forked from M-Labs/nac3
1857 lines
87 KiB
Rust
1857 lines
87 KiB
Rust
use std::cell::RefCell;
|
|
|
|
use nac3parser::ast::fold::Fold;
|
|
use inkwell::FloatPredicate;
|
|
|
|
use crate::{
|
|
symbol_resolver::SymbolValue,
|
|
typecheck::type_inferencer::{FunctionData, Inferencer},
|
|
};
|
|
|
|
use super::*;
|
|
|
|
type DefAst = (Arc<RwLock<TopLevelDef>>, Option<ast::Stmt<()>>);
|
|
pub struct TopLevelComposer {
|
|
// list of top level definitions, same as top level context
|
|
pub definition_ast_list: Vec<DefAst>,
|
|
// start as a primitive unifier, will add more top_level defs inside
|
|
pub unifier: Unifier,
|
|
// primitive store
|
|
pub primitives_ty: PrimitiveStore,
|
|
// keyword list to prevent same user-defined name
|
|
pub keyword_list: HashSet<StrRef>,
|
|
// to prevent duplicate definition
|
|
pub defined_names: HashSet<String>,
|
|
// get the class def id of a class method
|
|
pub method_class: HashMap<DefinitionId, DefinitionId>,
|
|
// number of built-in function and classes in the definition list, later skip
|
|
pub built_in_num: usize,
|
|
}
|
|
|
|
impl Default for TopLevelComposer {
|
|
fn default() -> Self {
|
|
Self::new(vec![]).0
|
|
}
|
|
}
|
|
|
|
impl TopLevelComposer {
|
|
/// return a composer and things to make a "primitive" symbol resolver, so that the symbol
|
|
/// resolver can later figure out primitive type definitions when passed a primitive type name
|
|
pub fn new(
|
|
builtins: Vec<(StrRef, FunSignature, Arc<GenCall>)>,
|
|
) -> (Self, HashMap<StrRef, DefinitionId>, HashMap<StrRef, Type>) {
|
|
let mut primitives = Self::make_primitives();
|
|
|
|
let int32 = primitives.0.int32;
|
|
let int64 = primitives.0.int64;
|
|
let float = primitives.0.float;
|
|
let boolean = primitives.0.bool;
|
|
let range = primitives.0.range;
|
|
let string = primitives.0.str;
|
|
let num_ty = primitives.1.get_fresh_var_with_range(&[int32, int64, float, boolean]);
|
|
let var_map: HashMap<_, _> = vec![(num_ty.1, num_ty.0)].into_iter().collect();
|
|
|
|
let mut definition_ast_list = {
|
|
let top_level_def_list = vec![
|
|
Arc::new(RwLock::new(Self::make_top_level_class_def(
|
|
0,
|
|
None,
|
|
"int32".into(),
|
|
None,
|
|
))),
|
|
Arc::new(RwLock::new(Self::make_top_level_class_def(
|
|
1,
|
|
None,
|
|
"int64".into(),
|
|
None,
|
|
))),
|
|
Arc::new(RwLock::new(Self::make_top_level_class_def(
|
|
2,
|
|
None,
|
|
"float".into(),
|
|
None,
|
|
))),
|
|
Arc::new(RwLock::new(Self::make_top_level_class_def(3, None, "bool".into(), None))),
|
|
Arc::new(RwLock::new(Self::make_top_level_class_def(4, None, "none".into(), None))),
|
|
Arc::new(RwLock::new(Self::make_top_level_class_def(
|
|
5,
|
|
None,
|
|
"range".into(),
|
|
None,
|
|
))),
|
|
Arc::new(RwLock::new(Self::make_top_level_class_def(6, None, "str".into(), None))),
|
|
Arc::new(RwLock::new(TopLevelDef::Function {
|
|
name: "int32".into(),
|
|
simple_name: "int32".into(),
|
|
signature: primitives.1.add_ty(TypeEnum::TFunc(RefCell::new(FunSignature {
|
|
args: vec![FuncArg { name: "_".into(), ty: num_ty.0, default_value: None }],
|
|
ret: int32,
|
|
vars: var_map.clone(),
|
|
}))),
|
|
var_id: Default::default(),
|
|
instance_to_symbol: Default::default(),
|
|
instance_to_stmt: Default::default(),
|
|
resolver: None,
|
|
codegen_callback: Some(Arc::new(GenCall::new(Box::new(
|
|
|ctx, _, fun, args| {
|
|
let int32 = ctx.primitives.int32;
|
|
let int64 = ctx.primitives.int64;
|
|
let float = ctx.primitives.float;
|
|
let boolean = ctx.primitives.bool;
|
|
let arg_ty = fun.0.args[0].ty;
|
|
let arg = args[0].1;
|
|
if ctx.unifier.unioned(arg_ty, boolean) {
|
|
Some(
|
|
ctx.builder
|
|
.build_int_s_extend(
|
|
arg.into_int_value(),
|
|
ctx.ctx.i32_type(),
|
|
"sext",
|
|
)
|
|
.into(),
|
|
)
|
|
} else if ctx.unifier.unioned(arg_ty, int32) {
|
|
Some(arg)
|
|
} else if ctx.unifier.unioned(arg_ty, int64) {
|
|
Some(
|
|
ctx.builder
|
|
.build_int_truncate(
|
|
arg.into_int_value(),
|
|
ctx.ctx.i32_type(),
|
|
"trunc",
|
|
)
|
|
.into(),
|
|
)
|
|
} else if ctx.unifier.unioned(arg_ty, float) {
|
|
let val = ctx
|
|
.builder
|
|
.build_float_to_signed_int(
|
|
arg.into_float_value(),
|
|
ctx.ctx.i32_type(),
|
|
"fptosi",
|
|
)
|
|
.into();
|
|
Some(val)
|
|
} else {
|
|
unreachable!()
|
|
}
|
|
},
|
|
)))),
|
|
})),
|
|
Arc::new(RwLock::new(TopLevelDef::Function {
|
|
name: "int64".into(),
|
|
simple_name: "int64".into(),
|
|
signature: primitives.1.add_ty(TypeEnum::TFunc(RefCell::new(FunSignature {
|
|
args: vec![FuncArg { name: "_".into(), ty: num_ty.0, default_value: None }],
|
|
ret: int64,
|
|
vars: var_map.clone(),
|
|
}))),
|
|
var_id: Default::default(),
|
|
instance_to_symbol: Default::default(),
|
|
instance_to_stmt: Default::default(),
|
|
resolver: None,
|
|
codegen_callback: Some(Arc::new(GenCall::new(Box::new(
|
|
|ctx, _, fun, args| {
|
|
let int32 = ctx.primitives.int32;
|
|
let int64 = ctx.primitives.int64;
|
|
let float = ctx.primitives.float;
|
|
let boolean = ctx.primitives.bool;
|
|
let arg_ty = fun.0.args[0].ty;
|
|
let arg = args[0].1;
|
|
if ctx.unifier.unioned(arg_ty, boolean)
|
|
|| ctx.unifier.unioned(arg_ty, int32)
|
|
{
|
|
Some(
|
|
ctx.builder
|
|
.build_int_s_extend(
|
|
arg.into_int_value(),
|
|
ctx.ctx.i64_type(),
|
|
"sext",
|
|
)
|
|
.into(),
|
|
)
|
|
} else if ctx.unifier.unioned(arg_ty, int64) {
|
|
Some(arg)
|
|
} else if ctx.unifier.unioned(arg_ty, float) {
|
|
let val = ctx
|
|
.builder
|
|
.build_float_to_signed_int(
|
|
arg.into_float_value(),
|
|
ctx.ctx.i64_type(),
|
|
"fptosi",
|
|
)
|
|
.into();
|
|
Some(val)
|
|
} else {
|
|
unreachable!()
|
|
}
|
|
},
|
|
)))),
|
|
})),
|
|
Arc::new(RwLock::new(TopLevelDef::Function {
|
|
name: "float".into(),
|
|
simple_name: "float".into(),
|
|
signature: primitives.1.add_ty(TypeEnum::TFunc(RefCell::new(FunSignature {
|
|
args: vec![FuncArg { name: "_".into(), ty: num_ty.0, default_value: None }],
|
|
ret: float,
|
|
vars: var_map,
|
|
}))),
|
|
var_id: Default::default(),
|
|
instance_to_symbol: Default::default(),
|
|
instance_to_stmt: Default::default(),
|
|
resolver: None,
|
|
codegen_callback: Some(Arc::new(GenCall::new(Box::new(
|
|
|ctx, _, fun, args| {
|
|
let int32 = ctx.primitives.int32;
|
|
let int64 = ctx.primitives.int64;
|
|
let boolean = ctx.primitives.bool;
|
|
let float = ctx.primitives.float;
|
|
let arg_ty = fun.0.args[0].ty;
|
|
let arg = args[0].1;
|
|
if ctx.unifier.unioned(arg_ty, boolean)
|
|
|| ctx.unifier.unioned(arg_ty, int32)
|
|
|| ctx.unifier.unioned(arg_ty, int64)
|
|
{
|
|
let arg = args[0].1.into_int_value();
|
|
let val = ctx
|
|
.builder
|
|
.build_signed_int_to_float(arg, ctx.ctx.f64_type(), "sitofp")
|
|
.into();
|
|
Some(val)
|
|
} else if ctx.unifier.unioned(arg_ty, float) {
|
|
Some(arg)
|
|
} else {
|
|
unreachable!()
|
|
}
|
|
},
|
|
)))),
|
|
})),
|
|
Arc::new(RwLock::new(TopLevelDef::Function {
|
|
name: "round".into(),
|
|
simple_name: "round".into(),
|
|
signature: primitives.1.add_ty(TypeEnum::TFunc(RefCell::new(FunSignature {
|
|
args: vec![FuncArg { name: "_".into(), ty: float, default_value: None }],
|
|
ret: int32,
|
|
vars: Default::default(),
|
|
}))),
|
|
var_id: Default::default(),
|
|
instance_to_symbol: Default::default(),
|
|
instance_to_stmt: Default::default(),
|
|
resolver: None,
|
|
codegen_callback: Some(Arc::new(GenCall::new(Box::new(|ctx, _, _, args| {
|
|
let arg = args[0].1;
|
|
let round_intrinsic =
|
|
ctx.module.get_function("llvm.round.f64").unwrap_or_else(|| {
|
|
let float = ctx.ctx.f64_type();
|
|
let fn_type = float.fn_type(&[float.into()], false);
|
|
ctx.module.add_function("llvm.round.f64", fn_type, None)
|
|
});
|
|
let val = ctx
|
|
.builder
|
|
.build_call(round_intrinsic, &[arg], "round")
|
|
.try_as_basic_value()
|
|
.left()
|
|
.unwrap();
|
|
Some(
|
|
ctx.builder
|
|
.build_float_to_signed_int(
|
|
val.into_float_value(),
|
|
ctx.ctx.i32_type(),
|
|
"fptosi",
|
|
)
|
|
.into(),
|
|
)
|
|
})))),
|
|
})),
|
|
Arc::new(RwLock::new(TopLevelDef::Function {
|
|
name: "round64".into(),
|
|
simple_name: "round64".into(),
|
|
signature: primitives.1.add_ty(TypeEnum::TFunc(RefCell::new(FunSignature {
|
|
args: vec![FuncArg { name: "_".into(), ty: float, default_value: None }],
|
|
ret: int64,
|
|
vars: Default::default(),
|
|
}))),
|
|
var_id: Default::default(),
|
|
instance_to_symbol: Default::default(),
|
|
instance_to_stmt: Default::default(),
|
|
resolver: None,
|
|
codegen_callback: Some(Arc::new(GenCall::new(Box::new(|ctx, _, _, args| {
|
|
let arg = args[0].1;
|
|
let round_intrinsic =
|
|
ctx.module.get_function("llvm.round.f64").unwrap_or_else(|| {
|
|
let float = ctx.ctx.f64_type();
|
|
let fn_type = float.fn_type(&[float.into()], false);
|
|
ctx.module.add_function("llvm.round.f64", fn_type, None)
|
|
});
|
|
let val = ctx
|
|
.builder
|
|
.build_call(round_intrinsic, &[arg], "round")
|
|
.try_as_basic_value()
|
|
.left()
|
|
.unwrap();
|
|
Some(
|
|
ctx.builder
|
|
.build_float_to_signed_int(
|
|
val.into_float_value(),
|
|
ctx.ctx.i64_type(),
|
|
"fptosi",
|
|
)
|
|
.into(),
|
|
)
|
|
})))),
|
|
})),
|
|
Arc::new(RwLock::new(TopLevelDef::Function {
|
|
name: "range".into(),
|
|
simple_name: "range".into(),
|
|
signature: primitives.1.add_ty(TypeEnum::TFunc(RefCell::new(FunSignature {
|
|
args: vec![
|
|
FuncArg { name: "start".into(), ty: int32, default_value: None },
|
|
FuncArg {
|
|
name: "stop".into(),
|
|
ty: int32,
|
|
// placeholder
|
|
default_value: Some(SymbolValue::I32(0)),
|
|
},
|
|
FuncArg {
|
|
name: "step".into(),
|
|
ty: int32,
|
|
default_value: Some(SymbolValue::I32(1)),
|
|
},
|
|
],
|
|
ret: range,
|
|
vars: Default::default(),
|
|
}))),
|
|
var_id: Default::default(),
|
|
instance_to_symbol: Default::default(),
|
|
instance_to_stmt: Default::default(),
|
|
resolver: None,
|
|
codegen_callback: Some(Arc::new(GenCall::new(Box::new(|ctx, _, _, args| {
|
|
let mut start = None;
|
|
let mut stop = None;
|
|
let mut step = None;
|
|
let int32 = ctx.ctx.i32_type();
|
|
let zero = int32.const_zero();
|
|
for (i, arg) in args.iter().enumerate() {
|
|
if arg.0 == Some("start".into()) {
|
|
start = Some(arg.1);
|
|
} else if arg.0 == Some("stop".into()) {
|
|
stop = Some(arg.1);
|
|
} else if arg.0 == Some("step".into()) {
|
|
step = Some(arg.1);
|
|
} else if i == 0 {
|
|
start = Some(arg.1);
|
|
} else if i == 1 {
|
|
stop = Some(arg.1);
|
|
} else if i == 2 {
|
|
step = Some(arg.1);
|
|
}
|
|
}
|
|
// TODO: error when step == 0
|
|
let step = step.unwrap_or_else(|| int32.const_int(1, false).into());
|
|
let stop = stop.unwrap_or_else(|| {
|
|
let v = start.unwrap();
|
|
start = None;
|
|
v
|
|
});
|
|
let start = start.unwrap_or_else(|| int32.const_zero().into());
|
|
let ty = int32.array_type(3);
|
|
let ptr = ctx.builder.build_alloca(ty, "range");
|
|
unsafe {
|
|
let a = ctx.builder.build_in_bounds_gep(ptr, &[zero, zero], "start");
|
|
let b = ctx.builder.build_in_bounds_gep(
|
|
ptr,
|
|
&[zero, int32.const_int(1, false)],
|
|
"end",
|
|
);
|
|
let c = ctx.builder.build_in_bounds_gep(
|
|
ptr,
|
|
&[zero, int32.const_int(2, false)],
|
|
"step",
|
|
);
|
|
ctx.builder.build_store(a, start);
|
|
ctx.builder.build_store(b, stop);
|
|
ctx.builder.build_store(c, step);
|
|
}
|
|
Some(ptr.into())
|
|
})))),
|
|
})),
|
|
Arc::new(RwLock::new(TopLevelDef::Function {
|
|
name: "str".into(),
|
|
simple_name: "str".into(),
|
|
signature: primitives.1.add_ty(TypeEnum::TFunc(RefCell::new(FunSignature {
|
|
args: vec![FuncArg { name: "_".into(), ty: string, default_value: None }],
|
|
ret: string,
|
|
vars: Default::default(),
|
|
}))),
|
|
var_id: Default::default(),
|
|
instance_to_symbol: Default::default(),
|
|
instance_to_stmt: Default::default(),
|
|
resolver: None,
|
|
codegen_callback: Some(Arc::new(GenCall::new(Box::new(|_, _, _, args| {
|
|
Some(args[0].1)
|
|
})))),
|
|
})),
|
|
Arc::new(RwLock::new(TopLevelDef::Function {
|
|
name: "bool".into(),
|
|
simple_name: "bool".into(),
|
|
signature: primitives.1.add_ty(TypeEnum::TFunc(RefCell::new(FunSignature {
|
|
args: vec![FuncArg { name: "_".into(), ty: num_ty.0, default_value: None }],
|
|
ret: primitives.0.bool,
|
|
vars: Default::default(),
|
|
}))),
|
|
var_id: Default::default(),
|
|
instance_to_symbol: Default::default(),
|
|
instance_to_stmt: Default::default(),
|
|
resolver: None,
|
|
codegen_callback: Some(Arc::new(GenCall::new(Box::new(
|
|
|ctx, _, fun, args| {
|
|
let int32 = ctx.primitives.int32;
|
|
let int64 = ctx.primitives.int64;
|
|
let float = ctx.primitives.float;
|
|
let boolean = ctx.primitives.bool;
|
|
let arg_ty = fun.0.args[0].ty;
|
|
let arg = args[0].1;
|
|
if ctx.unifier.unioned(arg_ty, boolean) {
|
|
Some(arg)
|
|
} else if ctx.unifier.unioned(arg_ty, int32) || ctx.unifier.unioned(arg_ty, int64) {
|
|
Some(
|
|
ctx.builder
|
|
.build_int_truncate(
|
|
arg.into_int_value(),
|
|
ctx.ctx.bool_type(),
|
|
"trunc",
|
|
)
|
|
.into(),
|
|
)
|
|
} else if ctx.unifier.unioned(arg_ty, float) {
|
|
let val = ctx.builder.
|
|
build_float_compare(
|
|
// UEQ as bool(nan) is True
|
|
FloatPredicate::UEQ,
|
|
arg.into_float_value(),
|
|
ctx.ctx.f64_type().const_zero(),
|
|
"bool"
|
|
).into();
|
|
Some(val)
|
|
} else {
|
|
unreachable!()
|
|
}
|
|
},
|
|
)))),
|
|
})),
|
|
];
|
|
let ast_list: Vec<Option<ast::Stmt<()>>> =
|
|
(0..top_level_def_list.len()).map(|_| None).collect();
|
|
izip!(top_level_def_list, ast_list).collect_vec()
|
|
};
|
|
let primitives_ty = primitives.0;
|
|
let mut unifier = primitives.1;
|
|
let mut keyword_list: HashSet<StrRef> = HashSet::from_iter(vec![
|
|
"Generic".into(),
|
|
"virtual".into(),
|
|
"list".into(),
|
|
"tuple".into(),
|
|
"int32".into(),
|
|
"int64".into(),
|
|
"float".into(),
|
|
"bool".into(),
|
|
"none".into(),
|
|
"None".into(),
|
|
"range".into(),
|
|
"str".into(),
|
|
"self".into(),
|
|
"Kernel".into(),
|
|
"KernelImmutable".into(),
|
|
]);
|
|
let defined_names: HashSet<String> = Default::default();
|
|
let method_class: HashMap<DefinitionId, DefinitionId> = Default::default();
|
|
|
|
let mut built_in_id: HashMap<StrRef, DefinitionId> = Default::default();
|
|
let mut built_in_ty: HashMap<StrRef, Type> = Default::default();
|
|
|
|
for (id, name) in
|
|
["int32", "int64", "float", "round", "round64", "range", "str", "bool"].iter().rev().enumerate()
|
|
{
|
|
let name = (**name).into();
|
|
let id = definition_ast_list.len() - id - 1;
|
|
let def = definition_ast_list[id].0.read();
|
|
if let TopLevelDef::Function { simple_name, signature, .. } = &*def {
|
|
assert!(name == *simple_name);
|
|
built_in_ty.insert(name, *signature);
|
|
built_in_id.insert(name, DefinitionId(id));
|
|
} else {
|
|
unreachable!()
|
|
}
|
|
}
|
|
|
|
for (name, sig, codegen_callback) in builtins {
|
|
let fun_sig = unifier.add_ty(TypeEnum::TFunc(RefCell::new(sig)));
|
|
built_in_ty.insert(name, fun_sig);
|
|
built_in_id.insert(name, DefinitionId(definition_ast_list.len()));
|
|
definition_ast_list.push((
|
|
Arc::new(RwLock::new(TopLevelDef::Function {
|
|
name: name.into(),
|
|
simple_name: name,
|
|
signature: fun_sig,
|
|
instance_to_stmt: Default::default(),
|
|
instance_to_symbol: Default::default(),
|
|
var_id: Default::default(),
|
|
resolver: None,
|
|
codegen_callback: Some(codegen_callback),
|
|
})),
|
|
None,
|
|
));
|
|
keyword_list.insert(name);
|
|
}
|
|
|
|
(
|
|
TopLevelComposer {
|
|
built_in_num: definition_ast_list.len(),
|
|
definition_ast_list,
|
|
primitives_ty,
|
|
unifier,
|
|
keyword_list,
|
|
defined_names,
|
|
method_class,
|
|
},
|
|
built_in_id,
|
|
built_in_ty,
|
|
)
|
|
}
|
|
|
|
pub fn make_top_level_context(&self) -> TopLevelContext {
|
|
TopLevelContext {
|
|
definitions: RwLock::new(
|
|
self.definition_ast_list.iter().map(|(x, ..)| x.clone()).collect_vec(),
|
|
)
|
|
.into(),
|
|
// NOTE: only one for now
|
|
unifiers: Arc::new(RwLock::new(vec![(
|
|
self.unifier.get_shared_unifier(),
|
|
self.primitives_ty,
|
|
)])),
|
|
personality_symbol: None,
|
|
}
|
|
}
|
|
|
|
fn extract_def_list(&self) -> Vec<Arc<RwLock<TopLevelDef>>> {
|
|
self.definition_ast_list.iter().map(|(def, ..)| def.clone()).collect_vec()
|
|
}
|
|
|
|
/// register, just remember the names of top level classes/function
|
|
/// and check duplicate class/method/function definition
|
|
pub fn register_top_level(
|
|
&mut self,
|
|
ast: ast::Stmt<()>,
|
|
resolver: Option<Arc<dyn SymbolResolver + Send + Sync>>,
|
|
mod_path: String,
|
|
) -> Result<(StrRef, DefinitionId, Option<Type>), String> {
|
|
let defined_names = &mut self.defined_names;
|
|
match &ast.node {
|
|
ast::StmtKind::ClassDef { name: class_name, body, .. } => {
|
|
if self.keyword_list.contains(class_name) {
|
|
return Err("cannot use keyword as a class name".into());
|
|
}
|
|
if !defined_names.insert({
|
|
let mut n = mod_path.clone();
|
|
n.push_str(&class_name.to_string());
|
|
n
|
|
}) {
|
|
return Err("duplicate definition of class".into());
|
|
}
|
|
|
|
let class_name = *class_name;
|
|
let class_def_id = self.definition_ast_list.len();
|
|
|
|
// since later when registering class method, ast will still be used,
|
|
// here push None temporarily, later will move the ast inside
|
|
let constructor_ty = self.unifier.get_fresh_var().0;
|
|
let mut class_def_ast = (
|
|
Arc::new(RwLock::new(Self::make_top_level_class_def(
|
|
class_def_id,
|
|
resolver.clone(),
|
|
class_name,
|
|
Some(constructor_ty),
|
|
))),
|
|
None,
|
|
);
|
|
|
|
// parse class def body and register class methods into the def list.
|
|
// module's symbol resolver would not know the name of the class methods,
|
|
// thus cannot return their definition_id
|
|
type MethodInfo = (
|
|
// the simple method name without class name
|
|
StrRef,
|
|
// in this top level def, method name is prefixed with the class name
|
|
Arc<RwLock<TopLevelDef>>,
|
|
DefinitionId,
|
|
Type,
|
|
ast::Stmt<()>,
|
|
);
|
|
let mut class_method_name_def_ids: Vec<MethodInfo> = Vec::new();
|
|
// we do not push anything to the def list, so we keep track of the index
|
|
// and then push in the correct order after the for loop
|
|
let mut class_method_index_offset = 0;
|
|
let mut contains_constructor = false;
|
|
let init_id = "__init__".into();
|
|
for b in body {
|
|
if let ast::StmtKind::FunctionDef { name: method_name, .. } = &b.node {
|
|
if method_name == &init_id {
|
|
contains_constructor = true;
|
|
}
|
|
if self.keyword_list.contains(method_name) {
|
|
return Err("cannot use keyword as a method name".into());
|
|
}
|
|
let global_class_method_name = {
|
|
let mut n = mod_path.clone();
|
|
n.push_str(
|
|
Self::make_class_method_name(
|
|
class_name.into(),
|
|
&method_name.to_string(),
|
|
)
|
|
.as_str(),
|
|
);
|
|
n
|
|
};
|
|
if !defined_names.insert(global_class_method_name.clone()) {
|
|
return Err("duplicate class method definition".into());
|
|
}
|
|
let method_def_id = self.definition_ast_list.len() + {
|
|
// plus 1 here since we already have the class def
|
|
class_method_index_offset += 1;
|
|
class_method_index_offset
|
|
};
|
|
|
|
// dummy method define here
|
|
let dummy_method_type = self.unifier.get_fresh_var();
|
|
class_method_name_def_ids.push((
|
|
*method_name,
|
|
RwLock::new(Self::make_top_level_function_def(
|
|
global_class_method_name,
|
|
*method_name,
|
|
// later unify with parsed type
|
|
dummy_method_type.0,
|
|
resolver.clone(),
|
|
))
|
|
.into(),
|
|
DefinitionId(method_def_id),
|
|
dummy_method_type.0,
|
|
b.clone(),
|
|
));
|
|
} else {
|
|
// do nothing
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// move the ast to the entry of the class in the ast_list
|
|
class_def_ast.1 = Some(ast);
|
|
// get the methods into the top level class_def
|
|
for (name, _, id, ty, ..) in &class_method_name_def_ids {
|
|
let mut class_def = class_def_ast.0.write();
|
|
if let TopLevelDef::Class { methods, .. } = class_def.deref_mut() {
|
|
methods.push((*name, *ty, *id));
|
|
self.method_class.insert(*id, DefinitionId(class_def_id));
|
|
} else {
|
|
unreachable!()
|
|
}
|
|
}
|
|
// now class_def_ast and class_method_def_ast_ids are ok, put them into actual def list in correct order
|
|
self.definition_ast_list.push(class_def_ast);
|
|
for (_, def, _, _, ast) in class_method_name_def_ids {
|
|
self.definition_ast_list.push((def, Some(ast)));
|
|
}
|
|
|
|
let result_ty = if contains_constructor { Some(constructor_ty) } else { None };
|
|
Ok((class_name, DefinitionId(class_def_id), result_ty))
|
|
}
|
|
|
|
ast::StmtKind::FunctionDef { name, .. } => {
|
|
// if self.keyword_list.contains(name) {
|
|
// return Err("cannot use keyword as a top level function name".into());
|
|
// }
|
|
let global_fun_name = {
|
|
let mut n = mod_path;
|
|
n.push_str(&name.to_string());
|
|
n
|
|
};
|
|
if !defined_names.insert(global_fun_name.clone()) {
|
|
return Err("duplicate top level function define".into());
|
|
}
|
|
|
|
let fun_name = *name;
|
|
let ty_to_be_unified = self.unifier.get_fresh_var().0;
|
|
// add to the definition list
|
|
self.definition_ast_list.push((
|
|
RwLock::new(Self::make_top_level_function_def(
|
|
global_fun_name,
|
|
*name,
|
|
// dummy here, unify with correct type later
|
|
ty_to_be_unified,
|
|
resolver,
|
|
))
|
|
.into(),
|
|
Some(ast),
|
|
));
|
|
|
|
// return
|
|
Ok((
|
|
fun_name,
|
|
DefinitionId(self.definition_ast_list.len() - 1),
|
|
Some(ty_to_be_unified),
|
|
))
|
|
}
|
|
|
|
_ => Err("only registrations of top level classes/functions are supported".into()),
|
|
}
|
|
}
|
|
|
|
pub fn start_analysis(&mut self, inference: bool) -> Result<(), String> {
|
|
self.analyze_top_level_class_type_var()?;
|
|
self.analyze_top_level_class_bases()?;
|
|
self.analyze_top_level_class_fields_methods()?;
|
|
self.analyze_top_level_function()?;
|
|
if inference {
|
|
self.analyze_function_instance()?;
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
/// step 1, analyze the type vars associated with top level class
|
|
fn analyze_top_level_class_type_var(&mut self) -> Result<(), String> {
|
|
let def_list = &self.definition_ast_list;
|
|
let temp_def_list = self.extract_def_list();
|
|
let unifier = self.unifier.borrow_mut();
|
|
let primitives_store = &self.primitives_ty;
|
|
|
|
// skip 5 to skip analyzing the primitives
|
|
for (class_def, class_ast) in def_list.iter().skip(self.built_in_num) {
|
|
// only deal with class def here
|
|
let mut class_def = class_def.write();
|
|
let (class_bases_ast, class_def_type_vars, class_resolver) = {
|
|
if let TopLevelDef::Class { type_vars, resolver, .. } = class_def.deref_mut() {
|
|
if let Some(ast::Located {
|
|
node: ast::StmtKind::ClassDef { bases, .. }, ..
|
|
}) = class_ast
|
|
{
|
|
(bases, type_vars, resolver)
|
|
} else {
|
|
unreachable!("must be both class")
|
|
}
|
|
} else {
|
|
continue;
|
|
}
|
|
};
|
|
let class_resolver = class_resolver.as_ref().unwrap();
|
|
let class_resolver = class_resolver.deref();
|
|
|
|
let mut is_generic = false;
|
|
for b in class_bases_ast {
|
|
match &b.node {
|
|
// analyze typevars bounded to the class,
|
|
// only support things like `class A(Generic[T, V])`,
|
|
// things like `class A(Generic[T, V, ImportedModule.T])` is not supported
|
|
// i.e. only simple names are allowed in the subscript
|
|
// should update the TopLevelDef::Class.typevars and the TypeEnum::TObj.params
|
|
ast::ExprKind::Subscript { value, slice, .. }
|
|
if {
|
|
matches!(
|
|
&value.node,
|
|
ast::ExprKind::Name { id, .. } if id == &"Generic".into()
|
|
)
|
|
} =>
|
|
{
|
|
if !is_generic {
|
|
is_generic = true;
|
|
} else {
|
|
return Err("Only single Generic[...] can be in bases".into());
|
|
}
|
|
|
|
let type_var_list: Vec<&ast::Expr<()>>;
|
|
// if `class A(Generic[T, V, G])`
|
|
if let ast::ExprKind::Tuple { elts, .. } = &slice.node {
|
|
type_var_list = elts.iter().collect_vec();
|
|
// `class A(Generic[T])`
|
|
} else {
|
|
type_var_list = vec![slice.deref()];
|
|
}
|
|
|
|
// parse the type vars
|
|
let type_vars = type_var_list
|
|
.into_iter()
|
|
.map(|e| {
|
|
class_resolver.parse_type_annotation(
|
|
&temp_def_list,
|
|
unifier,
|
|
primitives_store,
|
|
e,
|
|
)
|
|
})
|
|
.collect::<Result<Vec<_>, _>>()?;
|
|
|
|
// check if all are unique type vars
|
|
let all_unique_type_var = {
|
|
let mut occured_type_var_id: HashSet<u32> = HashSet::new();
|
|
type_vars.iter().all(|x| {
|
|
let ty = unifier.get_ty(*x);
|
|
if let TypeEnum::TVar { id, .. } = ty.as_ref() {
|
|
occured_type_var_id.insert(*id)
|
|
} else {
|
|
false
|
|
}
|
|
})
|
|
};
|
|
if !all_unique_type_var {
|
|
return Err("expect unique type variables".into());
|
|
}
|
|
|
|
// add to TopLevelDef
|
|
class_def_type_vars.extend(type_vars);
|
|
}
|
|
|
|
// if others, do nothing in this function
|
|
_ => continue,
|
|
}
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
/// step 2, base classes.
|
|
/// now that the type vars of all classes are done, handle base classes and
|
|
/// put Self class into the ancestors list. We only allow single inheritance
|
|
fn analyze_top_level_class_bases(&mut self) -> Result<(), String> {
|
|
if self.unifier.top_level.is_none() {
|
|
let ctx = Arc::new(self.make_top_level_context());
|
|
self.unifier.top_level = Some(ctx);
|
|
}
|
|
|
|
let temp_def_list = self.extract_def_list();
|
|
let unifier = self.unifier.borrow_mut();
|
|
|
|
// first, only push direct parent into the list
|
|
// skip 5 to skip analyzing the primitives
|
|
for (class_def, class_ast) in self.definition_ast_list.iter_mut().skip(self.built_in_num) {
|
|
let mut class_def = class_def.write();
|
|
let (class_def_id, class_bases, class_ancestors, class_resolver, class_type_vars) = {
|
|
if let TopLevelDef::Class { ancestors, resolver, object_id, type_vars, .. } =
|
|
class_def.deref_mut()
|
|
{
|
|
if let Some(ast::Located {
|
|
node: ast::StmtKind::ClassDef { bases, .. }, ..
|
|
}) = class_ast
|
|
{
|
|
(object_id, bases, ancestors, resolver, type_vars)
|
|
} else {
|
|
unreachable!("must be both class")
|
|
}
|
|
} else {
|
|
continue;
|
|
}
|
|
};
|
|
let class_resolver = class_resolver.as_ref().unwrap();
|
|
let class_resolver = class_resolver.deref();
|
|
|
|
let mut has_base = false;
|
|
for b in class_bases {
|
|
// type vars have already been handled, so skip on `Generic[...]`
|
|
if matches!(
|
|
&b.node,
|
|
ast::ExprKind::Subscript { value, .. }
|
|
if matches!(
|
|
&value.node,
|
|
ast::ExprKind::Name { id, .. } if id == &"Generic".into()
|
|
)
|
|
) {
|
|
continue;
|
|
}
|
|
|
|
if has_base {
|
|
return Err("a class def can only have at most one base class \
|
|
declaration and one generic declaration"
|
|
.into());
|
|
}
|
|
has_base = true;
|
|
|
|
// the function parse_ast_to make sure that no type var occured in
|
|
// bast_ty if it is a CustomClassKind
|
|
let base_ty = parse_ast_to_type_annotation_kinds(
|
|
class_resolver,
|
|
&temp_def_list,
|
|
unifier,
|
|
&self.primitives_ty,
|
|
b,
|
|
vec![(*class_def_id, class_type_vars.clone())].into_iter().collect(),
|
|
)?;
|
|
|
|
if let TypeAnnotation::CustomClassKind { .. } = &base_ty {
|
|
class_ancestors.push(base_ty);
|
|
} else {
|
|
return Err("class base declaration can only be custom class".into());
|
|
}
|
|
}
|
|
}
|
|
|
|
// second, get all ancestors
|
|
let mut ancestors_store: HashMap<DefinitionId, Vec<TypeAnnotation>> = Default::default();
|
|
// skip 5 to skip analyzing the primitives
|
|
for (class_def, _) in self.definition_ast_list.iter().skip(self.built_in_num) {
|
|
let class_def = class_def.read();
|
|
let (class_ancestors, class_id) = {
|
|
if let TopLevelDef::Class { ancestors, object_id, .. } = class_def.deref() {
|
|
(ancestors, *object_id)
|
|
} else {
|
|
continue;
|
|
}
|
|
};
|
|
ancestors_store.insert(
|
|
class_id,
|
|
// if class has direct parents, get all ancestors of its parents. Else just empty
|
|
if class_ancestors.is_empty() {
|
|
vec![]
|
|
} else {
|
|
Self::get_all_ancestors_helper(&class_ancestors[0], temp_def_list.as_slice())?
|
|
},
|
|
);
|
|
}
|
|
|
|
// insert the ancestors to the def list
|
|
// skip 5 to skip analyzing the primitives
|
|
for (class_def, _) in self.definition_ast_list.iter_mut().skip(self.built_in_num) {
|
|
let mut class_def = class_def.write();
|
|
let (class_ancestors, class_id, class_type_vars) = {
|
|
if let TopLevelDef::Class { ancestors, object_id, type_vars, .. } =
|
|
class_def.deref_mut()
|
|
{
|
|
(ancestors, *object_id, type_vars)
|
|
} else {
|
|
continue;
|
|
}
|
|
};
|
|
|
|
let ans = ancestors_store.get_mut(&class_id).unwrap();
|
|
class_ancestors.append(ans);
|
|
|
|
// insert self type annotation to the front of the vector to maintain the order
|
|
class_ancestors
|
|
.insert(0, make_self_type_annotation(class_type_vars.as_slice(), class_id));
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
/// step 3, class fields and methods
|
|
fn analyze_top_level_class_fields_methods(&mut self) -> Result<(), String> {
|
|
let temp_def_list = self.extract_def_list();
|
|
let primitives = &self.primitives_ty;
|
|
let def_ast_list = &self.definition_ast_list;
|
|
let unifier = self.unifier.borrow_mut();
|
|
|
|
let mut type_var_to_concrete_def: HashMap<Type, TypeAnnotation> = HashMap::new();
|
|
|
|
// skip 5 to skip analyzing the primitives
|
|
for (class_def, class_ast) in def_ast_list.iter().skip(self.built_in_num) {
|
|
if matches!(&*class_def.read(), TopLevelDef::Class { .. }) {
|
|
Self::analyze_single_class_methods_fields(
|
|
class_def.clone(),
|
|
&class_ast.as_ref().unwrap().node,
|
|
&temp_def_list,
|
|
unifier,
|
|
primitives,
|
|
&mut type_var_to_concrete_def,
|
|
&self.keyword_list,
|
|
)?
|
|
}
|
|
}
|
|
|
|
// println!("type_var_to_concrete_def1: {:?}", type_var_to_concrete_def);
|
|
|
|
// handle the inheritanced methods and fields
|
|
let mut current_ancestor_depth: usize = 2;
|
|
loop {
|
|
let mut finished = true;
|
|
|
|
for (class_def, _) in def_ast_list.iter().skip(self.built_in_num) {
|
|
let mut class_def = class_def.write();
|
|
if let TopLevelDef::Class { ancestors, .. } = class_def.deref() {
|
|
// if the length of the ancestor is equal to the current depth
|
|
// it means that all the ancestors of the class is handled
|
|
if ancestors.len() == current_ancestor_depth {
|
|
finished = false;
|
|
Self::analyze_single_class_ancestors(
|
|
class_def.deref_mut(),
|
|
&temp_def_list,
|
|
unifier,
|
|
primitives,
|
|
&mut type_var_to_concrete_def,
|
|
)?;
|
|
}
|
|
}
|
|
}
|
|
|
|
if finished {
|
|
break;
|
|
} else {
|
|
current_ancestor_depth += 1;
|
|
}
|
|
|
|
if current_ancestor_depth > def_ast_list.len() + 1 {
|
|
unreachable!("cannot be longer than the whole top level def list")
|
|
}
|
|
}
|
|
|
|
// println!("type_var_to_concrete_def3: {:?}\n", type_var_to_concrete_def);
|
|
|
|
// unification of previously assigned typevar
|
|
for (ty, def) in type_var_to_concrete_def {
|
|
// println!(
|
|
// "{:?}_{} -> {:?}\n",
|
|
// ty,
|
|
// unifier.stringify(ty,
|
|
// &mut |id| format!("class{}", id),
|
|
// &mut |id| format!("tvar{}", id)
|
|
// ),
|
|
// def
|
|
// );
|
|
let target_ty =
|
|
get_type_from_type_annotation_kinds(&temp_def_list, unifier, primitives, &def)?;
|
|
unifier.unify(ty, target_ty)?;
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
/// step 4, after class methods are done, top level functions have nothing unknown
|
|
fn analyze_top_level_function(&mut self) -> Result<(), String> {
|
|
let def_list = &self.definition_ast_list;
|
|
let keyword_list = &self.keyword_list;
|
|
let temp_def_list = self.extract_def_list();
|
|
let unifier = self.unifier.borrow_mut();
|
|
let primitives_store = &self.primitives_ty;
|
|
|
|
// skip 5 to skip analyzing the primitives
|
|
for (function_def, function_ast) in def_list.iter().skip(self.built_in_num) {
|
|
let mut function_def = function_def.write();
|
|
let function_def = function_def.deref_mut();
|
|
let function_ast = if let Some(x) = function_ast.as_ref() {
|
|
x
|
|
} else {
|
|
// if let TopLevelDef::Function { name, .. } = ``
|
|
continue;
|
|
};
|
|
|
|
if let TopLevelDef::Function { signature: dummy_ty, resolver, var_id, .. } =
|
|
function_def
|
|
{
|
|
if matches!(unifier.get_ty(*dummy_ty).as_ref(), TypeEnum::TFunc(_)) {
|
|
// already have a function type, is class method, skip
|
|
continue;
|
|
}
|
|
if let ast::StmtKind::FunctionDef { args, returns, .. } = &function_ast.node {
|
|
let resolver = resolver.as_ref();
|
|
let resolver = resolver.unwrap();
|
|
let resolver = resolver.deref();
|
|
|
|
let mut function_var_map: HashMap<u32, Type> = HashMap::new();
|
|
let arg_types = {
|
|
// make sure no duplicate parameter
|
|
let mut defined_paramter_name: HashSet<_> = HashSet::new();
|
|
let have_unique_fuction_parameter_name = args.args.iter().all(|x| {
|
|
defined_paramter_name.insert(x.node.arg)
|
|
&& !keyword_list.contains(&x.node.arg)
|
|
});
|
|
if !have_unique_fuction_parameter_name {
|
|
return Err("top level function must have unique parameter names \
|
|
and names thould not be the same as the keywords"
|
|
.into());
|
|
}
|
|
|
|
args.args
|
|
.iter()
|
|
.map(|x| -> Result<FuncArg, String> {
|
|
let annotation = x
|
|
.node
|
|
.annotation
|
|
.as_ref()
|
|
.ok_or_else(|| {
|
|
format!(
|
|
"function parameter `{}` at {} need type annotation",
|
|
x.node.arg, x.location
|
|
)
|
|
})?
|
|
.as_ref();
|
|
|
|
let type_annotation = parse_ast_to_type_annotation_kinds(
|
|
resolver,
|
|
temp_def_list.as_slice(),
|
|
unifier,
|
|
primitives_store,
|
|
annotation,
|
|
// NOTE: since only class need this, for function
|
|
// it should be fine to be empty map
|
|
HashMap::new(),
|
|
)?;
|
|
|
|
let type_vars_within =
|
|
get_type_var_contained_in_type_annotation(&type_annotation)
|
|
.into_iter()
|
|
.map(|x| -> Result<(u32, Type), String> {
|
|
if let TypeAnnotation::TypeVarKind(ty) = x {
|
|
Ok((Self::get_var_id(ty, unifier)?, ty))
|
|
} else {
|
|
unreachable!("must be type var annotation kind")
|
|
}
|
|
})
|
|
.collect::<Result<Vec<_>, _>>()?;
|
|
for (id, ty) in type_vars_within {
|
|
if let Some(prev_ty) = function_var_map.insert(id, ty) {
|
|
// if already have the type inserted, make sure they are the same thing
|
|
assert_eq!(prev_ty, ty);
|
|
}
|
|
}
|
|
|
|
let ty = get_type_from_type_annotation_kinds(
|
|
temp_def_list.as_ref(),
|
|
unifier,
|
|
primitives_store,
|
|
&type_annotation,
|
|
)?;
|
|
|
|
Ok(FuncArg {
|
|
name: x.node.arg,
|
|
ty,
|
|
default_value: Default::default(),
|
|
})
|
|
})
|
|
.collect::<Result<Vec<_>, _>>()?
|
|
};
|
|
|
|
let return_ty = {
|
|
if let Some(returns) = returns {
|
|
let return_ty_annotation = {
|
|
let return_annotation = returns.as_ref();
|
|
parse_ast_to_type_annotation_kinds(
|
|
resolver,
|
|
&temp_def_list,
|
|
unifier,
|
|
primitives_store,
|
|
return_annotation,
|
|
// NOTE: since only class need this, for function
|
|
// it should be fine to be empty map
|
|
HashMap::new(),
|
|
)?
|
|
};
|
|
|
|
let type_vars_within =
|
|
get_type_var_contained_in_type_annotation(&return_ty_annotation)
|
|
.into_iter()
|
|
.map(|x| -> Result<(u32, Type), String> {
|
|
if let TypeAnnotation::TypeVarKind(ty) = x {
|
|
Ok((Self::get_var_id(ty, unifier)?, ty))
|
|
} else {
|
|
unreachable!("must be type var here")
|
|
}
|
|
})
|
|
.collect::<Result<Vec<_>, _>>()?;
|
|
for (id, ty) in type_vars_within {
|
|
if let Some(prev_ty) = function_var_map.insert(id, ty) {
|
|
// if already have the type inserted, make sure they are the same thing
|
|
assert_eq!(prev_ty, ty);
|
|
}
|
|
}
|
|
|
|
get_type_from_type_annotation_kinds(
|
|
&temp_def_list,
|
|
unifier,
|
|
primitives_store,
|
|
&return_ty_annotation,
|
|
)?
|
|
} else {
|
|
primitives_store.none
|
|
}
|
|
};
|
|
var_id.extend_from_slice(
|
|
function_var_map.keys().into_iter().copied().collect_vec().as_slice(),
|
|
);
|
|
let function_ty = unifier.add_ty(TypeEnum::TFunc(
|
|
FunSignature { args: arg_types, ret: return_ty, vars: function_var_map }
|
|
.into(),
|
|
));
|
|
unifier
|
|
.unify(*dummy_ty, function_ty)
|
|
.map_err(|old| format!("{} at {}", old, function_ast.location))?;
|
|
} else {
|
|
unreachable!("must be both function");
|
|
}
|
|
} else {
|
|
// not top level function def, skip
|
|
continue;
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn analyze_single_class_methods_fields(
|
|
class_def: Arc<RwLock<TopLevelDef>>,
|
|
class_ast: &ast::StmtKind<()>,
|
|
temp_def_list: &[Arc<RwLock<TopLevelDef>>],
|
|
unifier: &mut Unifier,
|
|
primitives: &PrimitiveStore,
|
|
type_var_to_concrete_def: &mut HashMap<Type, TypeAnnotation>,
|
|
keyword_list: &HashSet<StrRef>,
|
|
) -> Result<(), String> {
|
|
let mut class_def = class_def.write();
|
|
let (
|
|
class_id,
|
|
_class_name,
|
|
_class_bases_ast,
|
|
class_body_ast,
|
|
_class_ancestor_def,
|
|
class_fields_def,
|
|
class_methods_def,
|
|
class_type_vars_def,
|
|
class_resolver,
|
|
) = if let TopLevelDef::Class {
|
|
object_id,
|
|
ancestors,
|
|
fields,
|
|
methods,
|
|
resolver,
|
|
type_vars,
|
|
..
|
|
} = &mut *class_def
|
|
{
|
|
if let ast::StmtKind::ClassDef { name, bases, body, .. } = &class_ast {
|
|
(*object_id, *name, bases, body, ancestors, fields, methods, type_vars, resolver)
|
|
} else {
|
|
unreachable!("here must be class def ast");
|
|
}
|
|
} else {
|
|
unreachable!("here must be toplevel class def");
|
|
};
|
|
let class_resolver = class_resolver.as_ref().unwrap();
|
|
let class_resolver = class_resolver.as_ref();
|
|
|
|
let mut defined_fields: HashSet<_> = HashSet::new();
|
|
for b in class_body_ast {
|
|
match &b.node {
|
|
ast::StmtKind::FunctionDef { args, returns, name, .. } => {
|
|
let (method_dummy_ty, method_id) =
|
|
Self::get_class_method_def_info(class_methods_def, *name)?;
|
|
|
|
// the method var map can surely include the class's generic parameters
|
|
let mut method_var_map: HashMap<u32, Type> = class_type_vars_def
|
|
.iter()
|
|
.map(|ty| {
|
|
if let TypeEnum::TVar { id, .. } = unifier.get_ty(*ty).as_ref() {
|
|
(*id, *ty)
|
|
} else {
|
|
unreachable!("must be type var here")
|
|
}
|
|
})
|
|
.collect();
|
|
|
|
let arg_types: Vec<FuncArg> = {
|
|
// check method parameters cannot have same name
|
|
let mut defined_paramter_name: HashSet<_> = HashSet::new();
|
|
let zelf: StrRef = "self".into();
|
|
let have_unique_fuction_parameter_name = args.args.iter().all(|x| {
|
|
defined_paramter_name.insert(x.node.arg)
|
|
&& (!keyword_list.contains(&x.node.arg) || x.node.arg == zelf)
|
|
});
|
|
if !have_unique_fuction_parameter_name {
|
|
return Err("class method must have unique parameter names \
|
|
and names thould not be the same as the keywords"
|
|
.into());
|
|
}
|
|
if name == &"__init__".into() && !defined_paramter_name.contains(&zelf) {
|
|
return Err("__init__ function must have a `self` parameter".into());
|
|
}
|
|
if !defined_paramter_name.contains(&zelf) {
|
|
return Err("currently does not support static method".into());
|
|
}
|
|
|
|
let mut result = Vec::new();
|
|
for x in &args.args {
|
|
let name = x.node.arg;
|
|
if name != zelf {
|
|
let type_ann = {
|
|
let annotation_expr = x
|
|
.node
|
|
.annotation
|
|
.as_ref()
|
|
.ok_or_else(|| {
|
|
format!(
|
|
"type annotation for `{}` at {} needed",
|
|
x.node.arg, x.location
|
|
)
|
|
})?
|
|
.as_ref();
|
|
parse_ast_to_type_annotation_kinds(
|
|
class_resolver,
|
|
temp_def_list,
|
|
unifier,
|
|
primitives,
|
|
annotation_expr,
|
|
vec![(class_id, class_type_vars_def.clone())]
|
|
.into_iter()
|
|
.collect(),
|
|
)?
|
|
};
|
|
// find type vars within this method parameter type annotation
|
|
let type_vars_within =
|
|
get_type_var_contained_in_type_annotation(&type_ann);
|
|
// handle the class type var and the method type var
|
|
for type_var_within in type_vars_within {
|
|
if let TypeAnnotation::TypeVarKind(ty) = type_var_within {
|
|
let id = Self::get_var_id(ty, unifier)?;
|
|
if let Some(prev_ty) = method_var_map.insert(id, ty) {
|
|
// if already in the list, make sure they are the same?
|
|
assert_eq!(prev_ty, ty);
|
|
}
|
|
} else {
|
|
unreachable!("must be type var annotation");
|
|
}
|
|
}
|
|
// finish handling type vars
|
|
let dummy_func_arg = FuncArg {
|
|
name,
|
|
ty: unifier.get_fresh_var().0,
|
|
// TODO: default value?
|
|
default_value: None,
|
|
};
|
|
// push the dummy type and the type annotation
|
|
// into the list for later unification
|
|
type_var_to_concrete_def
|
|
.insert(dummy_func_arg.ty, type_ann.clone());
|
|
result.push(dummy_func_arg)
|
|
}
|
|
}
|
|
result
|
|
};
|
|
|
|
let ret_type = {
|
|
if let Some(result) = returns {
|
|
let result = result.as_ref();
|
|
let annotation = parse_ast_to_type_annotation_kinds(
|
|
class_resolver,
|
|
temp_def_list,
|
|
unifier,
|
|
primitives,
|
|
result,
|
|
vec![(class_id, class_type_vars_def.clone())].into_iter().collect(),
|
|
)?;
|
|
// find type vars within this return type annotation
|
|
let type_vars_within =
|
|
get_type_var_contained_in_type_annotation(&annotation);
|
|
// handle the class type var and the method type var
|
|
for type_var_within in type_vars_within {
|
|
if let TypeAnnotation::TypeVarKind(ty) = type_var_within {
|
|
let id = Self::get_var_id(ty, unifier)?;
|
|
if let Some(prev_ty) = method_var_map.insert(id, ty) {
|
|
// if already in the list, make sure they are the same?
|
|
assert_eq!(prev_ty, ty);
|
|
}
|
|
} else {
|
|
unreachable!("must be type var annotation");
|
|
}
|
|
}
|
|
let dummy_return_type = unifier.get_fresh_var().0;
|
|
type_var_to_concrete_def.insert(dummy_return_type, annotation.clone());
|
|
dummy_return_type
|
|
} else {
|
|
// if do not have return annotation, return none
|
|
// for uniform handling, still use type annoatation
|
|
let dummy_return_type = unifier.get_fresh_var().0;
|
|
type_var_to_concrete_def.insert(
|
|
dummy_return_type,
|
|
TypeAnnotation::PrimitiveKind(primitives.none),
|
|
);
|
|
dummy_return_type
|
|
}
|
|
};
|
|
|
|
if let TopLevelDef::Function { var_id, .. } =
|
|
temp_def_list.get(method_id.0).unwrap().write().deref_mut()
|
|
{
|
|
var_id.extend_from_slice(
|
|
method_var_map.keys().into_iter().copied().collect_vec().as_slice(),
|
|
);
|
|
}
|
|
let method_type = unifier.add_ty(TypeEnum::TFunc(
|
|
FunSignature { args: arg_types, ret: ret_type, vars: method_var_map }
|
|
.into(),
|
|
));
|
|
|
|
// unify now since function type is not in type annotation define
|
|
// which should be fine since type within method_type will be subst later
|
|
unifier.unify(method_dummy_ty, method_type)?;
|
|
}
|
|
ast::StmtKind::AnnAssign { target, annotation, value: None, .. } => {
|
|
if let ast::ExprKind::Name { id: attr, .. } = &target.node {
|
|
if defined_fields.insert(attr.to_string()) {
|
|
let dummy_field_type = unifier.get_fresh_var().0;
|
|
class_fields_def.push((*attr, dummy_field_type));
|
|
|
|
// handle Kernel[T], KernelImmutable[T]
|
|
let annotation = {
|
|
match &annotation.as_ref().node {
|
|
ast::ExprKind::Subscript { value, slice, .. }
|
|
if {
|
|
matches!(&value.node, ast::ExprKind::Name { id, .. }
|
|
if id == &"Kernel".into() || id == &"KernelImmutable".into())
|
|
} =>
|
|
{
|
|
slice
|
|
}
|
|
_ => annotation,
|
|
}
|
|
};
|
|
|
|
let annotation = parse_ast_to_type_annotation_kinds(
|
|
class_resolver,
|
|
temp_def_list,
|
|
unifier,
|
|
primitives,
|
|
annotation.as_ref(),
|
|
vec![(class_id, class_type_vars_def.clone())].into_iter().collect(),
|
|
)?;
|
|
// find type vars within this return type annotation
|
|
let type_vars_within =
|
|
get_type_var_contained_in_type_annotation(&annotation);
|
|
// handle the class type var and the method type var
|
|
for type_var_within in type_vars_within {
|
|
if let TypeAnnotation::TypeVarKind(t) = type_var_within {
|
|
if !class_type_vars_def.contains(&t) {
|
|
return Err("class fields can only use type \
|
|
vars declared as class generic type vars"
|
|
.into());
|
|
}
|
|
} else {
|
|
unreachable!("must be type var annotation");
|
|
}
|
|
}
|
|
type_var_to_concrete_def.insert(dummy_field_type, annotation);
|
|
} else {
|
|
return Err("same class fields defined twice".into());
|
|
}
|
|
} else {
|
|
return Err("unsupported statement type in class definition body".into());
|
|
}
|
|
}
|
|
ast::StmtKind::Pass => {}
|
|
ast::StmtKind::Expr { value: _ } => {} // typically a docstring; ignoring all expressions matches CPython behavior
|
|
_ => return Err("unsupported statement type in class definition body".into()),
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn analyze_single_class_ancestors(
|
|
class_def: &mut TopLevelDef,
|
|
temp_def_list: &[Arc<RwLock<TopLevelDef>>],
|
|
unifier: &mut Unifier,
|
|
_primitives: &PrimitiveStore,
|
|
type_var_to_concrete_def: &mut HashMap<Type, TypeAnnotation>,
|
|
) -> Result<(), String> {
|
|
let (
|
|
_class_id,
|
|
class_ancestor_def,
|
|
class_fields_def,
|
|
class_methods_def,
|
|
_class_type_vars_def,
|
|
_class_resolver,
|
|
) = if let TopLevelDef::Class {
|
|
object_id,
|
|
ancestors,
|
|
fields,
|
|
methods,
|
|
resolver,
|
|
type_vars,
|
|
..
|
|
} = class_def
|
|
{
|
|
(*object_id, ancestors, fields, methods, type_vars, resolver)
|
|
} else {
|
|
unreachable!("here must be class def ast");
|
|
};
|
|
|
|
// since when this function is called, the ancestors of the direct parent
|
|
// are supposed to be already handled, so we only need to deal with the direct parent
|
|
let base = class_ancestor_def.get(1).unwrap();
|
|
if let TypeAnnotation::CustomClassKind { id, params: _ } = base {
|
|
let base = temp_def_list.get(id.0).unwrap();
|
|
let base = base.read();
|
|
if let TopLevelDef::Class { methods, fields, .. } = &*base {
|
|
// handle methods override
|
|
// since we need to maintain the order, create a new list
|
|
let mut new_child_methods: Vec<(StrRef, Type, DefinitionId)> = Vec::new();
|
|
let mut is_override: HashSet<StrRef> = HashSet::new();
|
|
for (anc_method_name, anc_method_ty, anc_method_def_id) in methods {
|
|
// find if there is a method with same name in the child class
|
|
let mut to_be_added = (*anc_method_name, *anc_method_ty, *anc_method_def_id);
|
|
for (class_method_name, class_method_ty, class_method_defid) in
|
|
class_methods_def.iter()
|
|
{
|
|
if class_method_name == anc_method_name {
|
|
// ignore and handle self
|
|
// if is __init__ method, no need to check return type
|
|
let ok = class_method_name == &"__init__".into()
|
|
|| Self::check_overload_function_type(
|
|
*class_method_ty,
|
|
*anc_method_ty,
|
|
unifier,
|
|
type_var_to_concrete_def,
|
|
);
|
|
if !ok {
|
|
return Err("method has same name as ancestors' method, but incompatible type".into());
|
|
}
|
|
// mark it as added
|
|
is_override.insert(*class_method_name);
|
|
to_be_added =
|
|
(*class_method_name, *class_method_ty, *class_method_defid);
|
|
break;
|
|
}
|
|
}
|
|
new_child_methods.push(to_be_added);
|
|
}
|
|
// add those that are not overriding method to the new_child_methods
|
|
for (class_method_name, class_method_ty, class_method_defid) in
|
|
class_methods_def.iter()
|
|
{
|
|
if !is_override.contains(class_method_name) {
|
|
new_child_methods.push((
|
|
*class_method_name,
|
|
*class_method_ty,
|
|
*class_method_defid,
|
|
));
|
|
}
|
|
}
|
|
// use the new_child_methods to replace all the elements in `class_methods_def`
|
|
class_methods_def.drain(..);
|
|
class_methods_def.extend(new_child_methods);
|
|
|
|
// handle class fields
|
|
let mut new_child_fields: Vec<(StrRef, Type)> = Vec::new();
|
|
// let mut is_override: HashSet<_> = HashSet::new();
|
|
for (anc_field_name, anc_field_ty) in fields {
|
|
let to_be_added = (*anc_field_name, *anc_field_ty);
|
|
// find if there is a fields with the same name in the child class
|
|
for (class_field_name, ..) in class_fields_def.iter() {
|
|
if class_field_name == anc_field_name {
|
|
// let ok = Self::check_overload_field_type(
|
|
// *class_field_ty,
|
|
// *anc_field_ty,
|
|
// unifier,
|
|
// type_var_to_concrete_def,
|
|
// );
|
|
// if !ok {
|
|
// return Err("fields has same name as ancestors' field, but incompatible type".into());
|
|
// }
|
|
// // mark it as added
|
|
// is_override.insert(class_field_name.to_string());
|
|
// to_be_added = (class_field_name.to_string(), *class_field_ty);
|
|
// break;
|
|
return Err(format!(
|
|
"field `{}` has already declared in the ancestor classes",
|
|
class_field_name
|
|
));
|
|
}
|
|
}
|
|
new_child_fields.push(to_be_added);
|
|
}
|
|
for (class_field_name, class_field_ty) in class_fields_def.iter() {
|
|
if !is_override.contains(class_field_name) {
|
|
new_child_fields.push((*class_field_name, *class_field_ty));
|
|
}
|
|
}
|
|
class_fields_def.drain(..);
|
|
class_fields_def.extend(new_child_fields);
|
|
} else {
|
|
unreachable!("must be top level class def")
|
|
}
|
|
} else {
|
|
unreachable!("must be class type annotation")
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
/// step 5, analyze and call type inferecer to fill the `instance_to_stmt` of topleveldef::function
|
|
fn analyze_function_instance(&mut self) -> Result<(), String> {
|
|
// first get the class contructor type correct for the following type check in function body
|
|
// also do class field instantiation check
|
|
for (def, ast) in self.definition_ast_list.iter().skip(self.built_in_num) {
|
|
let class_def = def.read();
|
|
if let TopLevelDef::Class {
|
|
constructor,
|
|
methods,
|
|
fields,
|
|
type_vars,
|
|
name: class_name,
|
|
object_id,
|
|
resolver: _,
|
|
..
|
|
} = &*class_def
|
|
{
|
|
let mut init_id: Option<DefinitionId> = None;
|
|
// get the class contructor type correct
|
|
let (contor_args, contor_type_vars) = {
|
|
let mut constructor_args: Vec<FuncArg> = Vec::new();
|
|
let mut type_vars: HashMap<u32, Type> = HashMap::new();
|
|
for (name, func_sig, id) in methods {
|
|
if name == &"__init__".into() {
|
|
init_id = Some(*id);
|
|
if let TypeEnum::TFunc(sig) = self.unifier.get_ty(*func_sig).as_ref() {
|
|
let FunSignature { args, vars, .. } = &*sig.borrow();
|
|
constructor_args.extend_from_slice(args);
|
|
type_vars.extend(vars);
|
|
} else {
|
|
unreachable!("must be typeenum::tfunc")
|
|
}
|
|
}
|
|
}
|
|
(constructor_args, type_vars)
|
|
};
|
|
let self_type = get_type_from_type_annotation_kinds(
|
|
self.extract_def_list().as_slice(),
|
|
&mut self.unifier,
|
|
&self.primitives_ty,
|
|
&make_self_type_annotation(type_vars, *object_id),
|
|
)?;
|
|
let contor_type = self.unifier.add_ty(TypeEnum::TFunc(
|
|
FunSignature { args: contor_args, ret: self_type, vars: contor_type_vars }
|
|
.into(),
|
|
));
|
|
self.unifier
|
|
.unify(constructor.unwrap(), contor_type)
|
|
.map_err(|old| format!("{} at {}", old, ast.as_ref().unwrap().location))?;
|
|
|
|
// class field instantiation check
|
|
if let (Some(init_id), false) = (init_id, fields.is_empty()) {
|
|
let init_ast =
|
|
self.definition_ast_list.get(init_id.0).unwrap().1.as_ref().unwrap();
|
|
if let ast::StmtKind::FunctionDef { name, body, .. } = &init_ast.node {
|
|
if name != &"__init__".into() {
|
|
unreachable!("must be init function here")
|
|
}
|
|
let all_inited = Self::get_all_assigned_field(body.as_slice())?;
|
|
if fields.iter().any(|(x, _)| !all_inited.contains(x)) {
|
|
return Err(format!(
|
|
"fields of class {} not fully initialized",
|
|
class_name
|
|
));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
let ctx = Arc::new(self.make_top_level_context());
|
|
// type inference inside function body
|
|
for (id, (def, ast)) in self.definition_ast_list.iter().enumerate().skip(self.built_in_num)
|
|
{
|
|
let mut function_def = def.write();
|
|
if let TopLevelDef::Function {
|
|
instance_to_stmt,
|
|
instance_to_symbol,
|
|
name,
|
|
simple_name,
|
|
signature,
|
|
resolver,
|
|
..
|
|
} = &mut *function_def
|
|
{
|
|
if let TypeEnum::TFunc(func_sig) = self.unifier.get_ty(*signature).as_ref() {
|
|
let FunSignature { args, ret, vars } = &*func_sig.borrow();
|
|
// None if is not class method
|
|
let self_type = {
|
|
if let Some(class_id) = self.method_class.get(&DefinitionId(id)) {
|
|
let class_def = self.definition_ast_list.get(class_id.0).unwrap();
|
|
let class_def = class_def.0.read();
|
|
if let TopLevelDef::Class { type_vars, .. } = &*class_def {
|
|
let ty_ann = make_self_type_annotation(type_vars, *class_id);
|
|
let self_ty = get_type_from_type_annotation_kinds(
|
|
self.extract_def_list().as_slice(),
|
|
&mut self.unifier,
|
|
&self.primitives_ty,
|
|
&ty_ann,
|
|
)?;
|
|
Some(self_ty)
|
|
} else {
|
|
unreachable!("must be class def")
|
|
}
|
|
} else {
|
|
None
|
|
}
|
|
};
|
|
let (type_var_subst_comb, no_range_vars) = {
|
|
let unifier = &mut self.unifier;
|
|
let mut no_ranges: Vec<Type> = Vec::new();
|
|
let var_ids = vars.iter().map(|(id, ty)| {
|
|
if matches!(unifier.get_ty(*ty).as_ref(), TypeEnum::TVar { range, .. } if range.borrow().is_empty()) {
|
|
no_ranges.push(*ty);
|
|
}
|
|
*id
|
|
})
|
|
.collect_vec();
|
|
let var_combs = vars
|
|
.iter()
|
|
.map(|(_, ty)| {
|
|
unifier.get_instantiations(*ty).unwrap_or_else(|| vec![*ty])
|
|
})
|
|
.multi_cartesian_product()
|
|
.collect_vec();
|
|
let mut result: Vec<HashMap<u32, Type>> = Default::default();
|
|
for comb in var_combs {
|
|
result.push(var_ids.clone().into_iter().zip(comb).collect());
|
|
}
|
|
// NOTE: if is empty, means no type var, append a empty subst, ok to do this?
|
|
if result.is_empty() {
|
|
result.push(HashMap::new())
|
|
}
|
|
(result, no_ranges)
|
|
};
|
|
|
|
for subst in type_var_subst_comb {
|
|
// for each instance
|
|
let inst_ret = self.unifier.subst(*ret, &subst).unwrap_or(*ret);
|
|
let inst_args = {
|
|
let unifier = &mut self.unifier;
|
|
args.iter()
|
|
.map(|a| FuncArg {
|
|
name: a.name,
|
|
ty: unifier.subst(a.ty, &subst).unwrap_or(a.ty),
|
|
default_value: a.default_value.clone(),
|
|
})
|
|
.collect_vec()
|
|
};
|
|
let self_type = {
|
|
let unifier = &mut self.unifier;
|
|
self_type.map(|x| unifier.subst(x, &subst).unwrap_or(x))
|
|
};
|
|
|
|
let mut identifiers = {
|
|
// NOTE: none and function args?
|
|
let mut result: HashSet<_> = HashSet::new();
|
|
result.insert("None".into());
|
|
if self_type.is_some() {
|
|
result.insert("self".into());
|
|
}
|
|
result.extend(inst_args.iter().map(|x| x.name));
|
|
result
|
|
};
|
|
let mut calls: HashMap<CodeLocation, CallId> = HashMap::new();
|
|
let mut inferencer = Inferencer {
|
|
top_level: ctx.as_ref(),
|
|
defined_identifiers: identifiers.clone(),
|
|
function_data: &mut FunctionData {
|
|
resolver: resolver.as_ref().unwrap().clone(),
|
|
return_type: if self
|
|
.unifier
|
|
.unioned(inst_ret, self.primitives_ty.none)
|
|
{
|
|
None
|
|
} else {
|
|
Some(inst_ret)
|
|
},
|
|
// NOTE: allowed type vars
|
|
bound_variables: no_range_vars.clone(),
|
|
},
|
|
unifier: &mut self.unifier,
|
|
variable_mapping: {
|
|
// NOTE: none and function args?
|
|
let mut result: HashMap<StrRef, Type> = HashMap::new();
|
|
result.insert("None".into(), self.primitives_ty.none);
|
|
if let Some(self_ty) = self_type {
|
|
result.insert("self".into(), self_ty);
|
|
}
|
|
result.extend(inst_args.iter().map(|x| (x.name, x.ty)));
|
|
result
|
|
},
|
|
primitives: &self.primitives_ty,
|
|
virtual_checks: &mut Vec::new(),
|
|
calls: &mut calls,
|
|
};
|
|
|
|
let fun_body =
|
|
if let ast::StmtKind::FunctionDef { body, decorator_list, .. } =
|
|
ast.clone().unwrap().node
|
|
{
|
|
if !decorator_list.is_empty()
|
|
&& matches!(&decorator_list[0].node,
|
|
ast::ExprKind::Name{ id, .. } if id == &"extern".into())
|
|
{
|
|
instance_to_symbol.insert("".into(), simple_name.to_string());
|
|
continue;
|
|
}
|
|
body
|
|
} else {
|
|
unreachable!("must be function def ast")
|
|
}
|
|
.into_iter()
|
|
.map(|b| inferencer.fold_stmt(b))
|
|
.collect::<Result<Vec<_>, _>>()?;
|
|
|
|
let returned =
|
|
inferencer.check_block(fun_body.as_slice(), &mut identifiers)?;
|
|
|
|
if !self.unifier.unioned(inst_ret, self.primitives_ty.none) && !returned {
|
|
let def_ast_list = &self.definition_ast_list;
|
|
let ret_str = self.unifier.stringify(
|
|
inst_ret,
|
|
&mut |id| {
|
|
if let TopLevelDef::Class { name, .. } =
|
|
&*def_ast_list[id].0.read()
|
|
{
|
|
name.to_string()
|
|
} else {
|
|
unreachable!("must be class id here")
|
|
}
|
|
},
|
|
&mut |id| format!("tvar{}", id),
|
|
);
|
|
return Err(format!(
|
|
"expected return type of `{}` in function `{}` at {}",
|
|
ret_str,
|
|
name,
|
|
ast.as_ref().unwrap().location
|
|
));
|
|
}
|
|
|
|
instance_to_stmt.insert(
|
|
// NOTE: refer to codegen/expr/get_subst_key function
|
|
{
|
|
let unifier = &mut self.unifier;
|
|
subst
|
|
.keys()
|
|
.sorted()
|
|
.map(|id| {
|
|
let ty = subst.get(id).unwrap();
|
|
unifier.stringify(
|
|
*ty,
|
|
&mut |id| id.to_string(),
|
|
&mut |id| id.to_string(),
|
|
)
|
|
})
|
|
.join(", ")
|
|
},
|
|
FunInstance {
|
|
body: Arc::new(fun_body),
|
|
unifier_id: 0,
|
|
calls: Arc::new(calls),
|
|
subst,
|
|
},
|
|
);
|
|
}
|
|
} else {
|
|
unreachable!("must be typeenum::tfunc")
|
|
}
|
|
} else {
|
|
continue;
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
}
|