nac3/nac3standalone/demo/interpret_demo.py

274 lines
6.8 KiB
Python
Raw Permalink Normal View History

#!/usr/bin/env python3
import sys
import importlib.util
import importlib.machinery
import math
import numpy as np
import numpy.typing as npt
2024-08-01 18:43:06 +08:00
import scipy as sp
import pathlib
from numpy import int32, int64, uint32, uint64
from scipy import special
from typing import TypeVar, Generic, Literal, Union
T = TypeVar('T')
class Option(Generic[T]):
_nac3_option: T
def __init__(self, v: T):
self._nac3_option = v
def is_none(self):
return self._nac3_option is None
def is_some(self):
return not self.is_none()
def unwrap(self):
return self._nac3_option
def __repr__(self) -> str:
if self.is_none():
return "none"
else:
return "Some({})".format(repr(self._nac3_option))
def __str__(self) -> str:
if self.is_none():
return "none"
else:
return "Some({})".format(str(self._nac3_option))
def Some(v: T) -> Option[T]:
return Option(v)
none = Option(None)
class _ConstGenericMarker:
pass
def ConstGeneric(name, constraint):
return TypeVar(name, _ConstGenericMarker, constraint)
N = TypeVar("N", bound=np.uint64)
class _NDArrayDummy(Generic[T, N]):
pass
# https://stackoverflow.com/questions/67803260/how-to-create-a-type-alias-with-a-throw-away-generic
NDArray = Union[npt.NDArray[T], _NDArrayDummy[T, N]]
def _bool(x):
if isinstance(x, np.ndarray):
return np.bool_(x)
else:
return bool(x)
def _float(x):
if isinstance(x, np.ndarray):
return np.float_(x)
else:
return float(x)
def round_away_zero(x):
if isinstance(x, np.ndarray):
return np.vectorize(round_away_zero)(x)
else:
if x >= 0.0:
return math.floor(x + 0.5)
else:
return math.ceil(x - 0.5)
def _floor(x):
if isinstance(x, np.ndarray):
return np.vectorize(_floor)(x)
else:
return math.floor(x)
def _ceil(x):
if isinstance(x, np.ndarray):
return np.vectorize(_ceil)(x)
else:
return math.ceil(x)
def patch(module):
def dbl_nan():
return np.nan
def dbl_inf():
return np.inf
def output_asciiart(x):
if x < 0:
sys.stdout.write("\n")
else:
sys.stdout.write(" .,-:;i+hHM$*#@ "[x])
def output_float(x):
print("%f" % x)
def output_strln(x):
print(x, end='')
def dbg_stack_address(_):
return 0
def extern(fun):
name = fun.__name__
if name == "dbl_nan":
return dbl_nan
elif name == "dbl_inf":
return dbl_inf
elif name == "output_asciiart":
return output_asciiart
elif name == "output_float64":
return output_float
elif name == "output_str":
return output_strln
elif name in {
"output_bool",
"output_int32",
"output_int64",
"output_int32_list",
"output_uint32",
"output_uint64",
"output_strln",
"output_range",
}:
return print
elif name == "dbg_stack_address":
return dbg_stack_address
else:
raise NotImplementedError
module.int32 = int32
module.int64 = int64
module.uint32 = uint32
module.uint64 = uint64
module.bool = _bool
module.float = _float
module.TypeVar = TypeVar
module.ConstGeneric = ConstGeneric
module.Generic = Generic
2023-12-18 08:50:49 +08:00
module.Literal = Literal
module.extern = extern
module.Option = Option
module.Some = Some
module.none = none
# Builtin Math functions
module.round = round_away_zero
module.round64 = round_away_zero
module.np_round = np.round
module.floor = _floor
module.floor64 = _floor
module.np_floor = np.floor
module.ceil = _ceil
module.ceil64 = _ceil
module.np_ceil = np.ceil
# NumPy NDArray factory functions
module.ndarray = NDArray
module.np_ndarray = np.ndarray
module.np_empty = np.empty
module.np_zeros = np.zeros
module.np_ones = np.ones
module.np_full = np.full
module.np_eye = np.eye
module.np_identity = np.identity
2024-06-11 15:30:57 +08:00
module.np_array = np.array
# NumPy Math functions
module.np_isnan = np.isnan
module.np_isinf = np.isinf
2024-05-08 17:42:19 +08:00
module.np_min = np.min
module.np_minimum = np.minimum
module.np_argmin = np.argmin
2024-05-08 17:42:19 +08:00
module.np_max = np.max
module.np_maximum = np.maximum
module.np_argmax = np.argmax
module.np_sin = np.sin
module.np_cos = np.cos
module.np_exp = np.exp
module.np_exp2 = np.exp2
module.np_log = np.log
module.np_log10 = np.log10
module.np_log2 = np.log2
module.np_fabs = np.fabs
module.np_trunc = np.trunc
module.np_sqrt = np.sqrt
module.np_rint = np.rint
module.np_tan = np.tan
module.np_arcsin = np.arcsin
module.np_arccos = np.arccos
module.np_arctan = np.arctan
module.np_sinh = np.sinh
module.np_cosh = np.cosh
module.np_tanh = np.tanh
module.np_arcsinh = np.arcsinh
module.np_arccosh = np.arccosh
module.np_arctanh = np.arctanh
module.np_expm1 = np.expm1
module.np_cbrt = np.cbrt
module.np_arctan2 = np.arctan2
module.np_copysign = np.copysign
module.np_fmax = np.fmax
module.np_fmin = np.fmin
module.np_ldexp = np.ldexp
module.np_hypot = np.hypot
module.np_nextafter = np.nextafter
module.np_transpose = np.transpose
module.np_reshape = np.reshape
# SciPy Math functions
module.sp_spec_erf = special.erf
module.sp_spec_erfc = special.erfc
module.sp_spec_gamma = special.gamma
module.sp_spec_gammaln = special.gammaln
module.sp_spec_j0 = special.j0
module.sp_spec_j1 = special.j1
# Linalg functions
module.np_dot = np.dot
module.np_linalg_cholesky = np.linalg.cholesky
module.np_linalg_qr = np.linalg.qr
module.np_linalg_svd = np.linalg.svd
module.np_linalg_inv = np.linalg.inv
module.np_linalg_pinv = np.linalg.pinv
module.np_linalg_matrix_power = np.linalg.matrix_power
module.np_linalg_det = np.linalg.det
module.sp_linalg_lu = lambda x: sp.linalg.lu(x, True)
module.sp_linalg_schur = sp.linalg.schur
module.sp_linalg_hessenberg = lambda x: sp.linalg.hessenberg(x, True)
def file_import(filename, prefix="file_import_"):
filename = pathlib.Path(filename)
modname = prefix + filename.stem
path = str(filename.resolve().parent)
sys.path.insert(0, path)
try:
spec = importlib.util.spec_from_loader(
modname,
importlib.machinery.SourceFileLoader(modname, str(filename)),
)
module = importlib.util.module_from_spec(spec)
patch(module)
spec.loader.exec_module(module)
finally:
sys.path.remove(path)
return module
def main():
demo = file_import(sys.argv[1])
demo.run()
if __name__ == "__main__":
main()