) -> NDArrayObject<'ctx> {
// We have to put the value on the stack to get a data pointer.
let data = ctx.builder.build_alloca(object.value.get_type(), "make_unsized").unwrap();
ctx.builder.build_store(data, object.value).unwrap();
let data = Ptr(Int(Byte)).pointer_cast(generator, ctx, data);
let ndarray = NDArrayObject::alloca(generator, ctx, object.ty, 0);
ndarray.instance.set(ctx, |f| f.data, data);
ndarray
}
/// Check if this `NDArray` can be used as an `out` ndarray for an operation.
///
/// Raise an exception if the shapes do not match.
pub fn assert_can_be_written_by_out<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
out_ndims: u64,
out_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
) {
let ndarray_ndims = self.ndims_llvm(generator, ctx.ctx);
let ndarray_shape = self.instance.get(generator, ctx, |f| f.shape);
let output_ndims = Int(SizeT).const_int(generator, ctx.ctx, out_ndims);
let output_shape = out_shape;
call_nac3_ndarray_util_assert_output_shape_same(
generator,
ctx,
ndarray_ndims,
ndarray_shape,
output_ndims,
output_shape,
);
}
}
/// A convenience enum for implementing functions that acts on scalars or ndarrays or both.
#[derive(Debug, Clone, Copy)]
pub enum ScalarOrNDArray<'ctx> {
Scalar(AnyObject<'ctx>),
NDArray(NDArrayObject<'ctx>),
}
impl<'ctx> TryFrom<&ScalarOrNDArray<'ctx>> for AnyObject<'ctx> {
type Error = ();
fn try_from(value: &ScalarOrNDArray<'ctx>) -> Result<Self, Self::Error> {
match value {
ScalarOrNDArray::Scalar(scalar) => Ok(*scalar),
ScalarOrNDArray::NDArray(_ndarray) => Err(()),
}
}
}
impl<'ctx> TryFrom<&ScalarOrNDArray<'ctx>> for NDArrayObject<'ctx> {
type Error = ();
fn try_from(value: &ScalarOrNDArray<'ctx>) -> Result<Self, Self::Error> {
match value {
ScalarOrNDArray::Scalar(_scalar) => Err(()),
ScalarOrNDArray::NDArray(ndarray) => Ok(*ndarray),
}
}
}
impl<'ctx> ScalarOrNDArray<'ctx> {
/// Split on `object` either into a scalar or an ndarray.
///
/// If `object` is an ndarray, [`ScalarOrNDArray::NDArray`].
///
/// For everything else, it is wrapped with [`ScalarOrNDArray::Scalar`].
pub fn split_object<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
object: AnyObject<'ctx>,
) -> ScalarOrNDArray<'ctx> {
match &*ctx.unifier.get_ty(object.ty) {
TypeEnum::TObj { obj_id, .. }
if *obj_id == ctx.primitives.ndarray.obj_id(&ctx.unifier).unwrap() =>
{
let ndarray = NDArrayObject::from_object(generator, ctx, object);
ScalarOrNDArray::NDArray(ndarray)
}
_ => ScalarOrNDArray::Scalar(object),
}
}
/// Get the underlying [`BasicValueEnum<'ctx>`] of this [`ScalarOrNDArray`].
#[must_use]
pub fn to_basic_value_enum(self) -> BasicValueEnum<'ctx> {
match self {
ScalarOrNDArray::Scalar(scalar) => scalar.value,
ScalarOrNDArray::NDArray(ndarray) => ndarray.instance.value.as_basic_value_enum(),
}
}
/// Convert this [`ScalarOrNDArray`] to an ndarray - behaves like `np.asarray`.
/// - If this is an ndarray, the ndarray is returned.
/// - If this is a scalar, this function returns new ndarray created with [`NDArrayObject::make_unsized`].
pub fn to_ndarray<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> NDArrayObject<'ctx> {
match self {
ScalarOrNDArray::NDArray(ndarray) => *ndarray,
ScalarOrNDArray::Scalar(scalar) => NDArrayObject::make_unsized(generator, ctx, *scalar),
}
}
/// Get the dtype of the ndarray created if this were called with [`ScalarOrNDArray::to_ndarray`].
#[must_use]
pub fn get_dtype(&self) -> Type {
match self {
ScalarOrNDArray::NDArray(ndarray) => ndarray.dtype,
ScalarOrNDArray::Scalar(scalar) => scalar.ty,
}
}
}
/// An helper enum specifying how a function should produce its output.
///
/// Many functions in NumPy has an optional `out` parameter (e.g., `matmul`). If `out` is specified
/// with an ndarray, the result of a function will be written to `out`. If `out` is not specified, a function will
/// create a new ndarray and store the result in it.
#[derive(Debug, Clone, Copy)]
pub enum NDArrayOut<'ctx> {
/// Tell a function should create a new ndarray with the expected element type `dtype`.
NewNDArray { dtype: Type },
/// Tell a function to write the result to `ndarray`.
WriteToNDArray { ndarray: NDArrayObject<'ctx> },
}
impl<'ctx> NDArrayOut<'ctx> {
/// Get the dtype of this output.
#[must_use]
pub fn get_dtype(&self) -> Type {
match self {
NDArrayOut::NewNDArray { dtype } => *dtype,
NDArrayOut::WriteToNDArray { ndarray } => ndarray.dtype,
}
}
}
/// A version of [`call_nac3_ndarray_set_strides_by_shape`] in Rust.
///
/// This function is used generating strides for globally defined contiguous ndarrays.
#[must_use]
pub fn make_contiguous_strides(itemsize: u64, ndims: u64, shape: &[u64]) -> Vec<u64> {
let mut strides = Vec::with_capacity(ndims as usize);
let mut stride_product = 1u64;
for i in 0..ndims {
let axis = ndims - i - 1;
strides[axis as usize] = stride_product * itemsize;
stride_product *= shape[axis as usize];
}
strides
}

View File

@ -1,177 +0,0 @@
use inkwell::{types::BasicType, values::PointerValue, AddressSpace};
use crate::codegen::{
irrt::{call_nac3_nditer_has_next, call_nac3_nditer_initialize, call_nac3_nditer_next},
model::*,
object::any::AnyObject,
stmt::{gen_for_callback, BreakContinueHooks},
CodeGenContext, CodeGenerator,
};
use super::NDArrayObject;
/// Fields of [`NDIter`]
pub struct NDIterFields<'ctx, F: FieldTraversal<'ctx>> {
pub ndims: F::Out<Int<SizeT>>,
pub shape: F::Out<Ptr<Int<SizeT>>>,
pub strides: F::Out<Ptr<Int<SizeT>>>,
pub indices: F::Out<Ptr<Int<SizeT>>>,
pub nth: F::Out<Int<SizeT>>,
pub element: F::Out<Ptr<Int<Byte>>>,
pub size: F::Out<Int<SizeT>>,
}
/// An IRRT helper structure used to iterate through an ndarray.
#[derive(Debug, Clone, Copy, Default)]
pub struct NDIter;
impl<'ctx> StructKind<'ctx> for NDIter {
type Fields<F: FieldTraversal<'ctx>> = NDIterFields<'ctx, F>;
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
Self::Fields {
ndims: traversal.add_auto("ndims"),
shape: traversal.add_auto("shape"),
strides: traversal.add_auto("strides"),
indices: traversal.add_auto("indices"),
nth: traversal.add_auto("nth"),
element: traversal.add_auto("element"),
size: traversal.add_auto("size"),
}
}
}
/// A helper structure with a convenient interface to interact with [`NDIter`].
#[derive(Debug, Clone)]
pub struct NDIterHandle<'ctx> {
instance: Instance<'ctx, Ptr<Struct<NDIter>>>,
/// The ndarray this [`NDIter`] to iterating over.
ndarray: NDArrayObject<'ctx>,
/// The current indices of [`NDIter`].
indices: Instance<'ctx, Ptr<Int<SizeT>>>,
}
impl<'ctx> NDIterHandle<'ctx> {
/// Allocate an [`NDIter`] that iterates through an ndarray.
pub fn new<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: NDArrayObject<'ctx>,
) -> Self {
let nditer = Struct(NDIter).alloca(generator, ctx);
let ndims = ndarray.ndims_llvm(generator, ctx.ctx);
// The caller has the responsibility to allocate 'indices' for `NDIter`.
let indices = Int(SizeT).array_alloca(generator, ctx, ndims.value);
call_nac3_nditer_initialize(generator, ctx, nditer, ndarray.instance, indices);
NDIterHandle { ndarray, instance: nditer, indices }
}
/// Is there a next element?
///
/// If `ndarray` is unsized, this returns true only for the first iteration.
/// If `ndarray` is 0-sized, this always returns false.
#[must_use]
pub fn has_next<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Instance<'ctx, Int<Bool>> {
call_nac3_nditer_has_next(generator, ctx, self.instance)
}
/// Go to the next element. If `has_next()` is false, then this has undefined behavior.
///
/// If `ndarray` is unsized, this can only be called once.
/// If `ndarray` is 0-sized, this can never be called.
pub fn next<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) {
call_nac3_nditer_next(generator, ctx, self.instance);
}
/// Get pointer to the current element.
#[must_use]
pub fn get_pointer<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> PointerValue<'ctx> {
let elem_ty = ctx.get_llvm_type(generator, self.ndarray.dtype);
let p = self.instance.get(generator, ctx, |f| f.element);
ctx.builder
.build_pointer_cast(p.value, elem_ty.ptr_type(AddressSpace::default()), "element")
.unwrap()
}
/// Get the value of the current element.
#[must_use]
pub fn get_scalar<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> AnyObject<'ctx> {
let p = self.get_pointer(generator, ctx);
let value = ctx.builder.build_load(p, "value").unwrap();
AnyObject { ty: self.ndarray.dtype, value }
}
/// Get the index of the current element if this ndarray were a flat ndarray.
#[must_use]
pub fn get_index<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Instance<'ctx, Int<SizeT>> {
self.instance.get(generator, ctx, |f| f.nth)
}
/// Get the indices of the current element.
#[must_use]
pub fn get_indices(&self) -> Instance<'ctx, Ptr<Int<SizeT>>> {
self.indices
}
}
impl<'ctx> NDArrayObject<'ctx> {
/// Iterate through every element in the ndarray.
///
/// `body` has access to [`BreakContinueHooks`] to short-circuit and [`NDIterHandle`] to
/// get properties of the current iteration (e.g., the current element, indices, etc.)
pub fn foreach<'a, G, F>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
body: F,
) -> Result<(), String>
where
G: CodeGenerator + ?Sized,
F: FnOnce(
&mut G,
&mut CodeGenContext<'ctx, 'a>,
BreakContinueHooks<'ctx>,
NDIterHandle<'ctx>,
) -> Result<(), String>,
{
gen_for_callback(
generator,
ctx,
Some("ndarray_foreach"),
|generator, ctx| Ok(NDIterHandle::new(generator, ctx, *self)),
|generator, ctx, nditer| Ok(nditer.has_next(generator, ctx).value),
|generator, ctx, hooks, nditer| body(generator, ctx, hooks, nditer),
|generator, ctx, nditer| {
nditer.next(generator, ctx);
Ok(())
},
)
}
}

View File

@ -1,105 +0,0 @@
use util::gen_for_model;
use crate::{
codegen::{
model::*,
object::{any::AnyObject, list::ListObject, tuple::TupleObject},
CodeGenContext, CodeGenerator,
},
typecheck::typedef::TypeEnum,
};
/// Parse a NumPy-like "int sequence" input and return the int sequence as an array and its length.
///
/// * `sequence` - The `sequence` parameter.
/// * `sequence_ty` - The typechecker type of `sequence`
///
/// The `sequence` argument type may only be one of the following:
/// 1. A list of `int32`; e.g., `np.empty([600, 800, 3])`
/// 2. A tuple of `int32`; e.g., `np.empty((600, 800, 3))`
/// 3. A scalar `int32`; e.g., `np.empty(3)`, this is functionally equivalent to `np.empty([3])`
///
/// All `int32` values will be sign-extended to `SizeT`.
pub fn parse_numpy_int_sequence<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
input_sequence: AnyObject<'ctx>,
) -> (Instance<'ctx, Int<SizeT>>, Instance<'ctx, Ptr<Int<SizeT>>>) {
let zero = Int(SizeT).const_0(generator, ctx.ctx);
let one = Int(SizeT).const_1(generator, ctx.ctx);
// The result `list` to return.
match &*ctx.unifier.get_ty(input_sequence.ty) {
TypeEnum::TObj { obj_id, .. }
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
{
// 1. A list of `int32`; e.g., `np.empty([600, 800, 3])`
// Check `input_sequence`
let input_sequence = ListObject::from_object(generator, ctx, input_sequence);
let len = input_sequence.instance.get(generator, ctx, |f| f.len);
let result = Int(SizeT).array_alloca(generator, ctx, len.value);
// Load all the `int32`s from the input_sequence, cast them to `SizeT`, and store them into `result`
gen_for_model(generator, ctx, zero, len, one, |generator, ctx, _hooks, i| {
// Load the i-th int32 in the input sequence
let int = input_sequence
.instance
.get(generator, ctx, |f| f.items)
.get_index(generator, ctx, i.value)
.value
.into_int_value();
// Cast to SizeT
let int = Int(SizeT).s_extend_or_bit_cast(generator, ctx, int);
// Store
result.set_index(ctx, i.value, int);
Ok(())
})
.unwrap();
(len, result)
}
TypeEnum::TTuple { .. } => {
// 2. A tuple of ints; e.g., `np.empty((600, 800, 3))`
let input_sequence = TupleObject::from_object(ctx, input_sequence);
let len = input_sequence.len(generator, ctx);
let result = Int(SizeT).array_alloca(generator, ctx, len.value);
for i in 0..input_sequence.num_elements() {
// Get the i-th element off of the tuple and load it into `result`.
let int = input_sequence.index(ctx, i).value.into_int_value();
let int = Int(SizeT).s_extend_or_bit_cast(generator, ctx, int);
result.set_index_const(ctx, i as u64, int);
}
(len, result)
}
TypeEnum::TObj { obj_id, .. }
if *obj_id == ctx.primitives.int32.obj_id(&ctx.unifier).unwrap() =>
{
// 3. A scalar int; e.g., `np.empty(3)`, this is functionally equivalent to `np.empty([3])`
let input_int = input_sequence.value.into_int_value();
let len = Int(SizeT).const_1(generator, ctx.ctx);
let result = Int(SizeT).array_alloca(generator, ctx, len.value);
let int = Int(SizeT).s_extend_or_bit_cast(generator, ctx, input_int);
// Storing into result[0]
result.store(ctx, int);
(len, result)
}
_ => panic!(
"encountered unknown sequence type: {}",
ctx.unifier.stringify(input_sequence.ty)
),
}
}

View File

@ -1,119 +0,0 @@
use crate::codegen::{
irrt::{call_nac3_ndarray_reshape_resolve_and_check_new_shape, call_nac3_ndarray_transpose},
model::*,
CodeGenContext, CodeGenerator,
};
use super::{indexing::RustNDIndex, NDArrayObject};
impl<'ctx> NDArrayObject<'ctx> {
/// Make sure the ndarray is at least `ndmin`-dimensional.
///
/// If this ndarray's `ndims` is less than `ndmin`, a view is created on this with 1s prepended to the shape.
/// If this ndarray's `ndims` is not less than `ndmin`, this function does nothing and return this ndarray.
#[must_use]
pub fn atleast_nd<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndmin: u64,
) -> Self {
if self.ndims < ndmin {
// Extend the dimensions with np.newaxis.
let mut indices = vec![];
for _ in self.ndims..ndmin {
indices.push(RustNDIndex::NewAxis);
}
indices.push(RustNDIndex::Ellipsis);
self.index(generator, ctx, &indices)
} else {
*self
}
}
/// Create a reshaped view on this ndarray like `np.reshape()`.
///
/// If there is a `-1` in `new_shape`, it will be resolved; `new_shape` would **NOT** be modified as a result.
///
/// If reshape without copying is impossible, this function will allocate a new ndarray and copy contents.
///
/// * `new_ndims` - The number of dimensions of `new_shape` as a [`Type`].
/// * `new_shape` - The target shape to do `np.reshape()`.
#[must_use]
pub fn reshape_or_copy<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
new_ndims: u64,
new_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
) -> Self {
// TODO: The current criterion for whether to do a full copy or not is by checking `is_c_contiguous`,
// but this is not optimal - there are cases when the ndarray is not contiguous but could be reshaped
// without copying data. Look into how numpy does it.
let current_bb = ctx.builder.get_insert_block().unwrap();
let then_bb = ctx.ctx.insert_basic_block_after(current_bb, "then_bb");
let else_bb = ctx.ctx.insert_basic_block_after(then_bb, "else_bb");
let end_bb = ctx.ctx.insert_basic_block_after(else_bb, "end_bb");
let dst_ndarray = NDArrayObject::alloca(generator, ctx, self.dtype, new_ndims);
dst_ndarray.copy_shape_from_array(generator, ctx, new_shape);
// Reolsve negative indices
let size = self.size(generator, ctx);
let dst_ndims = dst_ndarray.ndims_llvm(generator, ctx.ctx);
let dst_shape = dst_ndarray.instance.get(generator, ctx, |f| f.shape);
call_nac3_ndarray_reshape_resolve_and_check_new_shape(
generator, ctx, size, dst_ndims, dst_shape,
);
let is_c_contiguous = self.is_c_contiguous(generator, ctx);
ctx.builder.build_conditional_branch(is_c_contiguous.value, then_bb, else_bb).unwrap();
// Inserting into then_bb: reshape is possible without copying
ctx.builder.position_at_end(then_bb);
dst_ndarray.set_strides_contiguous(generator, ctx);
dst_ndarray.instance.set(ctx, |f| f.data, self.instance.get(generator, ctx, |f| f.data));
ctx.builder.build_unconditional_branch(end_bb).unwrap();
// Inserting into else_bb: reshape is impossible without copying
ctx.builder.position_at_end(else_bb);
dst_ndarray.create_data(generator, ctx);
dst_ndarray.copy_data_from(generator, ctx, *self);
ctx.builder.build_unconditional_branch(end_bb).unwrap();
// Reposition for continuation
ctx.builder.position_at_end(end_bb);
dst_ndarray
}
/// Create a transposed view on this ndarray like `np.transpose(<ndarray>, <axes> = None)`.
/// * `axes` - If specified, should be an array of the permutation (negative indices are **allowed**).
#[must_use]
pub fn transpose<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
axes: Option<Instance<'ctx, Ptr<Int<SizeT>>>>,
) -> Self {
// Define models
let transposed_ndarray = NDArrayObject::alloca(generator, ctx, self.dtype, self.ndims);
let num_axes = self.ndims_llvm(generator, ctx.ctx);
// `axes = nullptr` if `axes` is unspecified.
let axes = axes.unwrap_or_else(|| Ptr(Int(SizeT)).nullptr(generator, ctx.ctx));
call_nac3_ndarray_transpose(
generator,
ctx,
self.instance,
transposed_ndarray.instance,
num_axes,
axes,
);
transposed_ndarray
}
}

View File

@ -1,99 +0,0 @@
use inkwell::values::StructValue;
use itertools::Itertools;
use crate::{
codegen::{model::*, CodeGenContext, CodeGenerator},
typecheck::typedef::{Type, TypeEnum},
};
use super::any::AnyObject;
/// A NAC3 tuple object.
///
/// NOTE: This struct has no copy trait.
#[derive(Debug, Clone)]
pub struct TupleObject<'ctx> {
/// The type of the tuple.
pub tys: Vec<Type>,
/// The underlying LLVM struct value of this tuple.
pub value: StructValue<'ctx>,
}
impl<'ctx> TupleObject<'ctx> {
pub fn from_object(ctx: &mut CodeGenContext<'ctx, '_>, object: AnyObject<'ctx>) -> Self {
// TODO: Keep `is_vararg_ctx` from TTuple?
// Sanity check on object type.
let TypeEnum::TTuple { ty: tys, .. } = &*ctx.unifier.get_ty(object.ty) else {
panic!(
"Expected type to be a TypeEnum::TTuple, got {}",
ctx.unifier.stringify(object.ty)
);
};
// Check number of fields
let value = object.value.into_struct_value();
let value_num_fields = value.get_type().count_fields() as usize;
assert!(
value_num_fields == tys.len(),
"Tuple type has {} item(s), but the LLVM struct value has {} field(s)",
tys.len(),
value_num_fields
);
TupleObject { tys: tys.clone(), value }
}
/// Convenience function. Create a [`TupleObject`] from an iterator of objects.
pub fn from_objects<I, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
objects: I,
) -> Self
where
I: IntoIterator<Item = AnyObject<'ctx>>,
{
let (values, tys): (Vec<_>, Vec<_>) =
objects.into_iter().map(|object| (object.value, object.ty)).unzip();
let llvm_tys = tys.iter().map(|ty| ctx.get_llvm_type(generator, *ty)).collect_vec();
let llvm_tuple_ty = ctx.ctx.struct_type(&llvm_tys, false);
let pllvm_tuple = ctx.builder.build_alloca(llvm_tuple_ty, "tuple").unwrap();
for (i, val) in values.into_iter().enumerate() {
let pval = ctx.builder.build_struct_gep(pllvm_tuple, i as u32, "value").unwrap();
ctx.builder.build_store(pval, val).unwrap();
}
let value = ctx.builder.build_load(pllvm_tuple, "").unwrap().into_struct_value();
TupleObject { tys, value }
}
#[must_use]
pub fn num_elements(&self) -> usize {
self.tys.len()
}
/// Get the `len()` of this tuple.
#[must_use]
pub fn len<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Instance<'ctx, Int<SizeT>> {
Int(SizeT).const_int(generator, ctx.ctx, self.num_elements() as u64)
}
/// Get the `i`-th (0-based) object in this tuple.
pub fn index(&self, ctx: &mut CodeGenContext<'ctx, '_>, i: usize) -> AnyObject<'ctx> {
assert!(
i < self.num_elements(),
"Tuple object with length {} have index {i}",
self.num_elements()
);
let value = ctx.builder.build_extract_value(self.value, i as u32, "tuple[{i}]").unwrap();
let ty = self.tys[i];
AnyObject { ty, value }
}
}

View File

@ -1 +0,0 @@
pub mod slice;

Some files were not shown because too many files have changed in this diff Show More