nac3/nac3core/src/expression.rs

378 lines
13 KiB
Rust

use crate::inference::resolve_call;
use crate::operators::*;
use crate::primitives::*;
use crate::typedef::{GlobalContext, Type, Type::*};
use rustpython_parser::ast::{
Comparison, Comprehension, ComprehensionKind, Expression, ExpressionType, Operator,
UnaryOperator,
};
use std::collections::HashMap;
use std::convert::TryInto;
use std::rc::Rc;
type SymTable<'a> = HashMap<&'a str, Rc<Type>>;
type ParserResult = Result<Option<Rc<Type>>, String>;
pub fn parse_expr(ctx: &GlobalContext, sym_table: &SymTable, expr: &Expression) -> ParserResult {
match &expr.node {
ExpressionType::Number { value } => parse_constant(ctx, sym_table, value),
ExpressionType::Identifier { name } => parse_identifier(ctx, sym_table, name),
ExpressionType::List { elements } => parse_list(ctx, sym_table, elements),
ExpressionType::Tuple { elements } => parse_tuple(ctx, sym_table, elements),
ExpressionType::Attribute { value, name } => parse_attribute(ctx, sym_table, value, name),
ExpressionType::BoolOp { values, .. } => parse_bool_ops(ctx, sym_table, values),
ExpressionType::Binop { a, b, op } => parse_bin_ops(ctx, sym_table, op, a, b),
ExpressionType::Unop { op, a } => parse_unary_ops(ctx, sym_table, op, a),
ExpressionType::Compare { vals, ops } => parse_compare(ctx, sym_table, vals, ops),
ExpressionType::Call {
args,
function,
keywords,
} => {
if keywords.len() > 0 {
Err("keyword is not supported".into())
} else {
parse_call(ctx, sym_table, &args, &function)
}
}
ExpressionType::Subscript { a, b } => parse_subscript(ctx, sym_table, a, b),
ExpressionType::IfExpression { test, body, orelse } => {
parse_if_expr(ctx, sym_table, &test, &body, orelse)
}
ExpressionType::Comprehension { kind, generators } => match kind.as_ref() {
ComprehensionKind::List { element } => {
if generators.len() == 1 {
parse_list_comprehension(ctx, sym_table, element, &generators[0])
} else {
Err("only 1 generator statement is supported".into())
}
}
_ => Err("only list comprehension is supported".into()),
},
ExpressionType::True | ExpressionType::False => Ok(Some(PrimitiveType(BOOL_TYPE).into())),
_ => Err("not supported".into()),
}
}
fn parse_constant(
_: &GlobalContext,
_: &SymTable,
value: &rustpython_parser::ast::Number,
) -> ParserResult {
use rustpython_parser::ast::Number;
match value {
Number::Integer { value } => {
let int32: Result<i32, _> = value.try_into();
if int32.is_ok() {
Ok(Some(PrimitiveType(INT32_TYPE).into()))
} else {
let int64: Result<i64, _> = value.try_into();
if int64.is_ok() {
Ok(Some(PrimitiveType(INT64_TYPE).into()))
} else {
Err("integer out of range".into())
}
}
}
Number::Float { .. } => Ok(Some(PrimitiveType(FLOAT_TYPE).into())),
_ => Err("not supported".into()),
}
}
fn parse_identifier(_: &GlobalContext, sym_table: &SymTable, name: &str) -> ParserResult {
match sym_table.get(name) {
Some(v) => Ok(Some(v.clone())),
None => Err("unbounded variable".into()),
}
}
fn parse_list(ctx: &GlobalContext, sym_table: &SymTable, elements: &[Expression]) -> ParserResult {
if elements.len() == 0 {
return Ok(Some(ParametricType(LIST_TYPE, vec![BotType.into()]).into()));
}
let mut types = elements.iter().map(|v| parse_expr(&ctx, sym_table, v));
let head = types.next().unwrap()?;
if head.is_none() {
return Err("list elements must have some type".into());
}
for v in types {
if v? != head {
return Err("inhomogeneous list is not allowed".into());
}
}
Ok(Some(ParametricType(LIST_TYPE, vec![head.unwrap()]).into()))
}
fn parse_tuple(ctx: &GlobalContext, sym_table: &SymTable, elements: &[Expression]) -> ParserResult {
let types: Result<Option<Vec<_>>, String> = elements
.iter()
.map(|v| parse_expr(&ctx, sym_table, v))
.collect();
if let Some(t) = types? {
Ok(Some(ParametricType(TUPLE_TYPE, t).into()))
} else {
Err("tuple elements must have some type".into())
}
}
fn parse_attribute(
ctx: &GlobalContext,
sym_table: &SymTable,
value: &Expression,
name: &String,
) -> ParserResult {
let value = parse_expr(ctx, sym_table, value)?.ok_or("no value".to_string())?;
if let TypeVariable(id) = value.as_ref() {
let v = ctx.get_variable(*id);
if v.bound.len() == 0 {
return Err("no fields on unbounded type variable".into());
}
let ty = v.bound[0]
.get_base(ctx)
.and_then(|v| v.fields.get(name.as_str()));
if ty.is_none() {
return Err("unknown field".into());
}
for x in v.bound[1..].iter() {
let ty1 = x.get_base(ctx).and_then(|v| v.fields.get(name.as_str()));
if ty1 != ty {
return Err("unknown field (type mismatch between variants)".into());
}
}
return Ok(Some(ty.unwrap().clone()));
}
match value.get_base(ctx) {
Some(b) => match b.fields.get(name.as_str()) {
Some(t) => Ok(Some(t.clone())),
None => Err("no such field".into()),
},
None => Err("this object has no fields".into()),
}
}
fn parse_bool_ops(
ctx: &GlobalContext,
sym_table: &SymTable,
values: &[Expression],
) -> ParserResult {
assert_eq!(values.len(), 2);
let left = parse_expr(ctx, sym_table, &values[0])?.ok_or("no value".to_string())?;
let right = parse_expr(ctx, sym_table, &values[1])?.ok_or("no value".to_string())?;
let b = PrimitiveType(BOOL_TYPE);
if left.as_ref() == &b && right.as_ref() == &b {
Ok(Some(b.into()))
} else {
Err("bool operands must be bool".into())
}
}
fn parse_bin_ops(
ctx: &GlobalContext,
sym_table: &SymTable,
op: &Operator,
left: &Expression,
right: &Expression,
) -> ParserResult {
let left = parse_expr(ctx, sym_table, left)?.ok_or("no value".to_string())?;
let right = parse_expr(ctx, sym_table, right)?.ok_or("no value".to_string())?;
let fun = binop_name(op);
resolve_call(ctx, Some(left), fun, &[right])
}
fn parse_unary_ops(
ctx: &GlobalContext,
sym_table: &SymTable,
op: &UnaryOperator,
obj: &Expression,
) -> ParserResult {
let ty = parse_expr(ctx, sym_table, obj)?.ok_or("no value".to_string())?;
if let UnaryOperator::Not = op {
if ty.as_ref() == &PrimitiveType(BOOL_TYPE) {
Ok(Some(ty))
} else {
Err("logical not must be applied to bool".into())
}
} else {
resolve_call(ctx, Some(ty), unaryop_name(op), &[])
}
}
fn parse_compare(
ctx: &GlobalContext,
sym_table: &SymTable,
vals: &[Expression],
ops: &[Comparison],
) -> ParserResult {
let types: Result<Option<Vec<_>>, _> =
vals.iter().map(|v| parse_expr(ctx, sym_table, v)).collect();
let types = types?;
if types.is_none() {
return Err("comparison operands must have type".into());
}
let types = types.unwrap();
let boolean = PrimitiveType(BOOL_TYPE);
let left = &types[..types.len() - 1];
let right = &types[1..];
for ((a, b), op) in left.iter().zip(right.iter()).zip(ops.iter()) {
let fun = comparison_name(op).ok_or("unsupported comparison".to_string())?;
let ty = resolve_call(ctx, Some(a.clone()), fun, &[b.clone()])?;
if ty.is_none() || ty.unwrap().as_ref() != &boolean {
return Err("comparison result must be boolean".into());
}
}
Ok(Some(boolean.into()))
}
fn parse_call(
ctx: &GlobalContext,
sym_table: &SymTable,
args: &[Expression],
function: &Expression,
) -> ParserResult {
let types: Result<Option<Vec<_>>, _> =
args.iter().map(|v| parse_expr(ctx, sym_table, v)).collect();
let types = types?;
if types.is_none() {
return Err("function params must have type".into());
}
let (obj, fun) = match &function.node {
ExpressionType::Identifier { name } => (None, name),
ExpressionType::Attribute { value, name } => (
Some(parse_expr(ctx, sym_table, &value)?.ok_or("no value".to_string())?),
name,
),
_ => return Err("not supported".into()),
};
resolve_call(ctx, obj, fun.as_str(), &types.unwrap())
}
fn parse_subscript(
ctx: &GlobalContext,
sym_table: &SymTable,
a: &Expression,
b: &Expression,
) -> ParserResult {
let a = parse_expr(ctx, sym_table, a)?.ok_or("no value".to_string())?;
let t = if let ParametricType(LIST_TYPE, ls) = a.as_ref() {
ls[0].clone()
} else {
return Err("subscript is not supported for types other than list".into());
};
match &b.node {
ExpressionType::Slice { elements } => {
let types: Result<Option<Vec<_>>, _> = elements
.iter()
.map(|v| parse_expr(ctx, sym_table, v))
.collect();
let types = types?.ok_or("slice must have type".to_string())?;
let int32 = PrimitiveType(INT32_TYPE);
if types.iter().all(|v| v.as_ref() == &int32) {
Ok(Some(a))
} else {
Err("slice must be int32 type".into())
}
}
_ => {
let b = parse_expr(ctx, sym_table, b)?.ok_or("no value".to_string())?;
if b.as_ref() == &PrimitiveType(INT32_TYPE) {
Ok(Some(t))
} else {
Err("index must be either slice or int32".into())
}
}
}
}
fn parse_if_expr(
ctx: &GlobalContext,
sym_table: &SymTable,
test: &Expression,
body: &Expression,
orelse: &Expression,
) -> ParserResult {
let test = parse_expr(ctx, sym_table, test)?.ok_or("no value".to_string())?;
if test.as_ref() != &PrimitiveType(BOOL_TYPE) {
return Err("test should be bool".into());
}
let body = parse_expr(ctx, sym_table, body)?.ok_or("no value".to_string())?;
let orelse = parse_expr(ctx, sym_table, orelse)?.ok_or("no value".to_string())?;
if body.as_ref() == orelse.as_ref() {
Ok(Some(body))
} else {
Err("divergent type".into())
}
}
fn parse_simple_binding<'a: 'b, 'b>(
sym_table: &mut SymTable<'b>,
name: &'a Expression,
ty: Rc<Type>,
) -> Result<(), String> {
match &name.node {
ExpressionType::Identifier { name } => {
if name == "_" {
Ok(())
} else if sym_table.get(name.as_str()).is_some() {
Err("duplicated naming".into())
} else {
sym_table.insert(name.as_str(), ty);
Ok(())
}
}
ExpressionType::Tuple { elements } => {
if let ParametricType(TUPLE_TYPE, ls) = ty.as_ref() {
if elements.len() == ls.len() {
for (a, b) in elements.iter().zip(ls.iter()) {
parse_simple_binding(sym_table, a, b.clone())?;
}
Ok(())
} else {
Err("different length".into())
}
} else {
Err("not supported".into())
}
}
_ => Err("not supported".into()),
}
}
fn parse_list_comprehension(
ctx: &GlobalContext,
sym_table: &SymTable,
element: &Expression,
comprehension: &Comprehension,
) -> ParserResult {
if comprehension.is_async {
return Err("async is not supported".into());
}
// TODO: it may be more efficient to use multi-level table
// but it would better done in a whole program level
let iter = parse_expr(ctx, sym_table, &comprehension.iter)?.ok_or("no value".to_string())?;
if let ParametricType(LIST_TYPE, ls) = iter.as_ref() {
let mut local_sym = sym_table.clone();
parse_simple_binding(&mut local_sym, &comprehension.target, ls[0].clone())?;
let boolean = PrimitiveType(BOOL_TYPE);
for test in comprehension.ifs.iter() {
let result =
parse_expr(ctx, &local_sym, test)?.ok_or("no value in test".to_string())?;
if result.as_ref() != &boolean {
return Err("test must be bool".into());
}
}
parse_expr(ctx, &local_sym, element)
} else {
Err("iteration is supported for list only".into())
}
}