Compare commits

...

21 Commits

Author SHA1 Message Date
pca006132 95789ec303 proper constant handling 2020-12-30 10:45:35 +08:00
pca006132 03712e3762 code formatting 2020-12-30 09:40:56 +08:00
pca006132 b98117a049 removed assumptions 2020-12-29 17:04:45 +08:00
pca006132 7027135d6b finished expressions 2020-12-29 16:43:08 +08:00
pca006132 a439ce61f7 ownwership and none type 2020-12-29 14:47:41 +08:00
pca006132 1cc4c3f8d4 added operators 2020-12-29 14:28:18 +08:00
pca006132 7b1ea58bc0 implemented some more expressions 2020-12-29 12:28:18 +08:00
pca006132 06af1623a8 fixed errors 2020-12-29 11:42:16 +08:00
pca006132 1990486cc2 started expression checking 2020-12-29 11:31:00 +08:00
pca006132 a9827da70b moved nac3type to nac3core 2020-12-29 10:33:21 +08:00
pca006132 94ea2c7a9d fixed assumption bug 2020-12-29 09:43:49 +08:00
pca006132 422b92f686 use slice for function parameters 2020-12-28 16:26:10 +08:00
pca006132 0200ea1458 formatting 2020-12-28 16:00:02 +08:00
pca006132 75183c39fd virtual class tests 2020-12-28 15:58:28 +08:00
pca006132 87dd0ee3cb more tests 2020-12-28 15:03:57 +08:00
pca006132 929b7e1d92 inference and tests 2020-12-28 14:33:18 +08:00
pca006132 7f09596bcb primitives and some lifetime issue 2020-12-28 13:15:46 +08:00
pca006132 81f4be60c7 start adding primitives 2020-12-28 12:45:35 +08:00
pca006132 fd3e1d4923 implemented inference
rc nightmare...
2020-12-28 11:06:32 +08:00
pca006132 fa02dc8271 implementing inference 2020-12-26 11:45:57 +08:00
pca006132 0bca238642 init type checking module 2020-12-24 16:06:16 +08:00
6 changed files with 1794 additions and 183 deletions

377
nac3core/src/expression.rs Normal file
View File

@ -0,0 +1,377 @@
use crate::inference::resolve_call;
use crate::operators::*;
use crate::primitives::*;
use crate::typedef::{GlobalContext, Type, Type::*};
use rustpython_parser::ast::{
Comparison, Comprehension, ComprehensionKind, Expression, ExpressionType, Operator,
UnaryOperator,
};
use std::collections::HashMap;
use std::convert::TryInto;
use std::rc::Rc;
type SymTable<'a> = HashMap<&'a str, Rc<Type>>;
type ParserResult = Result<Option<Rc<Type>>, String>;
pub fn parse_expr(ctx: &GlobalContext, sym_table: &SymTable, expr: &Expression) -> ParserResult {
match &expr.node {
ExpressionType::Number { value } => parse_constant(ctx, sym_table, value),
ExpressionType::Identifier { name } => parse_identifier(ctx, sym_table, name),
ExpressionType::List { elements } => parse_list(ctx, sym_table, elements),
ExpressionType::Tuple { elements } => parse_tuple(ctx, sym_table, elements),
ExpressionType::Attribute { value, name } => parse_attribute(ctx, sym_table, value, name),
ExpressionType::BoolOp { values, .. } => parse_bool_ops(ctx, sym_table, values),
ExpressionType::Binop { a, b, op } => parse_bin_ops(ctx, sym_table, op, a, b),
ExpressionType::Unop { op, a } => parse_unary_ops(ctx, sym_table, op, a),
ExpressionType::Compare { vals, ops } => parse_compare(ctx, sym_table, vals, ops),
ExpressionType::Call {
args,
function,
keywords,
} => {
if keywords.len() > 0 {
Err("keyword is not supported".into())
} else {
parse_call(ctx, sym_table, &args, &function)
}
}
ExpressionType::Subscript { a, b } => parse_subscript(ctx, sym_table, a, b),
ExpressionType::IfExpression { test, body, orelse } => {
parse_if_expr(ctx, sym_table, &test, &body, orelse)
}
ExpressionType::Comprehension { kind, generators } => match kind.as_ref() {
ComprehensionKind::List { element } => {
if generators.len() == 1 {
parse_list_comprehension(ctx, sym_table, element, &generators[0])
} else {
Err("only 1 generator statement is supported".into())
}
}
_ => Err("only list comprehension is supported".into()),
},
ExpressionType::True | ExpressionType::False => Ok(Some(PrimitiveType(BOOL_TYPE).into())),
_ => Err("not supported".into()),
}
}
fn parse_constant(
_: &GlobalContext,
_: &SymTable,
value: &rustpython_parser::ast::Number,
) -> ParserResult {
use rustpython_parser::ast::Number;
match value {
Number::Integer { value } => {
let int32: Result<i32, _> = value.try_into();
if int32.is_ok() {
Ok(Some(PrimitiveType(INT32_TYPE).into()))
} else {
let int64: Result<i64, _> = value.try_into();
if int64.is_ok() {
Ok(Some(PrimitiveType(INT64_TYPE).into()))
} else {
Err("integer out of range".into())
}
}
}
Number::Float { .. } => Ok(Some(PrimitiveType(FLOAT_TYPE).into())),
_ => Err("not supported".into()),
}
}
fn parse_identifier(_: &GlobalContext, sym_table: &SymTable, name: &str) -> ParserResult {
match sym_table.get(name) {
Some(v) => Ok(Some(v.clone())),
None => Err("unbounded variable".into()),
}
}
fn parse_list(ctx: &GlobalContext, sym_table: &SymTable, elements: &[Expression]) -> ParserResult {
if elements.len() == 0 {
return Ok(Some(ParametricType(LIST_TYPE, vec![BotType.into()]).into()));
}
let mut types = elements.iter().map(|v| parse_expr(&ctx, sym_table, v));
let head = types.next().unwrap()?;
if head.is_none() {
return Err("list elements must have some type".into());
}
for v in types {
if v? != head {
return Err("inhomogeneous list is not allowed".into());
}
}
Ok(Some(ParametricType(LIST_TYPE, vec![head.unwrap()]).into()))
}
fn parse_tuple(ctx: &GlobalContext, sym_table: &SymTable, elements: &[Expression]) -> ParserResult {
let types: Result<Option<Vec<_>>, String> = elements
.iter()
.map(|v| parse_expr(&ctx, sym_table, v))
.collect();
if let Some(t) = types? {
Ok(Some(ParametricType(TUPLE_TYPE, t).into()))
} else {
Err("tuple elements must have some type".into())
}
}
fn parse_attribute(
ctx: &GlobalContext,
sym_table: &SymTable,
value: &Expression,
name: &String,
) -> ParserResult {
let value = parse_expr(ctx, sym_table, value)?.ok_or("no value".to_string())?;
if let TypeVariable(id) = value.as_ref() {
let v = ctx.get_variable(*id);
if v.bound.len() == 0 {
return Err("no fields on unbounded type variable".into());
}
let ty = v.bound[0]
.get_base(ctx)
.and_then(|v| v.fields.get(name.as_str()));
if ty.is_none() {
return Err("unknown field".into());
}
for x in v.bound[1..].iter() {
let ty1 = x.get_base(ctx).and_then(|v| v.fields.get(name.as_str()));
if ty1 != ty {
return Err("unknown field (type mismatch between variants)".into());
}
}
return Ok(Some(ty.unwrap().clone()));
}
match value.get_base(ctx) {
Some(b) => match b.fields.get(name.as_str()) {
Some(t) => Ok(Some(t.clone())),
None => Err("no such field".into()),
},
None => Err("this object has no fields".into()),
}
}
fn parse_bool_ops(
ctx: &GlobalContext,
sym_table: &SymTable,
values: &[Expression],
) -> ParserResult {
assert_eq!(values.len(), 2);
let left = parse_expr(ctx, sym_table, &values[0])?.ok_or("no value".to_string())?;
let right = parse_expr(ctx, sym_table, &values[1])?.ok_or("no value".to_string())?;
let b = PrimitiveType(BOOL_TYPE);
if left.as_ref() == &b && right.as_ref() == &b {
Ok(Some(b.into()))
} else {
Err("bool operands must be bool".into())
}
}
fn parse_bin_ops(
ctx: &GlobalContext,
sym_table: &SymTable,
op: &Operator,
left: &Expression,
right: &Expression,
) -> ParserResult {
let left = parse_expr(ctx, sym_table, left)?.ok_or("no value".to_string())?;
let right = parse_expr(ctx, sym_table, right)?.ok_or("no value".to_string())?;
let fun = binop_name(op);
resolve_call(ctx, Some(left), fun, &[right])
}
fn parse_unary_ops(
ctx: &GlobalContext,
sym_table: &SymTable,
op: &UnaryOperator,
obj: &Expression,
) -> ParserResult {
let ty = parse_expr(ctx, sym_table, obj)?.ok_or("no value".to_string())?;
if let UnaryOperator::Not = op {
if ty.as_ref() == &PrimitiveType(BOOL_TYPE) {
Ok(Some(ty))
} else {
Err("logical not must be applied to bool".into())
}
} else {
resolve_call(ctx, Some(ty), unaryop_name(op), &[])
}
}
fn parse_compare(
ctx: &GlobalContext,
sym_table: &SymTable,
vals: &[Expression],
ops: &[Comparison],
) -> ParserResult {
let types: Result<Option<Vec<_>>, _> =
vals.iter().map(|v| parse_expr(ctx, sym_table, v)).collect();
let types = types?;
if types.is_none() {
return Err("comparison operands must have type".into());
}
let types = types.unwrap();
let boolean = PrimitiveType(BOOL_TYPE);
let left = &types[..types.len() - 1];
let right = &types[1..];
for ((a, b), op) in left.iter().zip(right.iter()).zip(ops.iter()) {
let fun = comparison_name(op).ok_or("unsupported comparison".to_string())?;
let ty = resolve_call(ctx, Some(a.clone()), fun, &[b.clone()])?;
if ty.is_none() || ty.unwrap().as_ref() != &boolean {
return Err("comparison result must be boolean".into());
}
}
Ok(Some(boolean.into()))
}
fn parse_call(
ctx: &GlobalContext,
sym_table: &SymTable,
args: &[Expression],
function: &Expression,
) -> ParserResult {
let types: Result<Option<Vec<_>>, _> =
args.iter().map(|v| parse_expr(ctx, sym_table, v)).collect();
let types = types?;
if types.is_none() {
return Err("function params must have type".into());
}
let (obj, fun) = match &function.node {
ExpressionType::Identifier { name } => (None, name),
ExpressionType::Attribute { value, name } => (
Some(parse_expr(ctx, sym_table, &value)?.ok_or("no value".to_string())?),
name,
),
_ => return Err("not supported".into()),
};
resolve_call(ctx, obj, fun.as_str(), &types.unwrap())
}
fn parse_subscript(
ctx: &GlobalContext,
sym_table: &SymTable,
a: &Expression,
b: &Expression,
) -> ParserResult {
let a = parse_expr(ctx, sym_table, a)?.ok_or("no value".to_string())?;
let t = if let ParametricType(LIST_TYPE, ls) = a.as_ref() {
ls[0].clone()
} else {
return Err("subscript is not supported for types other than list".into());
};
match &b.node {
ExpressionType::Slice { elements } => {
let types: Result<Option<Vec<_>>, _> = elements
.iter()
.map(|v| parse_expr(ctx, sym_table, v))
.collect();
let types = types?.ok_or("slice must have type".to_string())?;
let int32 = PrimitiveType(INT32_TYPE);
if types.iter().all(|v| v.as_ref() == &int32) {
Ok(Some(a))
} else {
Err("slice must be int32 type".into())
}
}
_ => {
let b = parse_expr(ctx, sym_table, b)?.ok_or("no value".to_string())?;
if b.as_ref() == &PrimitiveType(INT32_TYPE) {
Ok(Some(t))
} else {
Err("index must be either slice or int32".into())
}
}
}
}
fn parse_if_expr(
ctx: &GlobalContext,
sym_table: &SymTable,
test: &Expression,
body: &Expression,
orelse: &Expression,
) -> ParserResult {
let test = parse_expr(ctx, sym_table, test)?.ok_or("no value".to_string())?;
if test.as_ref() != &PrimitiveType(BOOL_TYPE) {
return Err("test should be bool".into());
}
let body = parse_expr(ctx, sym_table, body)?.ok_or("no value".to_string())?;
let orelse = parse_expr(ctx, sym_table, orelse)?.ok_or("no value".to_string())?;
if body.as_ref() == orelse.as_ref() {
Ok(Some(body))
} else {
Err("divergent type".into())
}
}
fn parse_simple_binding<'a: 'b, 'b>(
sym_table: &mut SymTable<'b>,
name: &'a Expression,
ty: Rc<Type>,
) -> Result<(), String> {
match &name.node {
ExpressionType::Identifier { name } => {
if name == "_" {
Ok(())
} else if sym_table.get(name.as_str()).is_some() {
Err("duplicated naming".into())
} else {
sym_table.insert(name.as_str(), ty);
Ok(())
}
}
ExpressionType::Tuple { elements } => {
if let ParametricType(TUPLE_TYPE, ls) = ty.as_ref() {
if elements.len() == ls.len() {
for (a, b) in elements.iter().zip(ls.iter()) {
parse_simple_binding(sym_table, a, b.clone())?;
}
Ok(())
} else {
Err("different length".into())
}
} else {
Err("not supported".into())
}
}
_ => Err("not supported".into()),
}
}
fn parse_list_comprehension(
ctx: &GlobalContext,
sym_table: &SymTable,
element: &Expression,
comprehension: &Comprehension,
) -> ParserResult {
if comprehension.is_async {
return Err("async is not supported".into());
}
// TODO: it may be more efficient to use multi-level table
// but it would better done in a whole program level
let iter = parse_expr(ctx, sym_table, &comprehension.iter)?.ok_or("no value".to_string())?;
if let ParametricType(LIST_TYPE, ls) = iter.as_ref() {
let mut local_sym = sym_table.clone();
parse_simple_binding(&mut local_sym, &comprehension.target, ls[0].clone())?;
let boolean = PrimitiveType(BOOL_TYPE);
for test in comprehension.ifs.iter() {
let result =
parse_expr(ctx, &local_sym, test)?.ok_or("no value in test".to_string())?;
if result.as_ref() != &boolean {
return Err("test must be bool".into());
}
}
parse_expr(ctx, &local_sym, element)
} else {
Err("iteration is supported for list only".into())
}
}

591
nac3core/src/inference.rs Normal file
View File

@ -0,0 +1,591 @@
use super::typedef::{Type::*, *};
use std::collections::HashMap;
use std::rc::Rc;
fn find_subst(
ctx: &GlobalContext,
valuation: &Option<(VariableId, Rc<Type>)>,
sub: &mut HashMap<VariableId, Rc<Type>>,
mut a: Rc<Type>,
mut b: Rc<Type>,
) -> Result<(), String> {
// TODO: fix error messages later
if let TypeVariable(id) = a.as_ref() {
if let Some((assumption_id, t)) = valuation {
if assumption_id == id {
a = t.clone();
}
}
}
let mut substituted = false;
if let TypeVariable(id) = b.as_ref() {
if let Some(c) = sub.get(&id) {
b = c.clone();
substituted = true;
}
}
match (a.as_ref(), b.as_ref()) {
(BotType, _) => Ok(()),
(TypeVariable(id_a), TypeVariable(id_b)) => {
if substituted {
return if id_a == id_b {
Ok(())
} else {
Err("different variables".to_string())
};
}
let v_a = ctx.get_variable(*id_a);
let v_b = ctx.get_variable(*id_b);
if v_b.bound.len() > 0 {
if v_a.bound.len() == 0 {
return Err("unbounded a".to_string());
} else {
let diff: Vec<_> = v_a
.bound
.iter()
.filter(|x| !v_b.bound.contains(x))
.collect();
if diff.len() > 0 {
return Err("different domain".to_string());
}
}
}
sub.insert(*id_b, a.clone().into());
Ok(())
}
(TypeVariable(id_a), _) => {
let v_a = ctx.get_variable(*id_a);
if v_a.bound.len() == 1 && v_a.bound[0].as_ref() == b.as_ref() {
Ok(())
} else {
Err("different domain".to_string())
}
}
(_, TypeVariable(id_b)) => {
let v_b = ctx.get_variable(*id_b);
if v_b.bound.len() == 0 || v_b.bound.contains(&a) {
sub.insert(*id_b, a.clone().into());
Ok(())
} else {
Err("different domain".to_string())
}
}
(_, VirtualClassType(id_b)) => {
let mut parents;
match a.as_ref() {
ClassType(id_a) => {
parents = [*id_a].to_vec();
}
VirtualClassType(id_a) => {
parents = [*id_a].to_vec();
}
_ => {
return Err("cannot substitute non-class type into virtual class".to_string());
}
};
while !parents.is_empty() {
if *id_b == parents[0] {
return Ok(());
}
let c = ctx.get_class(parents.remove(0));
parents.extend_from_slice(&c.parents);
}
Err("not subtype".to_string())
}
(ParametricType(id_a, param_a), ParametricType(id_b, param_b)) => {
if id_a != id_b || param_a.len() != param_b.len() {
Err("different parametric types".to_string())
} else {
for (x, y) in param_a.iter().zip(param_b.iter()) {
find_subst(ctx, valuation, sub, x.clone(), y.clone())?;
}
Ok(())
}
}
(_, _) => {
if a == b {
Ok(())
} else {
Err("not equal".to_string())
}
}
}
}
fn resolve_call_rec(
ctx: &GlobalContext,
valuation: &Option<(VariableId, Rc<Type>)>,
obj: Option<Rc<Type>>,
func: &str,
args: &[Rc<Type>],
) -> Result<Option<Rc<Type>>, String> {
let mut subst = obj
.as_ref()
.map(|v| v.get_subst(ctx))
.unwrap_or(HashMap::new());
let fun = match &obj {
Some(obj) => {
let base = match obj.as_ref() {
TypeVariable(id) => {
let v = ctx.get_variable(*id);
if v.bound.len() == 0 {
return Err("unbounded type var".to_string());
}
let results: Result<Vec<_>, String> = v
.bound
.iter()
.map(|ins| {
resolve_call_rec(
ctx,
&Some((*id, ins.clone())),
Some(ins.clone()),
func,
args.clone(),
)
})
.collect();
let results = results?;
if results.iter().all(|v| v == &results[0]) {
return Ok(results[0].clone());
}
let mut results = results.iter().zip(v.bound.iter()).map(|(r, ins)| {
r.as_ref()
.map(|v| v.inv_subst(&[(ins.clone(), obj.clone().into())]))
});
let first = results.next().unwrap();
if results.all(|v| v == first) {
return Ok(first);
} else {
return Err("divergent type after substitution".to_string());
}
}
PrimitiveType(id) => &ctx.get_primitive(*id),
ClassType(id) | VirtualClassType(id) => &ctx.get_class(*id).base,
ParametricType(id, _) => &ctx.get_parametric(*id).base,
_ => return Err("not supported".to_string()),
};
base.methods.get(func)
}
None => ctx.get_fn(func),
}
.ok_or("no such function".to_string())?;
if args.len() != fun.args.len() {
return Err("incorrect parameter number".to_string());
}
for (a, b) in args.iter().zip(fun.args.iter()) {
find_subst(ctx, valuation, &mut subst, a.clone(), b.clone())?;
}
let result = fun.result.as_ref().map(|v| v.subst(&subst));
Ok(result.map(|result| {
if let SelfType = result {
obj.unwrap()
} else {
result.into()
}
}))
}
pub fn resolve_call(
ctx: &GlobalContext,
obj: Option<Rc<Type>>,
func: &str,
args: &[Rc<Type>],
) -> Result<Option<Rc<Type>>, String> {
resolve_call_rec(ctx, &None, obj, func, args)
}
#[cfg(test)]
mod tests {
use super::*;
use crate::primitives::*;
#[test]
fn test_simple_generic() {
let mut ctx = basic_ctx();
assert_eq!(
resolve_call(&ctx, None, "int32", &[PrimitiveType(FLOAT_TYPE).into()]),
Ok(Some(PrimitiveType(INT32_TYPE).into()))
);
assert_eq!(
resolve_call(&ctx, None, "int32", &[PrimitiveType(INT32_TYPE).into()],),
Ok(Some(PrimitiveType(INT32_TYPE).into()))
);
assert_eq!(
resolve_call(&ctx, None, "float", &[PrimitiveType(INT32_TYPE).into()]),
Ok(Some(PrimitiveType(FLOAT_TYPE).into()))
);
assert_eq!(
resolve_call(&ctx, None, "float", &[PrimitiveType(BOOL_TYPE).into()]),
Err("different domain".to_string())
);
assert_eq!(
resolve_call(&ctx, None, "float", &[]),
Err("incorrect parameter number".to_string())
);
let v1 = ctx.add_variable(VarDef {
name: "V1",
bound: vec![
PrimitiveType(INT32_TYPE).into(),
PrimitiveType(FLOAT_TYPE).into(),
],
});
assert_eq!(
resolve_call(&ctx, None, "float", &[TypeVariable(v1).into()]),
Ok(Some(PrimitiveType(FLOAT_TYPE).into()))
);
let v2 = ctx.add_variable(VarDef {
name: "V2",
bound: vec![
PrimitiveType(BOOL_TYPE).into(),
PrimitiveType(INT32_TYPE).into(),
PrimitiveType(FLOAT_TYPE).into(),
],
});
assert_eq!(
resolve_call(&ctx, None, "float", &[TypeVariable(v2).into()]),
Err("different domain".to_string())
);
}
#[test]
fn test_methods() {
let mut ctx = basic_ctx();
let v0 = Rc::new(TypeVariable(ctx.add_variable(VarDef {
name: "V0",
bound: vec![],
})));
let v1 = Rc::new(TypeVariable(ctx.add_variable(VarDef {
name: "V1",
bound: vec![
PrimitiveType(INT32_TYPE).into(),
PrimitiveType(FLOAT_TYPE).into(),
],
})));
let v2 = Rc::new(TypeVariable(ctx.add_variable(VarDef {
name: "V2",
bound: vec![
PrimitiveType(INT32_TYPE).into(),
PrimitiveType(FLOAT_TYPE).into(),
],
})));
let v3 = Rc::new(TypeVariable(ctx.add_variable(VarDef {
name: "V3",
bound: vec![
PrimitiveType(BOOL_TYPE).into(),
PrimitiveType(INT32_TYPE).into(),
PrimitiveType(FLOAT_TYPE).into(),
],
})));
let int32 = Rc::new(PrimitiveType(INT32_TYPE));
let int64 = Rc::new(PrimitiveType(INT64_TYPE));
// simple cases
assert_eq!(
resolve_call(&ctx, Some(int32.clone()), "__add__", &[int32.clone()]),
Ok(Some(int32.clone()))
);
assert_ne!(
resolve_call(&ctx, Some(int32.clone()), "__add__", &[int32.clone()]),
Ok(Some(int64.clone()))
);
assert_eq!(
resolve_call(&ctx, Some(int32.clone()), "__add__", &[int64.clone()]),
Err("not equal".to_string())
);
// with type variables
assert_eq!(
resolve_call(&ctx, Some(v1.clone()), "__add__", &[v1.clone()]),
Ok(Some(v1.clone()))
);
assert_eq!(
resolve_call(&ctx, Some(v0.clone()), "__add__", &[v2.clone()]),
Err("unbounded type var".to_string())
);
assert_eq!(
resolve_call(&ctx, Some(v1.clone()), "__add__", &[v0.clone()]),
Err("different domain".to_string())
);
assert_eq!(
resolve_call(&ctx, Some(v1.clone()), "__add__", &[v2.clone()]),
Err("different domain".to_string())
);
assert_eq!(
resolve_call(&ctx, Some(v1.clone()), "__add__", &[v3.clone()]),
Err("different domain".to_string())
);
assert_eq!(
resolve_call(&ctx, Some(v3.clone()), "__add__", &[v1.clone()]),
Err("no such function".to_string())
);
assert_eq!(
resolve_call(&ctx, Some(v3.clone()), "__add__", &[v3.clone()]),
Err("no such function".to_string())
);
}
#[test]
fn test_multi_generic() {
let mut ctx = basic_ctx();
let v0 = Rc::new(TypeVariable(ctx.add_variable(VarDef {
name: "V0",
bound: vec![],
})));
let v1 = Rc::new(TypeVariable(ctx.add_variable(VarDef {
name: "V1",
bound: vec![],
})));
let v2 = Rc::new(TypeVariable(ctx.add_variable(VarDef {
name: "V2",
bound: vec![],
})));
let v3 = Rc::new(TypeVariable(ctx.add_variable(VarDef {
name: "V3",
bound: vec![],
})));
ctx.add_fn(
"foo",
FnDef {
args: vec![v0.clone(), v0.clone(), v1.clone()],
result: Some(v0.clone()),
},
);
ctx.add_fn(
"foo1",
FnDef {
args: vec![
ParametricType(TUPLE_TYPE, vec![v0.clone(), v0.clone(), v1.clone()]).into(),
],
result: Some(v0.clone()),
},
);
assert_eq!(
resolve_call(&ctx, None, "foo", &[v2.clone(), v2.clone(), v2.clone()]),
Ok(Some(v2.clone()))
);
assert_eq!(
resolve_call(&ctx, None, "foo", &[v2.clone(), v2.clone(), v3.clone()]),
Ok(Some(v2.clone()))
);
assert_eq!(
resolve_call(&ctx, None, "foo", &[v2.clone(), v3.clone(), v3.clone()]),
Err("different variables".to_string())
);
assert_eq!(
resolve_call(
&ctx,
None,
"foo1",
&[ParametricType(TUPLE_TYPE, vec![v2.clone(), v2.clone(), v2.clone()]).into()]
),
Ok(Some(v2.clone()))
);
assert_eq!(
resolve_call(
&ctx,
None,
"foo1",
&[ParametricType(TUPLE_TYPE, vec![v2.clone(), v2.clone(), v3.clone()]).into()]
),
Ok(Some(v2.clone()))
);
assert_eq!(
resolve_call(
&ctx,
None,
"foo1",
&[ParametricType(TUPLE_TYPE, vec![v2.clone(), v3.clone(), v3.clone()]).into()]
),
Err("different variables".to_string())
);
}
#[test]
fn test_class_generics() {
let mut ctx = basic_ctx();
let list = ctx.get_parametric_mut(LIST_TYPE);
let t = Rc::new(TypeVariable(list.params[0]));
list.base.methods.insert(
"head",
FnDef {
args: vec![],
result: Some(t.clone()),
},
);
list.base.methods.insert(
"append",
FnDef {
args: vec![t.clone()],
result: None,
},
);
let v0 = Rc::new(TypeVariable(ctx.add_variable(VarDef {
name: "V0",
bound: vec![],
})));
let v1 = Rc::new(TypeVariable(ctx.add_variable(VarDef {
name: "V1",
bound: vec![],
})));
assert_eq!(
resolve_call(
&ctx,
Some(ParametricType(LIST_TYPE, vec![v0.clone()]).into()),
"head",
&[]
),
Ok(Some(v0.clone()))
);
assert_eq!(
resolve_call(
&ctx,
Some(ParametricType(LIST_TYPE, vec![v0.clone()]).into()),
"append",
&[v0.clone()]
),
Ok(None)
);
assert_eq!(
resolve_call(
&ctx,
Some(ParametricType(LIST_TYPE, vec![v0.clone()]).into()),
"append",
&[v1.clone()]
),
Err("different variables".to_string())
);
}
#[test]
fn test_virtual_class() {
let mut ctx = basic_ctx();
let foo = ctx.add_class(ClassDef {
base: TypeDef {
name: "Foo",
methods: HashMap::new(),
fields: HashMap::new(),
},
parents: vec![],
});
let foo1 = ctx.add_class(ClassDef {
base: TypeDef {
name: "Foo1",
methods: HashMap::new(),
fields: HashMap::new(),
},
parents: vec![foo],
});
let foo2 = ctx.add_class(ClassDef {
base: TypeDef {
name: "Foo2",
methods: HashMap::new(),
fields: HashMap::new(),
},
parents: vec![foo1],
});
let bar = ctx.add_class(ClassDef {
base: TypeDef {
name: "bar",
methods: HashMap::new(),
fields: HashMap::new(),
},
parents: vec![],
});
ctx.add_fn(
"foo",
FnDef {
args: vec![VirtualClassType(foo).into()],
result: None,
},
);
ctx.add_fn(
"foo1",
FnDef {
args: vec![VirtualClassType(foo1).into()],
result: None,
},
);
assert_eq!(
resolve_call(&ctx, None, "foo", &[ClassType(foo).into()]),
Ok(None)
);
assert_eq!(
resolve_call(&ctx, None, "foo", &[ClassType(foo1).into()]),
Ok(None)
);
assert_eq!(
resolve_call(&ctx, None, "foo", &[ClassType(foo2).into()]),
Ok(None)
);
assert_eq!(
resolve_call(&ctx, None, "foo", &[ClassType(bar).into()]),
Err("not subtype".to_string())
);
assert_eq!(
resolve_call(&ctx, None, "foo1", &[ClassType(foo1).into()]),
Ok(None)
);
assert_eq!(
resolve_call(&ctx, None, "foo1", &[ClassType(foo2).into()]),
Ok(None)
);
assert_eq!(
resolve_call(&ctx, None, "foo1", &[ClassType(foo).into()]),
Err("not subtype".to_string())
);
// virtual class substitution
assert_eq!(
resolve_call(&ctx, None, "foo", &[VirtualClassType(foo).into()]),
Ok(None)
);
assert_eq!(
resolve_call(&ctx, None, "foo", &[VirtualClassType(foo1).into()]),
Ok(None)
);
assert_eq!(
resolve_call(&ctx, None, "foo", &[VirtualClassType(foo2).into()]),
Ok(None)
);
assert_eq!(
resolve_call(&ctx, None, "foo", &[VirtualClassType(bar).into()]),
Err("not subtype".to_string())
);
}
}

View File

@ -1,28 +1,33 @@
extern crate num_bigint;
extern crate inkwell;
extern crate num_bigint;
extern crate rustpython_parser;
pub mod expression;
pub mod inference;
mod operators;
pub mod primitives;
pub mod typedef;
use std::collections::HashMap;
use std::error::Error;
use std::fmt;
use std::path::Path;
use std::collections::HashMap;
use num_traits::cast::ToPrimitive;
use rustpython_parser::ast;
use inkwell::OptimizationLevel;
use inkwell::basic_block;
use inkwell::builder::Builder;
use inkwell::context::Context;
use inkwell::module::Module;
use inkwell::passes;
use inkwell::targets::*;
use inkwell::types;
use inkwell::types::BasicType;
use inkwell::values;
use inkwell::{IntPredicate, FloatPredicate};
use inkwell::basic_block;
use inkwell::passes;
use inkwell::OptimizationLevel;
use inkwell::{FloatPredicate, IntPredicate};
#[derive(Debug)]
enum CompileErrorKind {
@ -32,26 +37,25 @@ enum CompileErrorKind {
IncompatibleTypes,
UnboundIdentifier,
BreakOutsideLoop,
Internal(&'static str)
Internal(&'static str),
}
impl fmt::Display for CompileErrorKind {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
CompileErrorKind::Unsupported(feature)
=> write!(f, "The following Python feature is not supported by NAC3: {}", feature),
CompileErrorKind::MissingTypeAnnotation
=> write!(f, "Missing type annotation"),
CompileErrorKind::UnknownTypeAnnotation
=> write!(f, "Unknown type annotation"),
CompileErrorKind::IncompatibleTypes
=> write!(f, "Incompatible types"),
CompileErrorKind::UnboundIdentifier
=> write!(f, "Unbound identifier"),
CompileErrorKind::BreakOutsideLoop
=> write!(f, "Break outside loop"),
CompileErrorKind::Internal(details)
=> write!(f, "Internal compiler error: {}", details),
CompileErrorKind::Unsupported(feature) => write!(
f,
"The following Python feature is not supported by NAC3: {}",
feature
),
CompileErrorKind::MissingTypeAnnotation => write!(f, "Missing type annotation"),
CompileErrorKind::UnknownTypeAnnotation => write!(f, "Unknown type annotation"),
CompileErrorKind::IncompatibleTypes => write!(f, "Incompatible types"),
CompileErrorKind::UnboundIdentifier => write!(f, "Unbound identifier"),
CompileErrorKind::BreakOutsideLoop => write!(f, "Break outside loop"),
CompileErrorKind::Internal(details) => {
write!(f, "Internal compiler error: {}", details)
}
}
}
}
@ -102,7 +106,9 @@ impl<'ctx> CodeGen<'ctx> {
module.add_function("output", fn_type, None);
CodeGen {
context, module, pass_manager,
context,
module,
pass_manager,
builder: context.create_builder(),
current_source_location: ast::Location::default(),
namespace: HashMap::new(),
@ -117,7 +123,7 @@ impl<'ctx> CodeGen<'ctx> {
fn compile_error(&self, kind: CompileErrorKind) -> CompileError {
CompileError {
location: self.current_source_location,
kind
kind,
}
}
@ -128,7 +134,7 @@ impl<'ctx> CodeGen<'ctx> {
"int64" => Ok(self.context.i64_type().into()),
"float32" => Ok(self.context.f32_type().into()),
"float64" => Ok(self.context.f64_type().into()),
_ => Err(self.compile_error(CompileErrorKind::UnknownTypeAnnotation))
_ => Err(self.compile_error(CompileErrorKind::UnknownTypeAnnotation)),
}
}
@ -142,37 +148,53 @@ impl<'ctx> CodeGen<'ctx> {
is_async: bool,
) -> CompileResult<values::FunctionValue<'ctx>> {
if is_async {
return Err(self.compile_error(CompileErrorKind::Unsupported("async functions")))
return Err(self.compile_error(CompileErrorKind::Unsupported("async functions")));
}
for decorator in decorator_list.iter() {
self.set_source_location(decorator.location);
if let ast::ExpressionType::Identifier { name } = &decorator.node {
if name != "kernel" && name != "portable" {
return Err(self.compile_error(CompileErrorKind::Unsupported("custom decorators")))
return Err(
self.compile_error(CompileErrorKind::Unsupported("custom decorators"))
);
}
} else {
return Err(self.compile_error(CompileErrorKind::Unsupported("decorator must be an identifier")))
return Err(self.compile_error(CompileErrorKind::Unsupported(
"decorator must be an identifier",
)));
}
}
let args_type = args.args.iter().map(|val| {
self.set_source_location(val.location);
if let Some(annotation) = &val.annotation {
if let ast::ExpressionType::Identifier { name } = &annotation.node {
Ok(self.get_basic_type(&name)?)
let args_type = args
.args
.iter()
.map(|val| {
self.set_source_location(val.location);
if let Some(annotation) = &val.annotation {
if let ast::ExpressionType::Identifier { name } = &annotation.node {
Ok(self.get_basic_type(&name)?)
} else {
Err(self.compile_error(CompileErrorKind::Unsupported(
"type annotation must be an identifier",
)))
}
} else {
Err(self.compile_error(CompileErrorKind::Unsupported("type annotation must be an identifier")))
Err(self.compile_error(CompileErrorKind::MissingTypeAnnotation))
}
} else {
Err(self.compile_error(CompileErrorKind::MissingTypeAnnotation))
}
}).collect::<CompileResult<Vec<types::BasicTypeEnum>>>()?;
})
.collect::<CompileResult<Vec<types::BasicTypeEnum>>>()?;
let return_type = if let Some(returns) = returns {
self.set_source_location(returns.location);
if let ast::ExpressionType::Identifier { name } = &returns.node {
if name == "None" { None } else { Some(self.get_basic_type(name)?) }
if name == "None" {
None
} else {
Some(self.get_basic_type(name)?)
}
} else {
return Err(self.compile_error(CompileErrorKind::Unsupported("type annotation must be an identifier")))
return Err(self.compile_error(CompileErrorKind::Unsupported(
"type annotation must be an identifier",
)));
}
} else {
None
@ -180,7 +202,7 @@ impl<'ctx> CodeGen<'ctx> {
let fn_type = match return_type {
Some(ty) => ty.fn_type(&args_type, false),
None => self.context.void_type().fn_type(&args_type, false)
None => self.context.void_type().fn_type(&args_type, false),
};
let function = self.module.add_function(name, fn_type, None);
@ -201,57 +223,74 @@ impl<'ctx> CodeGen<'ctx> {
fn compile_expression(
&mut self,
expression: &ast::Expression
expression: &ast::Expression,
) -> CompileResult<values::BasicValueEnum<'ctx>> {
self.set_source_location(expression.location);
match &expression.node {
ast::ExpressionType::True => Ok(self.context.bool_type().const_int(1, false).into()),
ast::ExpressionType::False => Ok(self.context.bool_type().const_int(0, false).into()),
ast::ExpressionType::Number { value: ast::Number::Integer { value } } => {
ast::ExpressionType::Number {
value: ast::Number::Integer { value },
} => {
let mut bits = value.bits();
if value.sign() == num_bigint::Sign::Minus {
bits += 1;
}
match bits {
0..=32 => Ok(self.context.i32_type().const_int(value.to_i32().unwrap() as _, true).into()),
33..=64 => Ok(self.context.i64_type().const_int(value.to_i64().unwrap() as _, true).into()),
_ => Err(self.compile_error(CompileErrorKind::Unsupported("integers larger than 64 bits")))
}
},
ast::ExpressionType::Number { value: ast::Number::Float { value } } => {
Ok(self.context.f64_type().const_float(*value).into())
},
ast::ExpressionType::Identifier { name } => {
match self.namespace.get(name) {
Some(value) => Ok(self.builder.build_load(*value, name).into()),
None => Err(self.compile_error(CompileErrorKind::UnboundIdentifier))
0..=32 => Ok(self
.context
.i32_type()
.const_int(value.to_i32().unwrap() as _, true)
.into()),
33..=64 => Ok(self
.context
.i64_type()
.const_int(value.to_i64().unwrap() as _, true)
.into()),
_ => Err(self.compile_error(CompileErrorKind::Unsupported(
"integers larger than 64 bits",
))),
}
}
ast::ExpressionType::Number {
value: ast::Number::Float { value },
} => Ok(self.context.f64_type().const_float(*value).into()),
ast::ExpressionType::Identifier { name } => match self.namespace.get(name) {
Some(value) => Ok(self.builder.build_load(*value, name).into()),
None => Err(self.compile_error(CompileErrorKind::UnboundIdentifier)),
},
ast::ExpressionType::Unop { op, a } => {
let a = self.compile_expression(&a)?;
match (op, a) {
(ast::UnaryOperator::Pos, values::BasicValueEnum::IntValue(a))
=> Ok(a.into()),
(ast::UnaryOperator::Pos, values::BasicValueEnum::FloatValue(a))
=> Ok(a.into()),
(ast::UnaryOperator::Neg, values::BasicValueEnum::IntValue(a))
=> Ok(self.builder.build_int_neg(a, "tmpneg").into()),
(ast::UnaryOperator::Neg, values::BasicValueEnum::FloatValue(a))
=> Ok(self.builder.build_float_neg(a, "tmpneg").into()),
(ast::UnaryOperator::Inv, values::BasicValueEnum::IntValue(a))
=> Ok(self.builder.build_not(a, "tmpnot").into()),
(ast::UnaryOperator::Pos, values::BasicValueEnum::IntValue(a)) => Ok(a.into()),
(ast::UnaryOperator::Pos, values::BasicValueEnum::FloatValue(a)) => {
Ok(a.into())
}
(ast::UnaryOperator::Neg, values::BasicValueEnum::IntValue(a)) => {
Ok(self.builder.build_int_neg(a, "tmpneg").into())
}
(ast::UnaryOperator::Neg, values::BasicValueEnum::FloatValue(a)) => {
Ok(self.builder.build_float_neg(a, "tmpneg").into())
}
(ast::UnaryOperator::Inv, values::BasicValueEnum::IntValue(a)) => {
Ok(self.builder.build_not(a, "tmpnot").into())
}
(ast::UnaryOperator::Not, values::BasicValueEnum::IntValue(a)) => {
// boolean "not"
if a.get_type().get_bit_width() != 1 {
Err(self.compile_error(CompileErrorKind::Unsupported("unimplemented unary operation")))
Err(self.compile_error(CompileErrorKind::Unsupported(
"unimplemented unary operation",
)))
} else {
Ok(self.builder.build_not(a, "tmpnot").into())
}
},
_ => Err(self.compile_error(CompileErrorKind::Unsupported("unimplemented unary operation"))),
}
_ => Err(self.compile_error(CompileErrorKind::Unsupported(
"unimplemented unary operation",
))),
}
},
}
ast::ExpressionType::Binop { a, op, b } => {
let a = self.compile_expression(&a)?;
let b = self.compile_expression(&b)?;
@ -260,27 +299,53 @@ impl<'ctx> CodeGen<'ctx> {
}
use ast::Operator::*;
match (op, a, b) {
(Add, values::BasicValueEnum::IntValue(a), values::BasicValueEnum::IntValue(b))
=> Ok(self.builder.build_int_add(a, b, "tmpadd").into()),
(Sub, values::BasicValueEnum::IntValue(a), values::BasicValueEnum::IntValue(b))
=> Ok(self.builder.build_int_sub(a, b, "tmpsub").into()),
(Mult, values::BasicValueEnum::IntValue(a), values::BasicValueEnum::IntValue(b))
=> Ok(self.builder.build_int_mul(a, b, "tmpmul").into()),
(
Add,
values::BasicValueEnum::IntValue(a),
values::BasicValueEnum::IntValue(b),
) => Ok(self.builder.build_int_add(a, b, "tmpadd").into()),
(
Sub,
values::BasicValueEnum::IntValue(a),
values::BasicValueEnum::IntValue(b),
) => Ok(self.builder.build_int_sub(a, b, "tmpsub").into()),
(
Mult,
values::BasicValueEnum::IntValue(a),
values::BasicValueEnum::IntValue(b),
) => Ok(self.builder.build_int_mul(a, b, "tmpmul").into()),
(Add, values::BasicValueEnum::FloatValue(a), values::BasicValueEnum::FloatValue(b))
=> Ok(self.builder.build_float_add(a, b, "tmpadd").into()),
(Sub, values::BasicValueEnum::FloatValue(a), values::BasicValueEnum::FloatValue(b))
=> Ok(self.builder.build_float_sub(a, b, "tmpsub").into()),
(Mult, values::BasicValueEnum::FloatValue(a), values::BasicValueEnum::FloatValue(b))
=> Ok(self.builder.build_float_mul(a, b, "tmpmul").into()),
(
Add,
values::BasicValueEnum::FloatValue(a),
values::BasicValueEnum::FloatValue(b),
) => Ok(self.builder.build_float_add(a, b, "tmpadd").into()),
(
Sub,
values::BasicValueEnum::FloatValue(a),
values::BasicValueEnum::FloatValue(b),
) => Ok(self.builder.build_float_sub(a, b, "tmpsub").into()),
(
Mult,
values::BasicValueEnum::FloatValue(a),
values::BasicValueEnum::FloatValue(b),
) => Ok(self.builder.build_float_mul(a, b, "tmpmul").into()),
(Div, values::BasicValueEnum::FloatValue(a), values::BasicValueEnum::FloatValue(b))
=> Ok(self.builder.build_float_div(a, b, "tmpdiv").into()),
(FloorDiv, values::BasicValueEnum::IntValue(a), values::BasicValueEnum::IntValue(b))
=> Ok(self.builder.build_int_signed_div(a, b, "tmpdiv").into()),
_ => Err(self.compile_error(CompileErrorKind::Unsupported("unimplemented binary operation"))),
(
Div,
values::BasicValueEnum::FloatValue(a),
values::BasicValueEnum::FloatValue(b),
) => Ok(self.builder.build_float_div(a, b, "tmpdiv").into()),
(
FloorDiv,
values::BasicValueEnum::IntValue(a),
values::BasicValueEnum::IntValue(b),
) => Ok(self.builder.build_int_signed_div(a, b, "tmpdiv").into()),
_ => Err(self.compile_error(CompileErrorKind::Unsupported(
"unimplemented binary operation",
))),
}
},
}
ast::ExpressionType::Compare { vals, ops } => {
let mut vals = vals.iter();
let mut ops = ops.iter();
@ -293,43 +358,93 @@ impl<'ctx> CodeGen<'ctx> {
if a.get_type() != b.get_type() {
return Err(self.compile_error(CompileErrorKind::IncompatibleTypes));
}
let this_result = match (a, b) {
(values::BasicValueEnum::IntValue(a), values::BasicValueEnum::IntValue(b)) => {
match op {
ast::Comparison::Equal
=> self.builder.build_int_compare(IntPredicate::EQ, a, b, "tmpeq"),
ast::Comparison::NotEqual
=> self.builder.build_int_compare(IntPredicate::NE, a, b, "tmpne"),
ast::Comparison::Less
=> self.builder.build_int_compare(IntPredicate::SLT, a, b, "tmpslt"),
ast::Comparison::LessOrEqual
=> self.builder.build_int_compare(IntPredicate::SLE, a, b, "tmpsle"),
ast::Comparison::Greater
=> self.builder.build_int_compare(IntPredicate::SGT, a, b, "tmpsgt"),
ast::Comparison::GreaterOrEqual
=> self.builder.build_int_compare(IntPredicate::SGE, a, b, "tmpsge"),
_ => return Err(self.compile_error(CompileErrorKind::Unsupported("special comparison"))),
let this_result =
match (a, b) {
(
values::BasicValueEnum::IntValue(a),
values::BasicValueEnum::IntValue(b),
) => {
match op {
ast::Comparison::Equal => self.builder.build_int_compare(
IntPredicate::EQ,
a,
b,
"tmpeq",
),
ast::Comparison::NotEqual => self
.builder
.build_int_compare(IntPredicate::NE, a, b, "tmpne"),
ast::Comparison::Less => self.builder.build_int_compare(
IntPredicate::SLT,
a,
b,
"tmpslt",
),
ast::Comparison::LessOrEqual => self
.builder
.build_int_compare(IntPredicate::SLE, a, b, "tmpsle"),
ast::Comparison::Greater => self.builder.build_int_compare(
IntPredicate::SGT,
a,
b,
"tmpsgt",
),
ast::Comparison::GreaterOrEqual => self
.builder
.build_int_compare(IntPredicate::SGE, a, b, "tmpsge"),
_ => {
return Err(self.compile_error(
CompileErrorKind::Unsupported("special comparison"),
))
}
}
}
},
(values::BasicValueEnum::FloatValue(a), values::BasicValueEnum::FloatValue(b)) => {
match op {
ast::Comparison::Equal
=> self.builder.build_float_compare(FloatPredicate::OEQ, a, b, "tmpoeq"),
ast::Comparison::NotEqual
=> self.builder.build_float_compare(FloatPredicate::UNE, a, b, "tmpune"),
ast::Comparison::Less
=> self.builder.build_float_compare(FloatPredicate::OLT, a, b, "tmpolt"),
ast::Comparison::LessOrEqual
=> self.builder.build_float_compare(FloatPredicate::OLE, a, b, "tmpole"),
ast::Comparison::Greater
=> self.builder.build_float_compare(FloatPredicate::OGT, a, b, "tmpogt"),
ast::Comparison::GreaterOrEqual
=> self.builder.build_float_compare(FloatPredicate::OGE, a, b, "tmpoge"),
_ => return Err(self.compile_error(CompileErrorKind::Unsupported("special comparison"))),
(
values::BasicValueEnum::FloatValue(a),
values::BasicValueEnum::FloatValue(b),
) => match op {
ast::Comparison::Equal => self.builder.build_float_compare(
FloatPredicate::OEQ,
a,
b,
"tmpoeq",
),
ast::Comparison::NotEqual => self.builder.build_float_compare(
FloatPredicate::UNE,
a,
b,
"tmpune",
),
ast::Comparison::Less => self.builder.build_float_compare(
FloatPredicate::OLT,
a,
b,
"tmpolt",
),
ast::Comparison::LessOrEqual => self
.builder
.build_float_compare(FloatPredicate::OLE, a, b, "tmpole"),
ast::Comparison::Greater => self.builder.build_float_compare(
FloatPredicate::OGT,
a,
b,
"tmpogt",
),
ast::Comparison::GreaterOrEqual => self
.builder
.build_float_compare(FloatPredicate::OGE, a, b, "tmpoge"),
_ => {
return Err(self.compile_error(
CompileErrorKind::Unsupported("special comparison"),
))
}
},
_ => {
return Err(self.compile_error(CompileErrorKind::Unsupported(
"comparison of non-numerical types",
)))
}
},
_ => return Err(self.compile_error(CompileErrorKind::Unsupported("comparison of non-numerical types"))),
};
};
match result {
Some(last) => {
result = Some(self.builder.build_and(last, this_result, "tmpand"));
@ -340,15 +455,23 @@ impl<'ctx> CodeGen<'ctx> {
}
a = b;
} else {
return Ok(result.unwrap().into())
return Ok(result.unwrap().into());
}
}
},
ast::ExpressionType::Call { function, args, keywords } => {
}
ast::ExpressionType::Call {
function,
args,
keywords,
} => {
if !keywords.is_empty() {
return Err(self.compile_error(CompileErrorKind::Unsupported("keyword arguments")))
return Err(
self.compile_error(CompileErrorKind::Unsupported("keyword arguments"))
);
}
let args = args.iter().map(|val| self.compile_expression(val))
let args = args
.iter()
.map(|val| self.compile_expression(val))
.collect::<CompileResult<Vec<values::BasicValueEnum>>>()?;
self.set_source_location(expression.location);
if let ast::ExpressionType::Identifier { name } = &function.node {
@ -356,67 +479,99 @@ impl<'ctx> CodeGen<'ctx> {
("int32", values::BasicValueEnum::IntValue(a)) => {
let nbits = a.get_type().get_bit_width();
if nbits < 32 {
Ok(self.builder.build_int_s_extend(a, self.context.i32_type(), "tmpsext").into())
Ok(self
.builder
.build_int_s_extend(a, self.context.i32_type(), "tmpsext")
.into())
} else if nbits > 32 {
Ok(self.builder.build_int_truncate(a, self.context.i32_type(), "tmptrunc").into())
Ok(self
.builder
.build_int_truncate(a, self.context.i32_type(), "tmptrunc")
.into())
} else {
Ok(a.into())
}
},
}
("int64", values::BasicValueEnum::IntValue(a)) => {
let nbits = a.get_type().get_bit_width();
if nbits < 64 {
Ok(self.builder.build_int_s_extend(a, self.context.i64_type(), "tmpsext").into())
Ok(self
.builder
.build_int_s_extend(a, self.context.i64_type(), "tmpsext")
.into())
} else {
Ok(a.into())
}
},
("int32", values::BasicValueEnum::FloatValue(a)) => {
Ok(self.builder.build_float_to_signed_int(a, self.context.i32_type(), "tmpfptosi").into())
},
("int64", values::BasicValueEnum::FloatValue(a)) => {
Ok(self.builder.build_float_to_signed_int(a, self.context.i64_type(), "tmpfptosi").into())
},
("float32", values::BasicValueEnum::IntValue(a)) => {
Ok(self.builder.build_signed_int_to_float(a, self.context.f32_type(), "tmpsitofp").into())
},
("float64", values::BasicValueEnum::IntValue(a)) => {
Ok(self.builder.build_signed_int_to_float(a, self.context.f64_type(), "tmpsitofp").into())
},
}
("int32", values::BasicValueEnum::FloatValue(a)) => Ok(self
.builder
.build_float_to_signed_int(a, self.context.i32_type(), "tmpfptosi")
.into()),
("int64", values::BasicValueEnum::FloatValue(a)) => Ok(self
.builder
.build_float_to_signed_int(a, self.context.i64_type(), "tmpfptosi")
.into()),
("float32", values::BasicValueEnum::IntValue(a)) => Ok(self
.builder
.build_signed_int_to_float(a, self.context.f32_type(), "tmpsitofp")
.into()),
("float64", values::BasicValueEnum::IntValue(a)) => Ok(self
.builder
.build_signed_int_to_float(a, self.context.f64_type(), "tmpsitofp")
.into()),
("float32", values::BasicValueEnum::FloatValue(a)) => {
if a.get_type() == self.context.f64_type() {
Ok(self.builder.build_float_trunc(a, self.context.f32_type(), "tmptrunc").into())
Ok(self
.builder
.build_float_trunc(a, self.context.f32_type(), "tmptrunc")
.into())
} else {
Ok(a.into())
}
},
}
("float64", values::BasicValueEnum::FloatValue(a)) => {
if a.get_type() == self.context.f32_type() {
Ok(self.builder.build_float_ext(a, self.context.f64_type(), "tmpext").into())
Ok(self
.builder
.build_float_ext(a, self.context.f64_type(), "tmpext")
.into())
} else {
Ok(a.into())
}
},
}
("output", values::BasicValueEnum::IntValue(a)) => {
let fn_value = self.module.get_function("output").unwrap();
Ok(self.builder.build_call(fn_value, &[a.into()], "call")
.try_as_basic_value().left().unwrap())
},
_ => Err(self.compile_error(CompileErrorKind::Unsupported("unrecognized call")))
Ok(self
.builder
.build_call(fn_value, &[a.into()], "call")
.try_as_basic_value()
.left()
.unwrap())
}
_ => {
Err(self
.compile_error(CompileErrorKind::Unsupported("unrecognized call")))
}
}
} else {
return Err(self.compile_error(CompileErrorKind::Unsupported("function must be an identifier")))
return Err(self.compile_error(CompileErrorKind::Unsupported(
"function must be an identifier",
)));
}
},
_ => return Err(self.compile_error(CompileErrorKind::Unsupported("unimplemented expression"))),
}
_ => {
return Err(
self.compile_error(CompileErrorKind::Unsupported("unimplemented expression"))
)
}
}
}
fn compile_statement(
&mut self,
statement: &ast::Statement,
return_type: Option<types::BasicTypeEnum>
return_type: Option<types::BasicTypeEnum>,
) -> CompileResult<()> {
self.set_source_location(statement.location);
@ -428,29 +583,43 @@ impl<'ctx> CodeGen<'ctx> {
self.set_source_location(target.location);
if let ast::ExpressionType::Identifier { name } = &target.node {
let builder = &self.builder;
let target = self.namespace.entry(name.clone()).or_insert_with(
|| builder.build_alloca(value.get_type(), name));
if target.get_type() != value.get_type().ptr_type(inkwell::AddressSpace::Generic) {
let target = self
.namespace
.entry(name.clone())
.or_insert_with(|| builder.build_alloca(value.get_type(), name));
if target.get_type()
!= value.get_type().ptr_type(inkwell::AddressSpace::Generic)
{
return Err(self.compile_error(CompileErrorKind::IncompatibleTypes));
}
builder.build_store(*target, value);
} else {
return Err(self.compile_error(CompileErrorKind::Unsupported("assignment target must be an identifier")))
return Err(self.compile_error(CompileErrorKind::Unsupported(
"assignment target must be an identifier",
)));
}
}
},
Expression { expression } => { self.compile_expression(expression)?; },
}
Expression { expression } => {
self.compile_expression(expression)?;
}
If { test, body, orelse } => {
let test = self.compile_expression(test)?;
if test.get_type() != self.context.bool_type().into() {
return Err(self.compile_error(CompileErrorKind::IncompatibleTypes));
}
let parent = self.builder.get_insert_block().unwrap().get_parent().unwrap();
let parent = self
.builder
.get_insert_block()
.unwrap()
.get_parent()
.unwrap();
let then_bb = self.context.append_basic_block(parent, "then");
let else_bb = self.context.append_basic_block(parent, "else");
let cont_bb = self.context.append_basic_block(parent, "ifcont");
self.builder.build_conditional_branch(test.into_int_value(), then_bb, else_bb);
self.builder
.build_conditional_branch(test.into_int_value(), then_bb, else_bb);
self.builder.position_at_end(then_bb);
self.compile_suite(body, return_type)?;
@ -462,9 +631,14 @@ impl<'ctx> CodeGen<'ctx> {
}
self.builder.build_unconditional_branch(cont_bb);
self.builder.position_at_end(cont_bb);
},
}
While { test, body, orelse } => {
let parent = self.builder.get_insert_block().unwrap().get_parent().unwrap();
let parent = self
.builder
.get_insert_block()
.unwrap()
.get_parent()
.unwrap();
let test_bb = self.context.append_basic_block(parent, "test");
self.builder.build_unconditional_branch(test_bb);
self.builder.position_at_end(test_bb);
@ -476,7 +650,8 @@ impl<'ctx> CodeGen<'ctx> {
let then_bb = self.context.append_basic_block(parent, "then");
let else_bb = self.context.append_basic_block(parent, "else");
let cont_bb = self.context.append_basic_block(parent, "ifcont");
self.builder.build_conditional_branch(test.into_int_value(), then_bb, else_bb);
self.builder
.build_conditional_branch(test.into_int_value(), then_bb, else_bb);
self.break_bb = Some(cont_bb);
@ -492,11 +667,16 @@ impl<'ctx> CodeGen<'ctx> {
self.builder.position_at_end(cont_bb);
self.break_bb = None;
},
}
Break => {
if let Some(bb) = self.break_bb {
self.builder.build_unconditional_branch(bb);
let parent = self.builder.get_insert_block().unwrap().get_parent().unwrap();
let parent = self
.builder
.get_insert_block()
.unwrap()
.get_parent()
.unwrap();
let unreachable_bb = self.context.append_basic_block(parent, "unreachable");
self.builder.position_at_end(unreachable_bb);
} else {
@ -513,13 +693,13 @@ impl<'ctx> CodeGen<'ctx> {
} else {
return Err(self.compile_error(CompileErrorKind::IncompatibleTypes));
}
},
}
Return { value: None } => {
if !return_type.is_none() {
return Err(self.compile_error(CompileErrorKind::IncompatibleTypes));
}
self.builder.build_return(None);
},
}
Pass => (),
_ => return Err(self.compile_error(CompileErrorKind::Unsupported("special statement"))),
}
@ -529,7 +709,7 @@ impl<'ctx> CodeGen<'ctx> {
fn compile_suite(
&mut self,
suite: &ast::Suite,
return_type: Option<types::BasicTypeEnum>
return_type: Option<types::BasicTypeEnum>,
) -> CompileResult<()> {
for statement in suite.iter() {
self.compile_statement(statement, return_type)?;
@ -540,18 +720,22 @@ impl<'ctx> CodeGen<'ctx> {
pub fn compile_toplevel(&mut self, statement: &ast::Statement) -> CompileResult<()> {
self.set_source_location(statement.location);
if let ast::StatementType::FunctionDef {
is_async,
name,
args,
body,
decorator_list,
returns,
} = &statement.node {
let function = self.compile_function_def(name, args, body, decorator_list, returns, *is_async)?;
is_async,
name,
args,
body,
decorator_list,
returns,
} = &statement.node
{
let function =
self.compile_function_def(name, args, body, decorator_list, returns, *is_async)?;
self.pass_manager.run_on(&function);
Ok(())
} else {
Err(self.compile_error(CompileErrorKind::Internal("top-level is not a function definition")))
Err(self.compile_error(CompileErrorKind::Internal(
"top-level is not a function definition",
)))
}
}
@ -562,8 +746,8 @@ impl<'ctx> CodeGen<'ctx> {
pub fn output(&self, filename: &str) {
//let triple = TargetTriple::create("riscv32-none-linux-gnu");
let triple = TargetMachine::get_default_triple();
let target = Target::from_triple(&triple)
.expect("couldn't create target from target triple");
let target =
Target::from_triple(&triple).expect("couldn't create target from target triple");
let target_machine = target
.create_target_machine(

58
nac3core/src/operators.rs Normal file
View File

@ -0,0 +1,58 @@
use rustpython_parser::ast::{Comparison, Operator, UnaryOperator};
pub fn binop_name(op: &Operator) -> &'static str {
match op {
Operator::Add => "__add__",
Operator::Sub => "__sub__",
Operator::Div => "__truediv__",
Operator::Mod => "__mod__",
Operator::Mult => "__mul__",
Operator::Pow => "__pow__",
Operator::BitOr => "__or__",
Operator::BitXor => "__xor__",
Operator::BitAnd => "__and__",
Operator::LShift => "__lshift__",
Operator::RShift => "__rshift__",
Operator::FloorDiv => "__floordiv__",
Operator::MatMult => "__matmul__",
}
}
pub fn binop_assign_name(op: &Operator) -> &'static str {
match op {
Operator::Add => "__iadd__",
Operator::Sub => "__isub__",
Operator::Div => "__itruediv__",
Operator::Mod => "__imod__",
Operator::Mult => "__imul__",
Operator::Pow => "__ipow__",
Operator::BitOr => "__ior__",
Operator::BitXor => "__ixor__",
Operator::BitAnd => "__iand__",
Operator::LShift => "__ilshift__",
Operator::RShift => "__irshift__",
Operator::FloorDiv => "__ifloordiv__",
Operator::MatMult => "__imatmul__",
}
}
pub fn unaryop_name(op: &UnaryOperator) -> &'static str {
match op {
UnaryOperator::Pos => "__pos__",
UnaryOperator::Neg => "__neg__",
UnaryOperator::Not => "__not__",
UnaryOperator::Inv => "__inv__",
}
}
pub fn comparison_name(op: &Comparison) -> Option<&'static str> {
match op {
Comparison::Less => Some("__lt__"),
Comparison::LessOrEqual => Some("__le__"),
Comparison::Greater => Some("__gt__"),
Comparison::GreaterOrEqual => Some("__ge__"),
Comparison::Equal => Some("__eq__"),
Comparison::NotEqual => Some("__ne__"),
_ => None,
}
}

178
nac3core/src/primitives.rs Normal file
View File

@ -0,0 +1,178 @@
use super::typedef::{Type::*, *};
use std::collections::HashMap;
use std::rc::Rc;
pub const TUPLE_TYPE: ParamId = ParamId(0);
pub const LIST_TYPE: ParamId = ParamId(1);
pub const BOOL_TYPE: PrimitiveId = PrimitiveId(0);
pub const INT32_TYPE: PrimitiveId = PrimitiveId(1);
pub const INT64_TYPE: PrimitiveId = PrimitiveId(2);
pub const FLOAT_TYPE: PrimitiveId = PrimitiveId(3);
fn impl_math(def: &mut TypeDef, ty: &Rc<Type>) {
let result = Some(ty.clone());
let fun = FnDef {
args: vec![ty.clone()],
result,
};
def.methods.insert("__add__", fun.clone());
def.methods.insert("__sub__", fun.clone());
def.methods.insert("__mul__", fun.clone());
def.methods.insert("__neg__", fun.clone());
def.methods.insert(
"__truediv__",
FnDef {
args: vec![ty.clone()],
result: Some(PrimitiveType(FLOAT_TYPE).into()),
},
);
def.methods.insert("__floordiv__", fun.clone());
def.methods.insert("__mod__", fun.clone());
def.methods.insert("__pow__", fun.clone());
}
fn impl_bits(def: &mut TypeDef, ty: &Rc<Type>) {
let result = Some(ty.clone());
let fun = FnDef {
args: vec![PrimitiveType(INT32_TYPE).into()],
result,
};
def.methods.insert("__lshift__", fun.clone());
def.methods.insert("__rshift__", fun.clone());
def.methods.insert(
"__xor__",
FnDef {
args: vec![ty.clone()],
result: Some(ty.clone()),
},
);
}
fn impl_eq(def: &mut TypeDef, ty: &Rc<Type>) {
let fun = FnDef {
args: vec![ty.clone()],
result: Some(PrimitiveType(BOOL_TYPE).into()),
};
def.methods.insert("__eq__", fun.clone());
def.methods.insert("__ne__", fun.clone());
}
fn impl_order(def: &mut TypeDef, ty: &Rc<Type>) {
let fun = FnDef {
args: vec![ty.clone()],
result: Some(PrimitiveType(BOOL_TYPE).into()),
};
def.methods.insert("__lt__", fun.clone());
def.methods.insert("__gt__", fun.clone());
def.methods.insert("__le__", fun.clone());
def.methods.insert("__ge__", fun.clone());
}
pub fn basic_ctx() -> GlobalContext<'static> {
let primitives = [
TypeDef {
name: "bool",
fields: HashMap::new(),
methods: HashMap::new(),
},
TypeDef {
name: "int32",
fields: HashMap::new(),
methods: HashMap::new(),
},
TypeDef {
name: "int64",
fields: HashMap::new(),
methods: HashMap::new(),
},
TypeDef {
name: "float",
fields: HashMap::new(),
methods: HashMap::new(),
},
]
.to_vec();
let mut ctx = GlobalContext::new(primitives);
let b_def = ctx.get_primitive_mut(BOOL_TYPE);
let b = PrimitiveType(BOOL_TYPE).into();
impl_eq(b_def, &b);
let int32_def = ctx.get_primitive_mut(INT32_TYPE);
let int32 = PrimitiveType(INT32_TYPE).into();
impl_math(int32_def, &int32);
impl_bits(int32_def, &int32);
impl_order(int32_def, &int32);
impl_eq(int32_def, &int32);
let int64_def = ctx.get_primitive_mut(INT64_TYPE);
let int64 = PrimitiveType(INT64_TYPE).into();
impl_math(int64_def, &int64);
impl_bits(int64_def, &int64);
impl_order(int64_def, &int64);
impl_eq(int64_def, &int64);
let float_def = ctx.get_primitive_mut(FLOAT_TYPE);
let float = PrimitiveType(FLOAT_TYPE).into();
impl_math(float_def, &float);
impl_order(float_def, &float);
impl_eq(float_def, &float);
let t = ctx.add_variable_private(VarDef {
name: "T",
bound: vec![],
});
ctx.add_parametric(ParametricDef {
base: TypeDef {
name: "tuple",
fields: HashMap::new(),
methods: HashMap::new(),
},
// we have nothing for tuple, so no param def
params: vec![],
});
ctx.add_parametric(ParametricDef {
base: TypeDef {
name: "list",
fields: HashMap::new(),
methods: HashMap::new(),
},
params: vec![t],
});
let i = ctx.add_variable_private(VarDef {
name: "I",
bound: vec![
PrimitiveType(INT32_TYPE).into(),
PrimitiveType(INT64_TYPE).into(),
PrimitiveType(FLOAT_TYPE).into(),
],
});
let args = vec![TypeVariable(i).into()];
ctx.add_fn(
"int32",
FnDef {
args: args.clone(),
result: Some(PrimitiveType(INT32_TYPE).into()),
},
);
ctx.add_fn(
"int64",
FnDef {
args: args.clone(),
result: Some(PrimitiveType(INT64_TYPE).into()),
},
);
ctx.add_fn(
"float",
FnDef {
args: args.clone(),
result: Some(PrimitiveType(FLOAT_TYPE).into()),
},
);
ctx
}

223
nac3core/src/typedef.rs Normal file
View File

@ -0,0 +1,223 @@
use std::collections::HashMap;
use std::rc::Rc;
#[derive(PartialEq, Eq, Copy, Clone, Hash, Debug)]
pub struct PrimitiveId(pub(crate) usize);
#[derive(PartialEq, Eq, Copy, Clone, Hash, Debug)]
pub struct ClassId(pub(crate) usize);
#[derive(PartialEq, Eq, Copy, Clone, Hash, Debug)]
pub struct ParamId(pub(crate) usize);
#[derive(PartialEq, Eq, Copy, Clone, Hash, Debug)]
pub struct VariableId(pub(crate) usize);
#[derive(PartialEq, Eq, Clone, Hash, Debug)]
pub enum Type {
BotType,
SelfType,
PrimitiveType(PrimitiveId),
ClassType(ClassId),
VirtualClassType(ClassId),
ParametricType(ParamId, Vec<Rc<Type>>),
TypeVariable(VariableId),
}
#[derive(Clone)]
pub struct FnDef {
// we assume methods first argument to be SelfType,
// so the first argument is not contained here
pub args: Vec<Rc<Type>>,
pub result: Option<Rc<Type>>,
}
#[derive(Clone)]
pub struct TypeDef<'a> {
pub name: &'a str,
pub fields: HashMap<&'a str, Rc<Type>>,
pub methods: HashMap<&'a str, FnDef>,
}
#[derive(Clone)]
pub struct ClassDef<'a> {
pub base: TypeDef<'a>,
pub parents: Vec<ClassId>,
}
#[derive(Clone)]
pub struct ParametricDef<'a> {
pub base: TypeDef<'a>,
pub params: Vec<VariableId>,
}
#[derive(Clone)]
pub struct VarDef<'a> {
pub name: &'a str,
pub bound: Vec<Rc<Type>>,
}
pub struct GlobalContext<'a> {
primitive_defs: Vec<TypeDef<'a>>,
class_defs: Vec<ClassDef<'a>>,
parametric_defs: Vec<ParametricDef<'a>>,
var_defs: Vec<VarDef<'a>>,
sym_table: HashMap<&'a str, Type>,
fn_table: HashMap<&'a str, FnDef>,
}
impl<'a> GlobalContext<'a> {
pub fn new(primitives: Vec<TypeDef<'a>>) -> GlobalContext {
let mut sym_table = HashMap::new();
for (i, t) in primitives.iter().enumerate() {
sym_table.insert(t.name, Type::PrimitiveType(PrimitiveId(i)));
}
return GlobalContext {
primitive_defs: primitives,
class_defs: Vec::new(),
parametric_defs: Vec::new(),
var_defs: Vec::new(),
fn_table: HashMap::new(),
sym_table,
};
}
pub fn add_class(&mut self, def: ClassDef<'a>) -> ClassId {
self.sym_table.insert(
def.base.name,
Type::ClassType(ClassId(self.class_defs.len())),
);
self.class_defs.push(def);
ClassId(self.class_defs.len() - 1)
}
pub fn add_parametric(&mut self, def: ParametricDef<'a>) -> ParamId {
let params = def
.params
.iter()
.map(|&v| Rc::new(Type::TypeVariable(v)))
.collect();
self.sym_table.insert(
def.base.name,
Type::ParametricType(ParamId(self.parametric_defs.len()), params),
);
self.parametric_defs.push(def);
ParamId(self.parametric_defs.len() - 1)
}
pub fn add_variable(&mut self, def: VarDef<'a>) -> VariableId {
self.sym_table.insert(
def.name,
Type::TypeVariable(VariableId(self.var_defs.len())),
);
self.add_variable_private(def)
}
pub fn add_variable_private(&mut self, def: VarDef<'a>) -> VariableId {
self.var_defs.push(def);
VariableId(self.var_defs.len() - 1)
}
pub fn add_fn(&mut self, name: &'a str, def: FnDef) {
self.fn_table.insert(name, def);
}
pub fn get_fn(&self, name: &str) -> Option<&FnDef> {
self.fn_table.get(name)
}
pub fn get_primitive_mut(&mut self, id: PrimitiveId) -> &mut TypeDef<'a> {
self.primitive_defs.get_mut(id.0).unwrap()
}
pub fn get_primitive(&self, id: PrimitiveId) -> &TypeDef {
self.primitive_defs.get(id.0).unwrap()
}
pub fn get_class_mut(&mut self, id: ClassId) -> &mut ClassDef<'a> {
self.class_defs.get_mut(id.0).unwrap()
}
pub fn get_class(&self, id: ClassId) -> &ClassDef {
self.class_defs.get(id.0).unwrap()
}
pub fn get_parametric_mut(&mut self, id: ParamId) -> &mut ParametricDef<'a> {
self.parametric_defs.get_mut(id.0).unwrap()
}
pub fn get_parametric(&self, id: ParamId) -> &ParametricDef {
self.parametric_defs.get(id.0).unwrap()
}
pub fn get_variable_mut(&mut self, id: VariableId) -> &mut VarDef<'a> {
self.var_defs.get_mut(id.0).unwrap()
}
pub fn get_variable(&self, id: VariableId) -> &VarDef {
self.var_defs.get(id.0).unwrap()
}
pub fn get_type(&self, name: &str) -> Option<Type> {
// TODO: change this to handle import
self.sym_table.get(name).map(|v| v.clone())
}
}
impl Type {
pub fn subst(&self, map: &HashMap<VariableId, Rc<Type>>) -> Type {
match self {
Type::TypeVariable(id) => map.get(id).map(|v| v.as_ref()).unwrap_or(self).clone(),
Type::ParametricType(id, params) => Type::ParametricType(
*id,
params
.iter()
.map(|v| v.as_ref().subst(map).into())
.collect(),
),
_ => self.clone(),
}
}
pub fn inv_subst(&self, map: &[(Rc<Type>, Rc<Type>)]) -> Rc<Type> {
for (from, to) in map.iter() {
if self == from.as_ref() {
return to.clone();
}
}
match self {
Type::ParametricType(id, params) => Type::ParametricType(
*id,
params
.iter()
.map(|v| v.as_ref().inv_subst(map).into())
.collect(),
),
_ => self.clone(),
}
.into()
}
pub fn get_subst(&self, ctx: &GlobalContext) -> HashMap<VariableId, Rc<Type>> {
match self {
Type::ParametricType(id, params) => {
let vars = &ctx.get_parametric(*id).params;
vars.iter()
.zip(params)
.map(|(v, p)| (*v, p.as_ref().clone().into()))
.collect()
}
// if this proves to be slow, we can use option type
_ => HashMap::new(),
}
}
pub fn get_base<'b: 'a, 'a>(&'a self, ctx: &'b GlobalContext) -> Option<&'b TypeDef> {
match self {
Type::PrimitiveType(id) => Some(ctx.get_primitive(*id)),
Type::ClassType(id) | Type::VirtualClassType(id) => Some(&ctx.get_class(*id).base),
Type::ParametricType(id, _) => Some(&ctx.get_parametric(*id).base),
_ => None,
}
}
}