nac3/nac3core/src/codegen/mod.rs
pca006132 bf067e2481 nac3artiq: implement attribute writeback
We will only writeback attributes that are supported by the current RPC
implementation: primitives, tuple and lists of lists... of primitives.
2022-03-26 20:13:58 +08:00

607 lines
22 KiB
Rust

use crate::{
symbol_resolver::{StaticValue, SymbolResolver},
toplevel::{TopLevelContext, TopLevelDef},
typecheck::{
type_inferencer::{CodeLocation, PrimitiveStore},
typedef::{CallId, FuncArg, Type, TypeEnum, Unifier},
},
};
use crossbeam::channel::{unbounded, Receiver, Sender};
use inkwell::{
AddressSpace,
OptimizationLevel,
attributes::{Attribute, AttributeLoc},
basic_block::BasicBlock,
builder::Builder,
context::Context,
module::Module,
passes::{PassManager, PassManagerBuilder},
types::{AnyType, BasicType, BasicTypeEnum},
values::{BasicValueEnum, FunctionValue, PhiValue, PointerValue}
};
use itertools::Itertools;
use nac3parser::ast::{Stmt, StrRef};
use parking_lot::{Condvar, Mutex};
use std::collections::{HashMap, HashSet};
use std::sync::{
atomic::{AtomicBool, Ordering},
Arc,
};
use std::thread;
pub mod concrete_type;
pub mod expr;
mod generator;
pub mod irrt;
pub mod stmt;
#[cfg(test)]
mod test;
use concrete_type::{ConcreteType, ConcreteTypeEnum, ConcreteTypeStore};
pub use generator::{CodeGenerator, DefaultCodeGenerator};
#[derive(Default)]
pub struct StaticValueStore {
pub lookup: HashMap<Vec<(usize, u64)>, usize>,
pub store: Vec<HashMap<usize, Arc<dyn StaticValue + Send + Sync>>>,
}
pub type VarValue<'ctx> = (PointerValue<'ctx>, Option<Arc<dyn StaticValue + Send + Sync>>, i64);
pub struct CodeGenContext<'ctx, 'a> {
pub ctx: &'ctx Context,
pub builder: Builder<'ctx>,
pub module: Module<'ctx>,
pub top_level: &'a TopLevelContext,
pub unifier: Unifier,
pub resolver: Arc<dyn SymbolResolver + Send + Sync>,
pub static_value_store: Arc<Mutex<StaticValueStore>>,
pub var_assignment: HashMap<StrRef, VarValue<'ctx>>,
pub type_cache: HashMap<Type, BasicTypeEnum<'ctx>>,
pub primitives: PrimitiveStore,
pub calls: Arc<HashMap<CodeLocation, CallId>>,
pub registry: &'a WorkerRegistry,
// const string cache
pub const_strings: HashMap<String, BasicValueEnum<'ctx>>,
// stores the alloca for variables
pub init_bb: BasicBlock<'ctx>,
// the first one is the test_bb, and the second one is bb after the loop
pub loop_target: Option<(BasicBlock<'ctx>, BasicBlock<'ctx>)>,
// unwind target bb
pub unwind_target: Option<BasicBlock<'ctx>>,
// return target bb, just emit ret if no such target
pub return_target: Option<BasicBlock<'ctx>>,
pub return_buffer: Option<PointerValue<'ctx>>,
// outer catch clauses
pub outer_catch_clauses:
Option<(Vec<Option<BasicValueEnum<'ctx>>>, BasicBlock<'ctx>, PhiValue<'ctx>)>,
pub need_sret: bool,
}
impl<'ctx, 'a> CodeGenContext<'ctx, 'a> {
pub fn is_terminated(&self) -> bool {
self.builder.get_insert_block().unwrap().get_terminator().is_some()
}
}
type Fp = Box<dyn Fn(&Module) + Send + Sync>;
pub struct WithCall {
fp: Fp,
}
impl WithCall {
pub fn new(fp: Fp) -> WithCall {
WithCall { fp }
}
pub fn run<'ctx>(&self, m: &Module<'ctx>) {
(self.fp)(m)
}
}
pub struct WorkerRegistry {
sender: Arc<Sender<Option<CodeGenTask>>>,
receiver: Arc<Receiver<Option<CodeGenTask>>>,
panicked: AtomicBool,
task_count: Mutex<usize>,
thread_count: usize,
wait_condvar: Condvar,
top_level_ctx: Arc<TopLevelContext>,
static_value_store: Arc<Mutex<StaticValueStore>>,
}
impl WorkerRegistry {
pub fn create_workers<G: CodeGenerator + Send + 'static>(
generators: Vec<Box<G>>,
top_level_ctx: Arc<TopLevelContext>,
f: Arc<WithCall>,
) -> (Arc<WorkerRegistry>, Vec<thread::JoinHandle<()>>) {
let (sender, receiver) = unbounded();
let task_count = Mutex::new(0);
let wait_condvar = Condvar::new();
// init: 0 to be empty
let mut static_value_store: StaticValueStore = Default::default();
static_value_store.lookup.insert(Default::default(), 0);
static_value_store.store.push(Default::default());
let registry = Arc::new(WorkerRegistry {
sender: Arc::new(sender),
receiver: Arc::new(receiver),
thread_count: generators.len(),
panicked: AtomicBool::new(false),
static_value_store: Arc::new(Mutex::new(static_value_store)),
task_count,
wait_condvar,
top_level_ctx,
});
let mut handles = Vec::new();
for mut generator in generators.into_iter() {
let registry = registry.clone();
let registry2 = registry.clone();
let f = f.clone();
let handle = thread::spawn(move || {
registry.worker_thread(generator.as_mut(), f);
});
let handle = thread::spawn(move || {
if let Err(e) = handle.join() {
if let Some(e) = e.downcast_ref::<&'static str>() {
eprintln!("Got an error: {}", e);
} else {
eprintln!("Got an unknown error: {:?}", e);
}
registry2.panicked.store(true, Ordering::SeqCst);
registry2.wait_condvar.notify_all();
}
});
handles.push(handle);
}
(registry, handles)
}
pub fn wait_tasks_complete(&self, handles: Vec<thread::JoinHandle<()>>) {
{
let mut count = self.task_count.lock();
while *count != 0 {
if self.panicked.load(Ordering::SeqCst) {
break;
}
self.wait_condvar.wait(&mut count);
}
}
for _ in 0..self.thread_count {
self.sender.send(None).unwrap();
}
{
let mut count = self.task_count.lock();
while *count != self.thread_count {
if self.panicked.load(Ordering::SeqCst) {
break;
}
self.wait_condvar.wait(&mut count);
}
}
for handle in handles {
handle.join().unwrap();
}
if self.panicked.load(Ordering::SeqCst) {
panic!("tasks panicked");
}
}
pub fn add_task(&self, task: CodeGenTask) {
*self.task_count.lock() += 1;
self.sender.send(Some(task)).unwrap();
}
fn worker_thread<G: CodeGenerator>(&self, generator: &mut G, f: Arc<WithCall>) {
let context = Context::create();
let mut builder = context.create_builder();
let module = context.create_module(generator.get_name());
let pass_builder = PassManagerBuilder::create();
pass_builder.set_optimization_level(OptimizationLevel::Default);
let passes = PassManager::create(&module);
pass_builder.populate_function_pass_manager(&passes);
let mut errors = HashSet::new();
while let Some(task) = self.receiver.recv().unwrap() {
let tmp_module = context.create_module("tmp");
match gen_func(&context, generator, self, builder, tmp_module, task) {
Ok(result) => {
builder = result.0;
passes.run_on(&result.2);
module.link_in_module(result.1).unwrap();
}
Err((old_builder, e)) => {
builder = old_builder;
errors.insert(e);
}
}
*self.task_count.lock() -= 1;
self.wait_condvar.notify_all();
}
if !errors.is_empty() {
panic!("Codegen error: {}", errors.into_iter().sorted().join("\n----------\n"));
}
let result = module.verify();
if let Err(err) = result {
println!("{}", module.print_to_string().to_str().unwrap());
println!("{}", err);
panic!()
}
f.run(&module);
let mut lock = self.task_count.lock();
*lock += 1;
self.wait_condvar.notify_all();
}
}
pub struct CodeGenTask {
pub subst: Vec<(Type, ConcreteType)>,
pub store: ConcreteTypeStore,
pub symbol_name: String,
pub signature: ConcreteType,
pub body: Arc<Vec<Stmt<Option<Type>>>>,
pub calls: Arc<HashMap<CodeLocation, CallId>>,
pub unifier_index: usize,
pub resolver: Arc<dyn SymbolResolver + Send + Sync>,
pub id: usize,
}
fn get_llvm_type<'ctx>(
ctx: &'ctx Context,
generator: &mut dyn CodeGenerator,
unifier: &mut Unifier,
top_level: &TopLevelContext,
type_cache: &mut HashMap<Type, BasicTypeEnum<'ctx>>,
primitives: &PrimitiveStore,
ty: Type,
) -> BasicTypeEnum<'ctx> {
use TypeEnum::*;
// we assume the type cache should already contain primitive types,
// and they should be passed by value instead of passing as pointer.
type_cache.get(&unifier.get_representative(ty)).cloned().unwrap_or_else(|| {
let ty_enum = unifier.get_ty(ty);
let result = match &*ty_enum {
TObj { obj_id, fields, .. } => {
// check to avoid treating primitives other than Option as classes
if obj_id.0 <= 10 {
match (unifier.get_ty(ty).as_ref(), unifier.get_ty(primitives.option).as_ref())
{
(
TypeEnum::TObj { obj_id, params, .. },
TypeEnum::TObj { obj_id: opt_id, .. },
) if *obj_id == *opt_id => {
return get_llvm_type(
ctx,
generator,
unifier,
top_level,
type_cache,
primitives,
*params.iter().next().unwrap().1,
)
.ptr_type(AddressSpace::Generic)
.into();
}
_ => unreachable!("must be option type"),
}
}
// a struct with fields in the order of declaration
let top_level_defs = top_level.definitions.read();
let definition = top_level_defs.get(obj_id.0).unwrap();
let ty = if let TopLevelDef::Class { name, fields: fields_list, .. } =
&*definition.read()
{
let struct_type = ctx.opaque_struct_type(&name.to_string());
type_cache.insert(unifier.get_representative(ty), struct_type.ptr_type(AddressSpace::Generic).into());
let fields = fields_list
.iter()
.map(|f| {
get_llvm_type(
ctx,
generator,
unifier,
top_level,
type_cache,
primitives,
fields[&f.0].0,
)
})
.collect_vec();
struct_type.set_body(&fields, false);
struct_type.ptr_type(AddressSpace::Generic).into()
} else {
unreachable!()
};
return ty;
}
TTuple { ty } => {
// a struct with fields in the order present in the tuple
let fields = ty
.iter()
.map(|ty| get_llvm_type(ctx, generator, unifier, top_level, type_cache, primitives, *ty))
.collect_vec();
ctx.struct_type(&fields, false).into()
}
TList { ty } => {
// a struct with an integer and a pointer to an array
let element_type =
get_llvm_type(ctx, generator, unifier, top_level, type_cache, primitives, *ty);
let fields = [
element_type.ptr_type(AddressSpace::Generic).into(),
generator.get_size_type(ctx).into(),
];
ctx.struct_type(&fields, false).ptr_type(AddressSpace::Generic).into()
}
TVirtual { .. } => unimplemented!(),
_ => unreachable!("{}", ty_enum.get_type_name()),
};
type_cache.insert(unifier.get_representative(ty), result);
result
})
}
fn need_sret<'ctx>(ctx: &'ctx Context, ty: BasicTypeEnum<'ctx>) -> bool {
fn need_sret_impl<'ctx>(ctx: &'ctx Context, ty: BasicTypeEnum<'ctx>, maybe_large: bool) -> bool {
match ty {
BasicTypeEnum::IntType(_) | BasicTypeEnum::PointerType(_) => false,
BasicTypeEnum::FloatType(_) if maybe_large => false,
BasicTypeEnum::StructType(ty) if maybe_large && ty.count_fields() <= 2 =>
ty.get_field_types().iter().any(|ty| need_sret_impl(ctx, *ty, false)),
_ => true,
}
}
need_sret_impl(ctx, ty, true)
}
pub fn gen_func_impl<'ctx, G: CodeGenerator, F: FnOnce(&mut G, &mut CodeGenContext) -> Result<(), String>> (
context: &'ctx Context,
generator: &mut G,
registry: &WorkerRegistry,
builder: Builder<'ctx>,
module: Module<'ctx>,
task: CodeGenTask,
codegen_function: F
) -> Result<(Builder<'ctx>, Module<'ctx>, FunctionValue<'ctx>), (Builder<'ctx>, String)> {
let top_level_ctx = registry.top_level_ctx.clone();
let static_value_store = registry.static_value_store.clone();
let (mut unifier, primitives) = {
let (unifier, primitives) = &top_level_ctx.unifiers.read()[task.unifier_index];
(Unifier::from_shared_unifier(unifier), *primitives)
};
unifier.top_level = Some(top_level_ctx.clone());
let mut cache = HashMap::new();
for (a, b) in task.subst.iter() {
// this should be unification between variables and concrete types
// and should not cause any problem...
let b = task.store.to_unifier_type(&mut unifier, &primitives, *b, &mut cache);
unifier
.unify(*a, b)
.or_else(|err| {
if matches!(&*unifier.get_ty(*a), TypeEnum::TRigidVar { .. }) {
unifier.replace_rigid_var(*a, b);
Ok(())
} else {
Err(err)
}
})
.unwrap()
}
// rebuild primitive store with unique representatives
let primitives = PrimitiveStore {
int32: unifier.get_representative(primitives.int32),
int64: unifier.get_representative(primitives.int64),
uint32: unifier.get_representative(primitives.uint32),
uint64: unifier.get_representative(primitives.uint64),
float: unifier.get_representative(primitives.float),
bool: unifier.get_representative(primitives.bool),
none: unifier.get_representative(primitives.none),
range: unifier.get_representative(primitives.range),
str: unifier.get_representative(primitives.str),
exception: unifier.get_representative(primitives.exception),
option: unifier.get_representative(primitives.option),
};
let mut type_cache: HashMap<_, _> = [
(primitives.int32, context.i32_type().into()),
(primitives.int64, context.i64_type().into()),
(primitives.uint32, context.i32_type().into()),
(primitives.uint64, context.i64_type().into()),
(primitives.float, context.f64_type().into()),
(primitives.bool, context.bool_type().into()),
(primitives.str, {
let str_type = context.opaque_struct_type("str");
let fields = [
context.i8_type().ptr_type(AddressSpace::Generic).into(),
generator.get_size_type(context).into(),
];
str_type.set_body(&fields, false);
str_type.into()
}),
(primitives.range, context.i32_type().array_type(3).ptr_type(AddressSpace::Generic).into()),
]
.iter()
.cloned()
.collect();
type_cache.insert(primitives.exception, {
let exception = context.opaque_struct_type("Exception");
let int32 = context.i32_type().into();
let int64 = context.i64_type().into();
let str_ty = *type_cache.get(&primitives.str).unwrap();
let fields = [int32, str_ty, int32, int32, str_ty, str_ty, int64, int64, int64];
exception.set_body(&fields, false);
exception.ptr_type(AddressSpace::Generic).into()
});
// NOTE: special handling of option cannot use this type cache since it contains type var,
// handled inside get_llvm_type instead
let (args, ret) = if let ConcreteTypeEnum::TFunc { args, ret, .. } =
task.store.get(task.signature)
{
(
args.iter()
.map(|arg| FuncArg {
name: arg.name,
ty: task.store.to_unifier_type(&mut unifier, &primitives, arg.ty, &mut cache),
default_value: arg.default_value.clone(),
})
.collect_vec(),
task.store.to_unifier_type(&mut unifier, &primitives, *ret, &mut cache),
)
} else {
unreachable!()
};
let ret_type = if unifier.unioned(ret, primitives.none) {
None
} else {
Some(get_llvm_type(context, generator, &mut unifier, top_level_ctx.as_ref(), &mut type_cache, &primitives, ret))
};
let has_sret = ret_type.map_or(false, |ty| need_sret(context, ty));
let mut params = args
.iter()
.map(|arg| {
get_llvm_type(
context,
generator,
&mut unifier,
top_level_ctx.as_ref(),
&mut type_cache,
&primitives,
arg.ty,
)
.into()
})
.collect_vec();
if has_sret {
params.insert(0, ret_type.unwrap().ptr_type(AddressSpace::Generic).into());
}
let fn_type = match ret_type {
Some(ret_type) if !has_sret => ret_type.fn_type(&params, false),
_ => context.void_type().fn_type(&params, false)
};
let symbol = &task.symbol_name;
let fn_val =
module.get_function(symbol).unwrap_or_else(|| module.add_function(symbol, fn_type, None));
if let Some(personality) = &top_level_ctx.personality_symbol {
let personality = module.get_function(personality).unwrap_or_else(|| {
let ty = context.i32_type().fn_type(&[], true);
module.add_function(personality, ty, None)
});
fn_val.set_personality_function(personality);
}
if has_sret {
fn_val.add_attribute(AttributeLoc::Param(0),
context.create_type_attribute(Attribute::get_named_enum_kind_id("sret"),
ret_type.unwrap().as_any_type_enum()));
}
let init_bb = context.append_basic_block(fn_val, "init");
builder.position_at_end(init_bb);
let body_bb = context.append_basic_block(fn_val, "body");
let mut var_assignment = HashMap::new();
let offset = if has_sret { 1 } else { 0 };
for (n, arg) in args.iter().enumerate() {
let param = fn_val.get_nth_param((n as u32) + offset).unwrap();
let alloca = builder.build_alloca(
get_llvm_type(
context,
generator,
&mut unifier,
top_level_ctx.as_ref(),
&mut type_cache,
&primitives,
arg.ty,
),
&arg.name.to_string(),
);
builder.build_store(alloca, param);
var_assignment.insert(arg.name, (alloca, None, 0));
}
let return_buffer = if has_sret {
Some(fn_val.get_nth_param(0).unwrap().into_pointer_value())
} else {
fn_type.get_return_type().map(|v| builder.build_alloca(v, "$ret"))
};
let static_values = {
let store = registry.static_value_store.lock();
store.store[task.id].clone()
};
for (k, v) in static_values.into_iter() {
let (_, static_val, _) = var_assignment.get_mut(&args[k].name).unwrap();
*static_val = Some(v);
}
builder.build_unconditional_branch(body_bb);
builder.position_at_end(body_bb);
let mut code_gen_context = CodeGenContext {
ctx: context,
resolver: task.resolver,
top_level: top_level_ctx.as_ref(),
calls: task.calls,
loop_target: None,
return_target: None,
return_buffer,
unwind_target: None,
outer_catch_clauses: None,
const_strings: Default::default(),
registry,
var_assignment,
type_cache,
primitives,
init_bb,
builder,
module,
unifier,
static_value_store,
need_sret: has_sret
};
let result = codegen_function(generator, &mut code_gen_context);
// after static analysis, only void functions can have no return at the end.
if !code_gen_context.is_terminated() {
code_gen_context.builder.build_return(None);
}
let CodeGenContext { builder, module, .. } = code_gen_context;
if let Err(e) = result {
return Err((builder, e));
}
Ok((builder, module, fn_val))
}
pub fn gen_func<'ctx, G: CodeGenerator>(
context: &'ctx Context,
generator: &mut G,
registry: &WorkerRegistry,
builder: Builder<'ctx>,
module: Module<'ctx>,
task: CodeGenTask,
) -> Result<(Builder<'ctx>, Module<'ctx>, FunctionValue<'ctx>), (Builder<'ctx>, String)> {
let body = task.body.clone();
gen_func_impl(context, generator, registry, builder, module, task, |generator, ctx| {
for stmt in body.iter() {
generator.gen_stmt(ctx, stmt)?;
}
Ok(())
})
}