nac3/nac3core/src/codegen/stmt.rs

431 lines
17 KiB
Rust

use super::{expr::destructure_range, CodeGenContext, CodeGenerator, super::symbol_resolver::ValueEnum};
use crate::typecheck::typedef::Type;
use inkwell::values::{BasicValue, BasicValueEnum, PointerValue};
use nac3parser::ast::{Expr, ExprKind, Stmt, StmtKind};
pub fn gen_var<'ctx, 'a>(ctx: &mut CodeGenContext<'ctx, 'a>, ty: Type) -> PointerValue<'ctx> {
// put the alloca in init block
let current = ctx.builder.get_insert_block().unwrap();
// position before the last branching instruction...
ctx.builder.position_before(&ctx.init_bb.get_last_instruction().unwrap());
let ty = ctx.get_llvm_type(ty);
let ptr = ctx.builder.build_alloca(ty, "tmp");
ctx.builder.position_at_end(current);
ptr
}
pub fn gen_store_target<'ctx, 'a, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
pattern: &Expr<Option<Type>>,
) -> PointerValue<'ctx> {
// very similar to gen_expr, but we don't do an extra load at the end
// and we flatten nested tuples
match &pattern.node {
ExprKind::Name { id, .. } => ctx.var_assignment.get(id).map(|v| v.0).unwrap_or_else(|| {
let ptr = generator.gen_var_alloc(ctx, pattern.custom.unwrap());
ctx.var_assignment.insert(*id, (ptr, None, 0));
ptr
}),
ExprKind::Attribute { value, attr, .. } => {
let index = ctx.get_attr_index(value.custom.unwrap(), *attr);
let val = generator.gen_expr(ctx, value).unwrap().to_basic_value_enum(ctx);
let ptr = if let BasicValueEnum::PointerValue(v) = val {
v
} else {
unreachable!();
};
unsafe {
ctx.builder.build_in_bounds_gep(
ptr,
&[
ctx.ctx.i32_type().const_zero(),
ctx.ctx.i32_type().const_int(index as u64, false),
],
"attr",
)
}
}
ExprKind::Subscript { value, slice, .. } => {
let i32_type = ctx.ctx.i32_type();
let v = generator
.gen_expr(ctx, value)
.unwrap()
.to_basic_value_enum(ctx)
.into_pointer_value();
let index =
generator.gen_expr(ctx, slice).unwrap().to_basic_value_enum(ctx).into_int_value();
unsafe {
let arr_ptr = ctx
.build_gep_and_load(v, &[i32_type.const_zero(), i32_type.const_int(1, false)])
.into_pointer_value();
ctx.builder.build_gep(arr_ptr, &[index], "loadarrgep")
}
}
_ => unreachable!(),
}
}
pub fn gen_assign<'ctx, 'a, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
target: &Expr<Option<Type>>,
value: ValueEnum<'ctx>,
) {
if let ExprKind::Tuple { elts, .. } = &target.node {
if let BasicValueEnum::PointerValue(ptr) = value.to_basic_value_enum(ctx) {
let i32_type = ctx.ctx.i32_type();
for (i, elt) in elts.iter().enumerate() {
let v = ctx.build_gep_and_load(
ptr,
&[i32_type.const_zero(), i32_type.const_int(i as u64, false)],
);
generator.gen_assign(ctx, elt, v.into());
}
} else {
unreachable!()
}
} else {
let ptr = generator.gen_store_target(ctx, target);
if let ExprKind::Name { id, .. } = &target.node {
let (_, static_value, counter) = ctx.var_assignment.get_mut(id).unwrap();
*counter += 1;
if let ValueEnum::Static(s) = &value {
*static_value = Some(s.clone());
}
}
let val = value.to_basic_value_enum(ctx);
ctx.builder.build_store(ptr, val);
}
}
pub fn gen_for<'ctx, 'a, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
stmt: &Stmt<Option<Type>>,
) {
if let StmtKind::For { iter, target, body, orelse, .. } = &stmt.node {
// var_assignment static values may be changed in another branch
// if so, remove the static value as it may not be correct in this branch
let var_assignment = ctx.var_assignment.clone();
let int32 = ctx.ctx.i32_type();
let zero = int32.const_zero();
let current = ctx.builder.get_insert_block().unwrap().get_parent().unwrap();
let test_bb = ctx.ctx.append_basic_block(current, "test");
let body_bb = ctx.ctx.append_basic_block(current, "body");
let cont_bb = ctx.ctx.append_basic_block(current, "cont");
// if there is no orelse, we just go to cont_bb
let orelse_bb =
if orelse.is_empty() { cont_bb } else { ctx.ctx.append_basic_block(current, "orelse") };
// store loop bb information and restore it later
let loop_bb = ctx.loop_bb.replace((test_bb, cont_bb));
let iter_val = generator.gen_expr(ctx, iter).unwrap().to_basic_value_enum(ctx);
if ctx.unifier.unioned(iter.custom.unwrap(), ctx.primitives.range) {
// setup
let iter_val = iter_val.into_pointer_value();
let i = generator.gen_store_target(ctx, target);
let (start, end, step) = destructure_range(ctx, iter_val);
ctx.builder.build_store(i, ctx.builder.build_int_sub(start, step, "start_init"));
ctx.builder.build_unconditional_branch(test_bb);
ctx.builder.position_at_end(test_bb);
let sign = ctx.builder.build_int_compare(
inkwell::IntPredicate::SGT,
step,
int32.const_zero(),
"sign",
);
// add and test
let tmp = ctx.builder.build_int_add(
ctx.builder.build_load(i, "i").into_int_value(),
step,
"start_loop",
);
ctx.builder.build_store(i, tmp);
// // if step > 0, continue when i < end
let cmp1 = ctx.builder.build_int_compare(inkwell::IntPredicate::SLT, tmp, end, "cmp1");
// if step < 0, continue when i > end
let cmp2 = ctx.builder.build_int_compare(inkwell::IntPredicate::SGT, tmp, end, "cmp2");
let pos = ctx.builder.build_and(sign, cmp1, "pos");
let neg = ctx.builder.build_and(ctx.builder.build_not(sign, "inv"), cmp2, "neg");
ctx.builder.build_conditional_branch(
ctx.builder.build_or(pos, neg, "or"),
body_bb,
orelse_bb,
);
ctx.builder.position_at_end(body_bb);
} else {
let counter = generator.gen_var_alloc(ctx, ctx.primitives.int32);
// counter = -1
ctx.builder.build_store(counter, ctx.ctx.i32_type().const_int(u64::max_value(), true));
let len = ctx
.build_gep_and_load(iter_val.into_pointer_value(), &[zero, zero])
.into_int_value();
ctx.builder.build_unconditional_branch(test_bb);
ctx.builder.position_at_end(test_bb);
let tmp = ctx.builder.build_load(counter, "i").into_int_value();
let tmp = ctx.builder.build_int_add(tmp, int32.const_int(1, false), "inc");
ctx.builder.build_store(counter, tmp);
let cmp = ctx.builder.build_int_compare(inkwell::IntPredicate::SLT, tmp, len, "cmp");
ctx.builder.build_conditional_branch(cmp, body_bb, orelse_bb);
ctx.builder.position_at_end(body_bb);
let arr_ptr = ctx
.build_gep_and_load(
iter_val.into_pointer_value(),
&[zero, int32.const_int(1, false)],
)
.into_pointer_value();
let val = ctx.build_gep_and_load(arr_ptr, &[tmp]);
generator.gen_assign(ctx, target, val.into());
}
for stmt in body.iter() {
generator.gen_stmt(ctx, stmt);
}
for (k, (_, _, counter)) in var_assignment.iter() {
let (_, static_val, counter2) = ctx.var_assignment.get_mut(k).unwrap();
if counter != counter2 {
*static_val = None;
}
}
ctx.builder.build_unconditional_branch(test_bb);
if !orelse.is_empty() {
ctx.builder.position_at_end(orelse_bb);
for stmt in orelse.iter() {
generator.gen_stmt(ctx, stmt);
}
ctx.builder.build_unconditional_branch(cont_bb);
}
for (k, (_, _, counter)) in var_assignment.iter() {
let (_, static_val, counter2) = ctx.var_assignment.get_mut(k).unwrap();
if counter != counter2 {
*static_val = None;
}
}
ctx.builder.position_at_end(cont_bb);
ctx.loop_bb = loop_bb;
} else {
unreachable!()
}
}
pub fn gen_while<'ctx, 'a, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
stmt: &Stmt<Option<Type>>,
) {
if let StmtKind::While { test, body, orelse, .. } = &stmt.node {
// var_assignment static values may be changed in another branch
// if so, remove the static value as it may not be correct in this branch
let var_assignment = ctx.var_assignment.clone();
let current = ctx.builder.get_insert_block().unwrap().get_parent().unwrap();
let test_bb = ctx.ctx.append_basic_block(current, "test");
let body_bb = ctx.ctx.append_basic_block(current, "body");
let cont_bb = ctx.ctx.append_basic_block(current, "cont");
// if there is no orelse, we just go to cont_bb
let orelse_bb =
if orelse.is_empty() { cont_bb } else { ctx.ctx.append_basic_block(current, "orelse") };
// store loop bb information and restore it later
let loop_bb = ctx.loop_bb.replace((test_bb, cont_bb));
ctx.builder.build_unconditional_branch(test_bb);
ctx.builder.position_at_end(test_bb);
let test = generator.gen_expr(ctx, test).unwrap().to_basic_value_enum(ctx);
if let BasicValueEnum::IntValue(test) = test {
ctx.builder.build_conditional_branch(test, body_bb, orelse_bb);
} else {
unreachable!()
};
ctx.builder.position_at_end(body_bb);
for stmt in body.iter() {
generator.gen_stmt(ctx, stmt);
}
for (k, (_, _, counter)) in var_assignment.iter() {
let (_, static_val, counter2) = ctx.var_assignment.get_mut(k).unwrap();
if counter != counter2 {
*static_val = None;
}
}
ctx.builder.build_unconditional_branch(test_bb);
if !orelse.is_empty() {
ctx.builder.position_at_end(orelse_bb);
for stmt in orelse.iter() {
generator.gen_stmt(ctx, stmt);
}
ctx.builder.build_unconditional_branch(cont_bb);
}
for (k, (_, _, counter)) in var_assignment.iter() {
let (_, static_val, counter2) = ctx.var_assignment.get_mut(k).unwrap();
if counter != counter2 {
*static_val = None;
}
}
ctx.builder.position_at_end(cont_bb);
ctx.loop_bb = loop_bb;
} else {
unreachable!()
}
}
pub fn gen_if<'ctx, 'a, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
stmt: &Stmt<Option<Type>>,
) -> bool {
if let StmtKind::If { test, body, orelse, .. } = &stmt.node {
// var_assignment static values may be changed in another branch
// if so, remove the static value as it may not be correct in this branch
let var_assignment = ctx.var_assignment.clone();
let current = ctx.builder.get_insert_block().unwrap().get_parent().unwrap();
let test_bb = ctx.ctx.append_basic_block(current, "test");
let body_bb = ctx.ctx.append_basic_block(current, "body");
let mut cont_bb = None;
// if there is no orelse, we just go to cont_bb
let orelse_bb = if orelse.is_empty() {
cont_bb = Some(ctx.ctx.append_basic_block(current, "cont"));
cont_bb.unwrap()
} else {
ctx.ctx.append_basic_block(current, "orelse")
};
ctx.builder.build_unconditional_branch(test_bb);
ctx.builder.position_at_end(test_bb);
let test = generator.gen_expr(ctx, test).unwrap().to_basic_value_enum(ctx);
if let BasicValueEnum::IntValue(test) = test {
ctx.builder.build_conditional_branch(test, body_bb, orelse_bb);
} else {
unreachable!()
};
ctx.builder.position_at_end(body_bb);
let mut exited = false;
for stmt in body.iter() {
exited = generator.gen_stmt(ctx, stmt);
if exited {
break;
}
}
for (k, (_, _, counter)) in var_assignment.iter() {
let (_, static_val, counter2) = ctx.var_assignment.get_mut(k).unwrap();
if counter != counter2 {
*static_val = None;
}
}
if !exited {
if cont_bb.is_none() {
cont_bb = Some(ctx.ctx.append_basic_block(current, "cont"));
}
ctx.builder.build_unconditional_branch(cont_bb.unwrap());
}
let then_exited = exited;
let else_exited = if !orelse.is_empty() {
exited = false;
ctx.builder.position_at_end(orelse_bb);
for stmt in orelse.iter() {
exited = generator.gen_stmt(ctx, stmt);
if exited {
break;
}
}
if !exited {
if cont_bb.is_none() {
cont_bb = Some(ctx.ctx.append_basic_block(current, "cont"));
}
ctx.builder.build_unconditional_branch(cont_bb.unwrap());
}
exited
} else {
false
};
if let Some(cont_bb) = cont_bb {
ctx.builder.position_at_end(cont_bb);
}
for (k, (_, _, counter)) in var_assignment.iter() {
let (_, static_val, counter2) = ctx.var_assignment.get_mut(k).unwrap();
if counter != counter2 {
*static_val = None;
}
}
then_exited && else_exited
} else {
unreachable!()
}
}
pub fn gen_with<'ctx, 'a, G: CodeGenerator + ?Sized>(
_: &mut G,
_: &mut CodeGenContext<'ctx, 'a>,
_: &Stmt<Option<Type>>,
) -> bool {
// TODO: Implement with statement after finishing exceptions
unimplemented!()
}
pub fn gen_stmt<'ctx, 'a, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
stmt: &Stmt<Option<Type>>,
) -> bool {
match &stmt.node {
StmtKind::Pass { .. } => {}
StmtKind::Expr { value, .. } => {
generator.gen_expr(ctx, value);
}
StmtKind::Return { value, .. } => {
let value = value
.as_ref()
.map(|v| generator.gen_expr(ctx, v).unwrap().to_basic_value_enum(ctx));
let value = value.as_ref().map(|v| v as &dyn BasicValue);
ctx.builder.build_return(value);
return true;
}
StmtKind::AnnAssign { target, value, .. } => {
if let Some(value) = value {
let value = generator.gen_expr(ctx, value).unwrap();
generator.gen_assign(ctx, target, value);
}
}
StmtKind::Assign { targets, value, .. } => {
let value = generator.gen_expr(ctx, value).unwrap();
for target in targets.iter() {
generator.gen_assign(ctx, target, value.clone());
}
}
StmtKind::Continue { .. } => {
ctx.builder.build_unconditional_branch(ctx.loop_bb.unwrap().0);
return true;
}
StmtKind::Break { .. } => {
ctx.builder.build_unconditional_branch(ctx.loop_bb.unwrap().1);
return true;
}
StmtKind::If { .. } => return generator.gen_if(ctx, stmt),
StmtKind::While { .. } => return generator.gen_while(ctx, stmt),
StmtKind::For { .. } => return generator.gen_for(ctx, stmt),
StmtKind::With { .. } => return generator.gen_with(ctx, stmt),
StmtKind::AugAssign { target, op, value, .. } => {
let value = {
let ty1 = ctx.unifier.get_representative(target.custom.unwrap());
let ty2 = ctx.unifier.get_representative(value.custom.unwrap());
let left = generator.gen_expr(ctx, target).unwrap().to_basic_value_enum(ctx);
let right = generator.gen_expr(ctx, value).unwrap().to_basic_value_enum(ctx);
// we can directly compare the types, because we've got their representatives
// which would be unchanged until further unification, which we would never do
// when doing code generation for function instances
if ty1 == ty2 && [ctx.primitives.int32, ctx.primitives.int64].contains(&ty1) {
ctx.gen_int_ops(op, left, right)
} else if ty1 == ty2 && ctx.primitives.float == ty1 {
ctx.gen_float_ops(op, left, right)
} else {
unimplemented!()
}
};
generator.gen_assign(ctx, target, value.into());
}
_ => unimplemented!(),
};
false
}