artiq/artiq/compiler/transforms/artiq_ir_generator.py

1564 lines
67 KiB
Python

"""
:class:`ARTIQIRGenerator` transforms typed AST into ARTIQ intermediate
representation. ARTIQ IR is designed to be low-level enough that
its operations are elementary--contain no internal branching--
but without too much detail, such as exposing the reference/value
semantics explicitly.
"""
from collections import OrderedDict
from pythonparser import algorithm, diagnostic, ast
from .. import types, builtins, ir
def _readable_name(insn):
if isinstance(insn, ir.Constant):
return str(insn.value)
else:
return insn.name
def _extract_loc(node):
if "keyword_loc" in node._locs:
return node.keyword_loc
else:
return node.loc
# We put some effort in keeping generated IR readable,
# i.e. with a more or less linear correspondence to the source.
# This is why basic blocks sometimes seem to be produced in an odd order.
class ARTIQIRGenerator(algorithm.Visitor):
"""
:class:`ARTIQIRGenerator` contains a lot of internal state,
which is effectively maintained in a stack--with push/pop
pairs around any state updates. It is comprised of following:
:ivar current_loc: (:class:`pythonparser.source.Range`)
source range of the node being currently visited
:ivar current_function: (:class:`ir.Function` or None)
module, def or lambda currently being translated
:ivar current_globals: (set of string)
set of variables that will be resolved in global scope
:ivar current_block: (:class:`ir.BasicBlock`)
basic block to which any new instruction will be appended
:ivar current_env: (:class:`ir.Alloc` of type :class:`ir.TEnvironment`)
the chained function environment, containing variables that
can become upvalues
:ivar current_private_env: (:class:`ir.Alloc` of type :class:`ir.TEnvironment`)
the private function environment, containing internal state
:ivar current_assign: (:class:`ir.Value` or None)
the right-hand side of current assignment statement, or
a component of a composite right-hand side when visiting
a composite left-hand side, such as, in ``x, y = z``,
the 2nd tuple element when visting ``y``
:ivar current_assert_env: (:class:`ir.Alloc` of type :class:`ir.TEnvironment`)
the environment where the individual components of current assert
statement are stored until display
:ivar current_assert_subexprs: (list of (:class:`ast.AST`, string))
the mapping from components of current assert statement to the names
their values have in :ivar:`current_assert_env`
:ivar break_target: (:class:`ir.BasicBlock` or None)
the basic block to which ``break`` will transfer control
:ivar continue_target: (:class:`ir.BasicBlock` or None)
the basic block to which ``continue`` will transfer control
:ivar return_target: (:class:`ir.BasicBlock` or None)
the basic block to which ``return`` will transfer control
:ivar unwind_target: (:class:`ir.BasicBlock` or None)
the basic block to which unwinding will transfer control
"""
_size_type = builtins.TInt(types.TValue(32))
def __init__(self, module_name, engine):
self.engine = engine
self.functions = []
self.name = [module_name]
self.current_loc = None
self.current_function = None
self.current_globals = set()
self.current_block = None
self.current_env = None
self.current_private_env = None
self.current_assign = None
self.current_assert_env = None
self.current_assert_subexprs = None
self.break_target = None
self.continue_target = None
self.return_target = None
self.unwind_target = None
def add_block(self, name=""):
block = ir.BasicBlock([], name)
self.current_function.add(block)
return block
def append(self, insn, block=None, loc=None):
if loc is None:
loc = self.current_loc
if block is None:
block = self.current_block
if insn.loc is None:
insn.loc = loc
return block.append(insn)
def terminate(self, insn):
if not self.current_block.is_terminated():
self.append(insn)
else:
insn.drop_references()
# Visitors
def visit(self, obj):
if isinstance(obj, list):
for elt in obj:
self.visit(elt)
if self.current_block.is_terminated():
break
elif isinstance(obj, ast.AST):
try:
old_loc, self.current_loc = self.current_loc, _extract_loc(obj)
return self._visit_one(obj)
finally:
self.current_loc = old_loc
# Module visitor
def visit_ModuleT(self, node):
# Treat start of module as synthesized
self.current_loc = None
try:
typ = types.TFunction(OrderedDict(), OrderedDict(), builtins.TNone())
func = ir.Function(typ, ".".join(self.name + ['__modinit__']), [])
self.functions.append(func)
old_func, self.current_function = self.current_function, func
entry = self.add_block("entry")
old_block, self.current_block = self.current_block, entry
env = self.append(ir.Alloc([], ir.TEnvironment(node.typing_env), name="env"))
old_env, self.current_env = self.current_env, env
priv_env = self.append(ir.Alloc([], ir.TEnvironment({ ".return": typ.ret }),
name="privenv"))
old_priv_env, self.current_private_env = self.current_private_env, priv_env
self.generic_visit(node)
self.terminate(ir.Return(ir.Constant(None, builtins.TNone())))
return self.functions
finally:
self.current_function = old_func
self.current_block = old_block
self.current_env = old_env
self.current_private_env = old_priv_env
# Statement visitors
def visit_function(self, node, is_lambda):
if is_lambda:
name = "lambda.{}.{}".format(node.loc.line(), node.loc.column())
typ = node.type.find()
else:
name = node.name
typ = node.signature_type.find()
try:
defaults = []
for arg_name, default_node in zip(typ.optargs, node.args.defaults):
default = self.visit(default_node)
env_default_name = \
self.current_env.type.add("default." + arg_name, default.type)
self.append(ir.SetLocal(self.current_env, env_default_name, default))
defaults.append(env_default_name)
old_name, self.name = self.name, self.name + [name]
env_arg = ir.EnvironmentArgument(self.current_env.type, "outerenv")
args = []
for arg_name in typ.args:
args.append(ir.Argument(typ.args[arg_name], "arg." + arg_name))
optargs = []
for arg_name in typ.optargs:
optargs.append(ir.Argument(ir.TOption(typ.optargs[arg_name]), "arg." + arg_name))
func = ir.Function(typ, ".".join(self.name), [env_arg] + args + optargs)
self.functions.append(func)
old_func, self.current_function = self.current_function, func
entry = self.add_block()
old_block, self.current_block = self.current_block, entry
old_globals, self.current_globals = self.current_globals, node.globals_in_scope
env_without_globals = \
{var: node.typing_env[var]
for var in node.typing_env
if var not in node.globals_in_scope}
env_type = ir.TEnvironment(env_without_globals, self.current_env.type)
env = self.append(ir.Alloc([], env_type, name="env"))
old_env, self.current_env = self.current_env, env
if not is_lambda:
priv_env = self.append(ir.Alloc([], ir.TEnvironment({ ".return": typ.ret }),
name="privenv"))
old_priv_env, self.current_private_env = self.current_private_env, priv_env
self.append(ir.SetLocal(env, ".outer", env_arg))
for index, arg_name in enumerate(typ.args):
self.append(ir.SetLocal(env, arg_name, args[index]))
for index, (arg_name, env_default_name) in enumerate(zip(typ.optargs, defaults)):
default = self.append(ir.GetLocal(self.current_env, env_default_name))
value = self.append(ir.Builtin("unwrap_or", [optargs[index], default],
typ.optargs[arg_name]))
self.append(ir.SetLocal(env, arg_name, value))
result = self.visit(node.body)
if is_lambda:
self.terminate(ir.Return(result))
elif builtins.is_none(typ.ret):
if not self.current_block.is_terminated():
self.current_block.append(ir.Return(ir.Constant(None, builtins.TNone())))
else:
if not self.current_block.is_terminated():
self.current_block.append(ir.Unreachable())
finally:
self.name = old_name
self.current_function = old_func
self.current_block = old_block
self.current_globals = old_globals
self.current_env = old_env
if not is_lambda:
self.current_private_env = old_priv_env
return self.append(ir.Closure(func, self.current_env))
def visit_FunctionDefT(self, node):
func = self.visit_function(node, is_lambda=False)
self._set_local(node.name, func)
def visit_Return(self, node):
if node.value is None:
return_value = ir.Constant(None, builtins.TNone())
else:
return_value = self.visit(node.value)
if self.return_target is None:
self.append(ir.Return(return_value))
else:
self.append(ir.SetLocal(self.current_private_env, ".return", return_value))
self.append(ir.Branch(self.return_target))
def visit_Expr(self, node):
# Ignore the value, do it for side effects.
result = self.visit(node.value)
# See comment in visit_Pass.
if isinstance(result, ir.Constant):
self.visit_Pass(node)
def visit_Pass(self, node):
# Insert a dummy instruction so that analyses which extract
# locations from CFG have something to use.
self.append(ir.Builtin("nop", [], builtins.TNone()))
def visit_Assign(self, node):
try:
self.current_assign = self.visit(node.value)
assert self.current_assign is not None
for target in node.targets:
self.visit(target)
finally:
self.current_assign = None
def visit_AugAssign(self, node):
lhs = self.visit(node.target)
rhs = self.visit(node.value)
value = self.append(ir.Arith(node.op, lhs, rhs))
try:
self.current_assign = value
self.visit(node.target)
finally:
self.current_assign = None
def coerce_to_bool(self, insn, block=None):
if builtins.is_bool(insn.type):
return insn
elif builtins.is_int(insn.type):
return self.append(ir.Compare(ast.NotEq(loc=None), insn, ir.Constant(0, insn.type)),
block=block)
elif builtins.is_float(insn.type):
return self.append(ir.Compare(ast.NotEq(loc=None), insn, ir.Constant(0, insn.type)),
block=block)
elif builtins.is_iterable(insn.type):
length = self.iterable_len(insn)
return self.append(ir.Compare(ast.NotEq(loc=None), length, ir.Constant(0, length.type)),
block=block)
else:
note = diagnostic.Diagnostic("note",
"this expression has type {type}",
{"type": types.TypePrinter().name(insn.type)},
insn.loc)
diag = diagnostic.Diagnostic("warning",
"this expression, which is always truthful, is coerced to bool", {},
insn.loc, notes=[note])
self.engine.process(diag)
return ir.Constant(True, builtins.TBool())
def visit_If(self, node):
cond = self.visit(node.test)
cond = self.coerce_to_bool(cond)
head = self.current_block
if_true = self.add_block()
self.current_block = if_true
self.visit(node.body)
post_if_true = self.current_block
if any(node.orelse):
if_false = self.add_block()
self.current_block = if_false
self.visit(node.orelse)
post_if_false = self.current_block
tail = self.add_block()
self.current_block = tail
if not post_if_true.is_terminated():
post_if_true.append(ir.Branch(tail))
if any(node.orelse):
if not post_if_false.is_terminated():
post_if_false.append(ir.Branch(tail))
self.append(ir.BranchIf(cond, if_true, if_false), block=head)
else:
self.append(ir.BranchIf(cond, if_true, tail), block=head)
def visit_While(self, node):
try:
head = self.add_block("while.head")
self.append(ir.Branch(head))
self.current_block = head
old_continue, self.continue_target = self.continue_target, head
cond = self.visit(node.test)
break_block = self.add_block("while.break")
old_break, self.break_target = self.break_target, break_block
body = self.add_block("while.body")
self.current_block = body
self.visit(node.body)
post_body = self.current_block
if any(node.orelse):
else_tail = self.add_block("while.else")
self.current_block = else_tail
self.visit(node.orelse)
post_else_tail = self.current_block
tail = self.add_block("while.tail")
self.current_block = tail
if any(node.orelse):
if not post_else_tail.is_terminated():
post_else_tail.append(ir.Branch(tail))
else:
else_tail = tail
head.append(ir.BranchIf(cond, body, else_tail))
if not post_body.is_terminated():
post_body.append(ir.Branch(head))
break_block.append(ir.Branch(tail))
finally:
self.break_target = old_break
self.continue_target = old_continue
def iterable_len(self, value, typ=_size_type):
if builtins.is_list(value.type):
return self.append(ir.Builtin("len", [value], typ,
name="{}.len".format(value.name)))
elif builtins.is_range(value.type):
start = self.append(ir.GetAttr(value, "start"))
stop = self.append(ir.GetAttr(value, "stop"))
step = self.append(ir.GetAttr(value, "step"))
spread = self.append(ir.Arith(ast.Sub(loc=None), stop, start))
return self.append(ir.Arith(ast.FloorDiv(loc=None), spread, step,
name="{}.len".format(value.name)))
else:
assert False
def iterable_get(self, value, index):
# Assuming the value is within bounds.
if builtins.is_list(value.type):
return self.append(ir.GetElem(value, index))
elif builtins.is_range(value.type):
start = self.append(ir.GetAttr(value, "start"))
step = self.append(ir.GetAttr(value, "step"))
offset = self.append(ir.Arith(ast.Mult(loc=None), step, index))
return self.append(ir.Arith(ast.Add(loc=None), start, offset))
else:
assert False
def visit_For(self, node):
try:
iterable = self.visit(node.iter)
length = self.iterable_len(iterable)
prehead = self.current_block
head = self.add_block("for.head")
self.append(ir.Branch(head))
self.current_block = head
phi = self.append(ir.Phi(length.type))
phi.add_incoming(ir.Constant(0, phi.type), prehead)
cond = self.append(ir.Compare(ast.Lt(loc=None), phi, length))
break_block = self.add_block("for.break")
old_break, self.break_target = self.break_target, break_block
continue_block = self.add_block("for.continue")
old_continue, self.continue_target = self.continue_target, continue_block
self.current_block = continue_block
updated_index = self.append(ir.Arith(ast.Add(loc=None), phi, ir.Constant(1, phi.type)))
phi.add_incoming(updated_index, continue_block)
self.append(ir.Branch(head))
body = self.add_block("for.body")
self.current_block = body
elt = self.iterable_get(iterable, phi)
try:
self.current_assign = elt
self.visit(node.target)
finally:
self.current_assign = None
self.visit(node.body)
post_body = self.current_block
if any(node.orelse):
else_tail = self.add_block("for.else")
self.current_block = else_tail
self.visit(node.orelse)
post_else_tail = self.current_block
tail = self.add_block("for.tail")
self.current_block = tail
if any(node.orelse):
if not post_else_tail.is_terminated():
post_else_tail.append(ir.Branch(tail))
else:
else_tail = tail
head.append(ir.BranchIf(cond, body, else_tail))
if not post_body.is_terminated():
post_body.append(ir.Branch(continue_block))
break_block.append(ir.Branch(tail))
finally:
self.break_target = old_break
self.continue_target = old_continue
def visit_Break(self, node):
self.append(ir.Branch(self.break_target))
def visit_Continue(self, node):
self.append(ir.Branch(self.continue_target))
def raise_exn(self, exn):
loc_file = ir.Constant(self.current_loc.source_buffer.name, builtins.TStr())
loc_line = ir.Constant(self.current_loc.line(), builtins.TInt(types.TValue(32)))
loc_column = ir.Constant(self.current_loc.column(), builtins.TInt(types.TValue(32)))
self.append(ir.SetAttr(exn, "__file__", loc_file))
self.append(ir.SetAttr(exn, "__line__", loc_line))
self.append(ir.SetAttr(exn, "__col__", loc_column))
self.append(ir.Raise(exn))
def visit_Raise(self, node):
self.raise_exn(self.visit(node.exc))
def visit_Try(self, node):
dispatcher = self.add_block("try.dispatch")
landingpad = dispatcher.append(ir.LandingPad())
if any(node.finalbody):
# k for continuation
final_state = self.append(ir.Alloc([], ir.TEnvironment({ ".k": ir.TBasicBlock() })))
final_targets = []
if self.break_target is not None:
break_proxy = self.add_block("try.break")
old_break, self.break_target = self.break_target, break_proxy
break_proxy.append(ir.SetLocal(final_state, ".k", old_break))
final_targets.append(old_break)
if self.continue_target is not None:
continue_proxy = self.add_block("try.continue")
old_continue, self.continue_target = self.continue_target, continue_proxy
continue_proxy.append(ir.SetLocal(final_state, ".k", old_continue))
final_targets.append(old_continue)
return_proxy = self.add_block("try.return")
old_return, self.return_target = self.return_target, return_proxy
if old_return is not None:
return_proxy.append(ir.SetLocal(final_state, ".k", old_return))
final_targets.append(old_return)
else:
return_action = self.add_block("try.doreturn")
value = return_action.append(ir.GetLocal(self.current_private_env, ".return"))
return_action.append(ir.Return(value))
return_proxy.append(ir.SetLocal(final_state, ".k", return_action))
final_targets.append(return_action)
body = self.add_block("try.body")
self.append(ir.Branch(body))
self.current_block = body
try:
old_unwind, self.unwind_target = self.unwind_target, dispatcher
self.visit(node.body)
finally:
self.unwind_target = old_unwind
self.visit(node.orelse)
body = self.current_block
if any(node.finalbody):
if self.break_target:
self.break_target = old_break
if self.continue_target:
self.continue_target = old_continue
self.return_target = old_return
handlers = []
has_catchall = False
for handler_node in node.handlers:
exn_type = handler_node.name_type.find()
if handler_node.filter is not None and \
not builtins.is_exception(exn_type, 'Exception'):
handler = self.add_block("handler." + exn_type.name)
landingpad.add_clause(handler, exn_type)
else:
handler = self.add_block("handler.catchall")
landingpad.add_clause(handler, None)
has_catchall = True
self.current_block = handler
handlers.append(handler)
if handler_node.name is not None:
exn = self.append(ir.Builtin("exncast", [landingpad], handler_node.name_type))
self._set_local(handler_node.name, exn)
self.visit(handler_node.body)
if any(node.finalbody):
finalizer = self.add_block("finally")
self.current_block = finalizer
self.visit(node.finalbody)
post_finalizer = self.current_block
self.current_block = tail = self.add_block("try.tail")
if any(node.finalbody):
final_targets.append(tail)
if self.break_target:
break_proxy.append(ir.Branch(finalizer))
if self.continue_target:
continue_proxy.append(ir.Branch(finalizer))
return_proxy.append(ir.Branch(finalizer))
if not body.is_terminated():
body.append(ir.SetLocal(final_state, ".k", tail))
body.append(ir.Branch(finalizer))
if not has_catchall:
# Add a catch-all handler so that finally would have a chance
# to execute.
handler = self.add_block("handler.catchall")
landingpad.add_clause(handler, None)
handlers.append(handler)
for handler in handlers:
if not handler.is_terminated():
handler.append(ir.SetLocal(final_state, ".k", tail))
handler.append(ir.Branch(tail))
if not post_finalizer.is_terminated():
dest = post_finalizer.append(ir.GetLocal(final_state, ".k"))
post_finalizer.append(ir.IndirectBranch(dest, final_targets))
else:
if not body.is_terminated():
body.append(ir.Branch(tail))
for handler in handlers:
if not handler.is_terminated():
handler.append(ir.Branch(tail))
# TODO: With
# Expression visitors
# These visitors return a node in addition to mutating
# the IR.
def visit_LambdaT(self, node):
return self.visit_function(node, is_lambda=True)
def visit_IfExpT(self, node):
cond = self.visit(node.test)
head = self.current_block
if_true = self.add_block()
self.current_block = if_true
true_result = self.visit(node.body)
if_false = self.add_block()
self.current_block = if_false
false_result = self.visit(node.orelse)
tail = self.add_block()
self.current_block = tail
if not if_true.is_terminated():
if_true.append(ir.Branch(tail))
if not if_false.is_terminated():
if_false.append(ir.Branch(tail))
head.append(ir.BranchIf(cond, if_true, if_false))
phi = self.append(ir.Phi(node.type))
phi.add_incoming(true_result, if_true)
phi.add_incoming(false_result, if_false)
return phi
def visit_NumT(self, node):
return ir.Constant(node.n, node.type)
def visit_StrT(self, node):
return ir.Constant(node.s, node.type)
def visit_NameConstantT(self, node):
return ir.Constant(node.value, node.type)
def _env_for(self, name):
if name in self.current_globals:
return self.append(ir.Builtin("globalenv", [self.current_env],
self.current_env.type.outermost()))
else:
return self.current_env
def _get_local(self, name):
return self.append(ir.GetLocal(self._env_for(name), name, name="local." + name))
def _set_local(self, name, value):
self.append(ir.SetLocal(self._env_for(name), name, value))
def visit_NameT(self, node):
if self.current_assign is None:
return self._get_local(node.id)
else:
return self._set_local(node.id, self.current_assign)
def visit_AttributeT(self, node):
try:
old_assign, self.current_assign = self.current_assign, None
obj = self.visit(node.value)
finally:
self.current_assign = old_assign
if self.current_assign is None:
return self.append(ir.GetAttr(obj, node.attr,
name="{}.{}".format(_readable_name(obj), node.attr)))
else:
self.append(ir.SetAttr(obj, node.attr, self.current_assign))
def _map_index(self, length, index, one_past_the_end=False):
lt_0 = self.append(ir.Compare(ast.Lt(loc=None),
index, ir.Constant(0, index.type)))
from_end = self.append(ir.Arith(ast.Add(loc=None), length, index))
mapped_index = self.append(ir.Select(lt_0, from_end, index))
mapped_ge_0 = self.append(ir.Compare(ast.GtE(loc=None),
mapped_index, ir.Constant(0, mapped_index.type)))
end_cmpop = ast.LtE(loc=None) if one_past_the_end else ast.Lt(loc=None)
mapped_lt_len = self.append(ir.Compare(end_cmpop, mapped_index, length))
in_bounds = self.append(ir.Select(mapped_ge_0, mapped_lt_len,
ir.Constant(False, builtins.TBool())))
head = self.current_block
self.current_block = out_of_bounds_block = self.add_block()
exn = self.alloc_exn(builtins.TIndexError(),
ir.Constant("index {0} out of bounds 0:{1}", builtins.TStr()),
index, length)
self.raise_exn(exn)
self.current_block = in_bounds_block = self.add_block()
head.append(ir.BranchIf(in_bounds, in_bounds_block, out_of_bounds_block))
return mapped_index
def _make_check(self, cond, exn_gen):
# cond: bool Value, condition
# exn_gen: lambda()->exn Value, exception if condition not true
cond_block = self.current_block
self.current_block = body_block = self.add_block()
self.raise_exn(exn_gen())
self.current_block = tail_block = self.add_block()
cond_block.append(ir.BranchIf(cond, tail_block, body_block))
def _make_loop(self, init, cond_gen, body_gen):
# init: 'iter Value, initial loop variable value
# cond_gen: lambda('iter Value)->bool Value, loop condition
# body_gen: lambda('iter Value)->'iter Value, loop body,
# returns next loop variable value
init_block = self.current_block
self.current_block = head_block = self.add_block()
init_block.append(ir.Branch(head_block))
phi = self.append(ir.Phi(init.type))
phi.add_incoming(init, init_block)
cond = cond_gen(phi)
self.current_block = body_block = self.add_block()
body = body_gen(phi)
self.append(ir.Branch(head_block))
phi.add_incoming(body, self.current_block)
self.current_block = tail_block = self.add_block()
head_block.append(ir.BranchIf(cond, body_block, tail_block))
return head_block, body_block, tail_block
def visit_SubscriptT(self, node):
try:
old_assign, self.current_assign = self.current_assign, None
value = self.visit(node.value)
finally:
self.current_assign = old_assign
if isinstance(node.slice, ast.Index):
index = self.visit(node.slice.value)
length = self.iterable_len(value, index.type)
mapped_index = self._map_index(length, index)
if self.current_assign is None:
result = self.iterable_get(value, mapped_index)
result.set_name("{}.at.{}".format(value.name, _readable_name(index)))
return result
else:
self.append(ir.SetElem(value, mapped_index, self.current_assign,
name="{}.at.{}".format(value.name, _readable_name(index))))
else: # Slice
length = self.iterable_len(value, node.slice.type)
if node.slice.lower is not None:
start_index = self.visit(node.slice.lower)
else:
start_index = ir.Constant(0, node.slice.type)
mapped_start_index = self._map_index(length, start_index)
if node.slice.upper is not None:
stop_index = self.visit(node.slice.upper)
else:
stop_index = length
mapped_stop_index = self._map_index(length, stop_index, one_past_the_end=True)
if node.slice.step is not None:
step = self.visit(node.slice.step)
self._make_check(
self.append(ir.Compare(ast.NotEq(loc=None), step, ir.Constant(0, step.type))),
lambda: self.alloc_exn(builtins.TValueError(),
ir.Constant("step cannot be zero", builtins.TStr())))
else:
step = ir.Constant(1, node.slice.type)
counting_up = self.append(ir.Compare(ast.Gt(loc=None), step,
ir.Constant(0, step.type)))
unstepped_size = self.append(ir.Arith(ast.Sub(loc=None),
mapped_stop_index, mapped_start_index))
slice_size_a = self.append(ir.Arith(ast.FloorDiv(loc=None), unstepped_size, step))
slice_size_b = self.append(ir.Arith(ast.Mod(loc=None), unstepped_size, step))
rem_not_empty = self.append(ir.Compare(ast.NotEq(loc=None), slice_size_b,
ir.Constant(0, slice_size_b.type)))
slice_size_c = self.append(ir.Arith(ast.Add(loc=None), slice_size_a,
ir.Constant(1, slice_size_a.type)))
slice_size = self.append(ir.Select(rem_not_empty,
slice_size_c, slice_size_a,
name="slice.size"))
self._make_check(
self.append(ir.Compare(ast.LtE(loc=None), slice_size, length)),
lambda: self.alloc_exn(builtins.TValueError(),
ir.Constant("slice size {0} is larger than iterable length {1}",
builtins.TStr()),
slice_size, iterable_len))
if self.current_assign is None:
is_neg_size = self.append(ir.Compare(ast.Lt(loc=None),
slice_size, ir.Constant(0, slice_size.type)))
abs_slice_size = self.append(ir.Select(is_neg_size,
ir.Constant(0, slice_size.type), slice_size))
other_value = self.append(ir.Alloc([abs_slice_size], value.type,
name="slice.result"))
else:
other_value = self.current_assign
prehead = self.current_block
head = self.current_block = self.add_block()
prehead.append(ir.Branch(head))
index = self.append(ir.Phi(node.slice.type,
name="slice.index"))
index.add_incoming(mapped_start_index, prehead)
other_index = self.append(ir.Phi(node.slice.type,
name="slice.resindex"))
other_index.add_incoming(ir.Constant(0, node.slice.type), prehead)
# Still within bounds?
bounded_up = self.append(ir.Compare(ast.Lt(loc=None), index, mapped_stop_index))
bounded_down = self.append(ir.Compare(ast.Gt(loc=None), index, mapped_stop_index))
within_bounds = self.append(ir.Select(counting_up, bounded_up, bounded_down))
body = self.current_block = self.add_block()
if self.current_assign is None:
elem = self.iterable_get(value, index)
self.append(ir.SetElem(other_value, other_index, elem))
else:
elem = self.append(ir.GetElem(self.current_assign, other_index))
self.append(ir.SetElem(value, index, elem))
next_index = self.append(ir.Arith(ast.Add(loc=None), index, step))
index.add_incoming(next_index, body)
next_other_index = self.append(ir.Arith(ast.Add(loc=None), other_index,
ir.Constant(1, node.slice.type)))
other_index.add_incoming(next_other_index, body)
self.append(ir.Branch(head))
tail = self.current_block = self.add_block()
head.append(ir.BranchIf(within_bounds, body, tail))
if self.current_assign is None:
return other_value
def visit_TupleT(self, node):
if self.current_assign is None:
return self.append(ir.Alloc([self.visit(elt) for elt in node.elts], node.type))
else:
try:
old_assign = self.current_assign
for index, elt_node in enumerate(node.elts):
self.current_assign = \
self.append(ir.GetAttr(old_assign, index,
name="{}.e{}".format(old_assign.name, index)),
loc=elt_node.loc)
self.visit(elt_node)
finally:
self.current_assign = old_assign
def visit_ListT(self, node):
if self.current_assign is None:
elts = [self.visit(elt_node) for elt_node in node.elts]
lst = self.append(ir.Alloc([ir.Constant(len(node.elts), self._size_type)],
node.type))
for index, elt_node in enumerate(elts):
self.append(ir.SetElem(lst, ir.Constant(index, self._size_type), elt_node))
return lst
else:
length = self.iterable_len(self.current_assign)
self._make_check(
self.append(ir.Compare(ast.Eq(loc=None), length,
ir.Constant(len(node.elts), self._size_type))),
lambda: self.alloc_exn(builtins.TValueError(),
ir.Constant("list must be {0} elements long to decompose", builtins.TStr()),
length))
for index, elt_node in enumerate(node.elts):
elt = self.append(ir.GetElem(self.current_assign,
ir.Constant(index, self._size_type)))
try:
old_assign, self.current_assign = self.current_assign, elt
self.visit(elt_node)
finally:
self.current_assign = old_assign
def visit_ListCompT(self, node):
assert len(node.generators) == 1
comprehension = node.generators[0]
assert comprehension.ifs == []
iterable = self.visit(comprehension.iter)
length = self.iterable_len(iterable)
result = self.append(ir.Alloc([length], node.type))
try:
env_type = ir.TEnvironment(node.typing_env, self.current_env.type)
env = self.append(ir.Alloc([], env_type, name="env.gen"))
old_env, self.current_env = self.current_env, env
self.append(ir.SetLocal(env, ".outer", old_env))
def body_gen(index):
elt = self.iterable_get(iterable, index)
try:
old_assign, self.current_assign = self.current_assign, elt
self.visit(comprehension.target)
finally:
self.current_assign = old_assign
mapped_elt = self.visit(node.elt)
self.append(ir.SetElem(result, index, mapped_elt))
return self.append(ir.Arith(ast.Add(loc=None), index,
ir.Constant(1, length.type)))
self._make_loop(ir.Constant(0, length.type),
lambda index: self.append(ir.Compare(ast.Lt(loc=None), index, length)),
body_gen)
return result
finally:
self.current_env = old_env
def visit_BoolOpT(self, node):
blocks = []
for value_node in node.values:
value_head = self.current_block
value = self.visit(value_node)
self.instrument_assert(value_node, value)
value_tail = self.current_block
blocks.append((value, value_head, value_tail))
self.current_block = self.add_block()
tail = self.current_block
phi = self.append(ir.Phi(node.type))
for ((value, value_head, value_tail), (next_value_head, next_value_tail)) in \
zip(blocks, [(h,t) for (v,h,t) in blocks[1:]] + [(tail, tail)]):
phi.add_incoming(value, value_tail)
if next_value_head != tail:
cond = self.coerce_to_bool(value, block=value_tail)
if isinstance(node.op, ast.And):
value_tail.append(ir.BranchIf(cond, next_value_head, tail))
else:
value_tail.append(ir.BranchIf(cond, tail, next_value_head))
else:
value_tail.append(ir.Branch(tail))
return phi
def visit_UnaryOpT(self, node):
if isinstance(node.op, ast.Not):
cond = self.coerce_to_bool(self.visit(node.operand))
return self.append(ir.Select(cond,
ir.Constant(False, builtins.TBool()),
ir.Constant(True, builtins.TBool())))
elif isinstance(node.op, ast.USub):
operand = self.visit(node.operand)
return self.append(ir.Arith(ast.Sub(loc=None),
ir.Constant(0, operand.type), operand))
elif isinstance(node.op, ast.UAdd):
# No-op.
return self.visit(node.operand)
else:
assert False
def visit_CoerceT(self, node):
value = self.visit(node.value)
if node.type.find() == value.type:
return value
else:
return self.append(ir.Coerce(value, node.type,
name="{}.{}".format(_readable_name(value),
node.type.name)))
def visit_BinOpT(self, node):
if builtins.is_numeric(node.type):
rhs = self.visit(node.right)
if isinstance(node.op, (ast.LShift, ast.RShift)):
# Check for negative shift amount.
self._make_check(
self.append(ir.Compare(ast.GtE(loc=None), rhs, ir.Constant(0, rhs.type))),
lambda: self.alloc_exn(builtins.TValueError(),
ir.Constant("shift amount must be nonnegative", builtins.TStr())))
elif isinstance(node.op, (ast.Div, ast.FloorDiv)):
self._make_check(
self.append(ir.Compare(ast.NotEq(loc=None), rhs, ir.Constant(0, rhs.type))),
lambda: self.alloc_exn(builtins.TZeroDivisionError(),
ir.Constant("cannot divide by zero", builtins.TStr())))
return self.append(ir.Arith(node.op, self.visit(node.left), rhs))
elif isinstance(node.op, ast.Add): # list + list, tuple + tuple
lhs, rhs = self.visit(node.left), self.visit(node.right)
if types.is_tuple(node.left.type) and types.is_tuple(node.right.type):
elts = []
for index, elt in enumerate(node.left.type.elts):
elts.append(self.append(ir.GetAttr(lhs, index)))
for index, elt in enumerate(node.right.type.elts):
elts.append(self.append(ir.GetAttr(rhs, index)))
return self.append(ir.Alloc(elts, node.type))
elif builtins.is_list(node.left.type) and builtins.is_list(node.right.type):
lhs_length = self.iterable_len(lhs)
rhs_length = self.iterable_len(rhs)
result_length = self.append(ir.Arith(ast.Add(loc=None), lhs_length, rhs_length))
result = self.append(ir.Alloc([result_length], node.type))
# Copy lhs
def body_gen(index):
elt = self.append(ir.GetElem(lhs, index))
self.append(ir.SetElem(result, index, elt))
return self.append(ir.Arith(ast.Add(loc=None), index,
ir.Constant(1, self._size_type)))
self._make_loop(ir.Constant(0, self._size_type),
lambda index: self.append(ir.Compare(ast.Lt(loc=None), index, lhs_length)),
body_gen)
# Copy rhs
def body_gen(index):
elt = self.append(ir.GetElem(rhs, index))
result_index = self.append(ir.Arith(ast.Add(loc=None), index, lhs_length))
self.append(ir.SetElem(result, result_index, elt))
return self.append(ir.Arith(ast.Add(loc=None), index,
ir.Constant(1, self._size_type)))
self._make_loop(ir.Constant(0, self._size_type),
lambda index: self.append(ir.Compare(ast.Lt(loc=None), index, rhs_length)),
body_gen)
return result
else:
assert False
elif isinstance(node.op, ast.Mult): # list * int, int * list
lhs, rhs = self.visit(node.left), self.visit(node.right)
if builtins.is_list(lhs.type) and builtins.is_int(rhs.type):
lst, num = lhs, rhs
elif builtins.is_int(lhs.type) and builtins.is_list(rhs.type):
lst, num = rhs, lhs
else:
assert False
lst_length = self.iterable_len(lst)
result_length = self.append(ir.Arith(ast.Mult(loc=None), lst_length, num))
result = self.append(ir.Alloc([result_length], node.type))
# num times...
def body_gen(num_index):
# ... copy the list
def body_gen(lst_index):
elt = self.append(ir.GetElem(lst, lst_index))
base_index = self.append(ir.Arith(ast.Mult(loc=None),
num_index, lst_length))
result_index = self.append(ir.Arith(ast.Add(loc=None),
base_index, lst_index))
self.append(ir.SetElem(result, base_index, elt))
return self.append(ir.Arith(ast.Add(loc=None), lst_index,
ir.Constant(1, self._size_type)))
self._make_loop(ir.Constant(0, self._size_type),
lambda index: self.append(ir.Compare(ast.Lt(loc=None), index, lst_length)),
body_gen)
return self.append(ir.Arith(ast.Add(loc=None), num_index,
ir.Constant(1, self._size_type)))
self._make_loop(ir.Constant(0, self._size_type),
lambda index: self.append(ir.Compare(ast.Lt(loc=None), index, num)),
body_gen)
return result
else:
assert False
def polymorphic_compare_pair_order(self, op, lhs, rhs):
if builtins.is_numeric(lhs.type) and builtins.is_numeric(rhs.type):
return self.append(ir.Compare(op, lhs, rhs))
elif builtins.is_bool(lhs.type) and builtins.is_bool(rhs.type):
return self.append(ir.Compare(op, lhs, rhs))
elif types.is_tuple(lhs.type) and types.is_tuple(rhs.type):
result = None
for index in range(len(lhs.type.elts)):
lhs_elt = self.append(ir.GetAttr(lhs, index))
rhs_elt = self.append(ir.GetAttr(rhs, index))
elt_result = self.append(ir.Compare(op, lhs_elt, rhs_elt))
if result is None:
result = elt_result
else:
result = self.append(ir.Select(result, elt_result,
ir.Constant(False, builtins.TBool())))
return result
elif builtins.is_list(lhs.type) and builtins.is_list(rhs.type):
head = self.current_block
lhs_length = self.iterable_len(lhs)
rhs_length = self.iterable_len(rhs)
compare_length = self.append(ir.Compare(op, lhs_length, rhs_length))
eq_length = self.append(ir.Compare(ast.Eq(loc=None), lhs_length, rhs_length))
# If the length is the same, compare element-by-element
# and break when the comparison result is false
loop_head = self.add_block()
self.current_block = loop_head
index_phi = self.append(ir.Phi(self._size_type))
index_phi.add_incoming(ir.Constant(0, self._size_type), head)
loop_cond = self.append(ir.Compare(ast.Lt(loc=None), index_phi, lhs_length))
loop_body = self.add_block()
self.current_block = loop_body
lhs_elt = self.append(ir.GetElem(lhs, index_phi))
rhs_elt = self.append(ir.GetElem(rhs, index_phi))
body_result = self.polymorphic_compare_pair(op, lhs_elt, rhs_elt)
loop_body2 = self.add_block()
self.current_block = loop_body2
index_next = self.append(ir.Arith(ast.Add(loc=None), index_phi,
ir.Constant(1, self._size_type)))
self.append(ir.Branch(loop_head))
index_phi.add_incoming(index_next, loop_body2)
tail = self.add_block()
self.current_block = tail
phi = self.append(ir.Phi(builtins.TBool()))
head.append(ir.BranchIf(eq_length, loop_head, tail))
phi.add_incoming(compare_length, head)
loop_head.append(ir.BranchIf(loop_cond, loop_body, tail))
phi.add_incoming(ir.Constant(True, builtins.TBool()), loop_head)
loop_body.append(ir.BranchIf(body_result, loop_body2, tail))
phi.add_incoming(body_result, loop_body)
if isinstance(op, ast.NotEq):
result = self.append(ir.Select(phi,
ir.Constant(False, builtins.TBool()), ir.Constant(True, builtins.TBool())))
else:
result = phi
return result
else:
assert False
def polymorphic_compare_pair_inclusion(self, op, needle, haystack):
if builtins.is_range(haystack.type):
# Optimized range `in` operator
start = self.append(ir.GetAttr(haystack, "start"))
stop = self.append(ir.GetAttr(haystack, "stop"))
step = self.append(ir.GetAttr(haystack, "step"))
after_start = self.append(ir.Compare(ast.GtE(loc=None), needle, start))
after_stop = self.append(ir.Compare(ast.Lt(loc=None), needle, stop))
from_start = self.append(ir.Arith(ast.Sub(loc=None), needle, start))
mod_step = self.append(ir.Arith(ast.Mod(loc=None), from_start, step))
on_step = self.append(ir.Compare(ast.Eq(loc=None), mod_step,
ir.Constant(0, mod_step.type)))
result = self.append(ir.Select(after_start, after_stop,
ir.Constant(False, builtins.TBool())))
result = self.append(ir.Select(result, on_step,
ir.Constant(False, builtins.TBool())))
elif builtins.is_iterable(haystack.type):
length = self.iterable_len(haystack)
cmp_result = loop_body2 = None
def body_gen(index):
nonlocal cmp_result, loop_body2
elt = self.iterable_get(haystack, index)
cmp_result = self.polymorphic_compare_pair(ast.Eq(loc=None), needle, elt)
loop_body2 = self.add_block()
self.current_block = loop_body2
return self.append(ir.Arith(ast.Add(loc=None), index,
ir.Constant(1, length.type)))
loop_head, loop_body, loop_tail = \
self._make_loop(ir.Constant(0, length.type),
lambda index: self.append(ir.Compare(ast.Lt(loc=None), index, length)),
body_gen)
loop_body.append(ir.BranchIf(cmp_result, loop_tail, loop_body2))
phi = loop_tail.prepend(ir.Phi(builtins.TBool()))
phi.add_incoming(ir.Constant(False, builtins.TBool()), loop_head)
phi.add_incoming(ir.Constant(True, builtins.TBool()), loop_body)
result = phi
else:
assert False
if isinstance(op, ast.NotIn):
result = self.append(ir.Select(result,
ir.Constant(False, builtins.TBool()),
ir.Constant(True, builtins.TBool())))
return result
def polymorphic_compare_pair(self, op, lhs, rhs):
if isinstance(op, (ast.Is, ast.IsNot)):
# The backend will handle equality of aggregates.
return self.append(ir.Compare(op, lhs, rhs))
elif isinstance(op, (ast.In, ast.NotIn)):
return self.polymorphic_compare_pair_inclusion(op, lhs, rhs)
else: # Eq, NotEq, Lt, LtE, Gt, GtE
return self.polymorphic_compare_pair_order(op, lhs, rhs)
def visit_CompareT(self, node):
# Essentially a sequence of `and`s performed over results
# of comparisons.
blocks = []
lhs = self.visit(node.left)
self.instrument_assert(node.left, lhs)
for op, rhs_node in zip(node.ops, node.comparators):
result_head = self.current_block
rhs = self.visit(rhs_node)
self.instrument_assert(rhs_node, rhs)
result = self.polymorphic_compare_pair(op, lhs, rhs)
result_tail = self.current_block
blocks.append((result, result_head, result_tail))
self.current_block = self.add_block()
lhs = rhs
tail = self.current_block
phi = self.append(ir.Phi(node.type))
for ((result, result_head, result_tail), (next_result_head, next_result_tail)) in \
zip(blocks, [(h,t) for (v,h,t) in blocks[1:]] + [(tail, tail)]):
phi.add_incoming(result, result_tail)
if next_result_head != tail:
result_tail.append(ir.BranchIf(result, next_result_head, tail))
else:
result_tail.append(ir.Branch(tail))
return phi
# Keep this function with builtins.TException.attributes.
def alloc_exn(self, typ, message=None, param0=None, param1=None, param2=None):
attributes = [
ir.Constant(typ.find().name, ir.TExceptionTypeInfo()), # typeinfo
ir.Constant("<not thrown>", builtins.TStr()), # file
ir.Constant(0, builtins.TInt(types.TValue(32))), # line
ir.Constant(0, builtins.TInt(types.TValue(32))), # column
]
if message is None:
attributes.append(ir.Constant(typ.find().name, builtins.TStr()))
else:
attributes.append(message) # message
param_type = builtins.TInt(types.TValue(64))
for param in [param0, param1, param2]:
if param is None:
attributes.append(ir.Constant(0, builtins.TInt(types.TValue(64))))
else:
if param.type != param_type:
param = self.append(ir.Coerce(param, param_type))
attributes.append(param) # paramN, N=0:2
return self.append(ir.Alloc(attributes, typ))
def visit_builtin_call(self, node):
# A builtin by any other name... Ignore node.func, just use the type.
typ = node.func.type
if types.is_builtin(typ, "bool"):
if len(node.args) == 0 and len(node.keywords) == 0:
return ir.Constant(False, builtins.TBool())
elif len(node.args) == 1 and len(node.keywords) == 0:
arg = self.visit(node.args[0])
return self.coerce_to_bool(arg)
else:
assert False
elif types.is_builtin(typ, "int"):
if len(node.args) == 0 and len(node.keywords) == 0:
return ir.Constant(0, node.type)
elif len(node.args) == 1 and \
(len(node.keywords) == 0 or \
len(node.keywords) == 1 and node.keywords[0].arg == 'width'):
# The width argument is purely type-level
arg = self.visit(node.args[0])
return self.append(ir.Coerce(arg, node.type))
else:
assert False
elif types.is_builtin(typ, "float"):
if len(node.args) == 0 and len(node.keywords) == 0:
return ir.Constant(0.0, builtins.TFloat())
elif len(node.args) == 1 and len(node.keywords) == 0:
arg = self.visit(node.args[0])
return self.append(ir.Coerce(arg, node.type))
else:
assert False
elif types.is_builtin(typ, "list"):
if len(node.args) == 0 and len(node.keywords) == 0:
length = ir.Constant(0, builtins.TInt(types.TValue(32)))
return self.append(ir.Alloc([length], node.type))
elif len(node.args) == 1 and len(node.keywords) == 0:
arg = self.visit(node.args[0])
length = self.iterable_len(arg)
result = self.append(ir.Alloc([length], node.type))
def body_gen(index):
elt = self.iterable_get(arg, index)
self.append(ir.SetElem(result, index, elt))
return self.append(ir.Arith(ast.Add(loc=None), index,
ir.Constant(1, length.type)))
self._make_loop(ir.Constant(0, length.type),
lambda index: self.append(ir.Compare(ast.Lt(loc=None), index, length)),
body_gen)
return result
else:
assert False
elif types.is_builtin(typ, "range"):
elt_typ = builtins.get_iterable_elt(node.type)
if len(node.args) == 1 and len(node.keywords) == 0:
max_arg = self.visit(node.args[0])
return self.append(ir.Alloc([
ir.Constant(elt_typ.zero(), elt_typ),
max_arg,
ir.Constant(elt_typ.one(), elt_typ),
], node.type))
elif len(node.args) == 2 and len(node.keywords) == 0:
min_arg = self.visit(node.args[0])
max_arg = self.visit(node.args[1])
return self.append(ir.Alloc([
min_arg,
max_arg,
ir.Constant(elt_typ.one(), elt_typ),
], node.type))
elif len(node.args) == 3 and len(node.keywords) == 0:
min_arg = self.visit(node.args[0])
max_arg = self.visit(node.args[1])
step_arg = self.visit(node.args[2])
return self.append(ir.Alloc([
min_arg,
max_arg,
step_arg,
], node.type))
else:
assert False
elif types.is_builtin(typ, "len"):
if len(node.args) == 1 and len(node.keywords) == 0:
arg = self.visit(node.args[0])
return self.iterable_len(arg)
else:
assert False
elif types.is_builtin(typ, "round"):
if len(node.args) == 1 and len(node.keywords) == 0:
arg = self.visit(node.args[0])
return self.append(ir.Builtin("round", [arg], node.type))
else:
assert False
elif types.is_builtin(typ, "print"):
self.polymorphic_print([self.visit(arg) for arg in node.args],
separator=" ", suffix="\n")
return ir.Constant(None, builtins.TNone())
elif types.is_exn_constructor(typ):
return self.alloc_exn(node.type, *[self.visit(arg_node) for arg_node in node.args])
else:
assert False
def visit_CallT(self, node):
if types.is_builtin(node.func.type):
return self.visit_builtin_call(node)
else:
typ = node.func.type.find()
func = self.visit(node.func)
args = [None] * (len(typ.args) + len(typ.optargs))
for index, arg_node in enumerate(node.args):
arg = self.visit(arg_node)
if index < len(typ.args):
args[index] = arg
else:
args[index] = self.append(ir.Alloc([arg], ir.TOption(arg.type)))
for keyword in node.keywords:
arg = self.visit(keyword.value)
if keyword.arg in typ.args:
for index, arg_name in enumerate(typ.args):
if keyword.arg == arg_name:
assert args[index] is None
args[index] = arg
break
elif keyword.arg in typ.optargs:
for index, optarg_name in enumerate(typ.optargs):
if keyword.arg == optarg_name:
assert args[len(typ.args) + index] is None
args[len(typ.args) + index] = \
self.append(ir.Alloc([arg], ir.TOption(arg.type)))
break
for index, optarg_name in enumerate(typ.optargs):
if args[len(typ.args) + index] is None:
args[len(typ.args) + index] = \
self.append(ir.Alloc([], ir.TOption(typ.optargs[optarg_name])))
assert None not in args
if self.unwind_target is None:
return self.append(ir.Call(func, args))
else:
after_invoke = self.add_block()
invoke = self.append(ir.Invoke(func, args, after_invoke, self.unwind_target))
self.current_block = after_invoke
return invoke
def instrument_assert(self, node, value):
if self.current_assert_env is not None:
if isinstance(value, ir.Constant):
return # don't display the values of constants
if any([algorithm.compare(node, subexpr)
for (subexpr, name) in self.current_assert_subexprs]):
return # don't display the same subexpression twice
name = self.current_assert_env.type.add(".subexpr", ir.TOption(node.type))
value_opt = self.append(ir.Alloc([value], ir.TOption(node.type)),
loc=node.loc)
self.append(ir.SetLocal(self.current_assert_env, name, value_opt),
loc=node.loc)
self.current_assert_subexprs.append((node, name))
def visit_Assert(self, node):
try:
assert_env = self.current_assert_env = \
self.append(ir.Alloc([], ir.TEnvironment({}), name="assertenv"))
assert_subexprs = self.current_assert_subexprs = []
init = self.current_block
prehead = self.current_block = self.add_block()
cond = self.visit(node.test)
head = self.current_block
finally:
self.current_assert_env = None
self.current_assert_subexprs = None
for subexpr_node, subexpr_name in assert_subexprs:
empty = init.append(ir.Alloc([], ir.TOption(subexpr_node.type)))
init.append(ir.SetLocal(assert_env, subexpr_name, empty))
init.append(ir.Branch(prehead))
if_failed = self.current_block = self.add_block()
if node.msg:
explanation = node.msg.s
else:
explanation = node.loc.source()
self.append(ir.Builtin("printf", [
ir.Constant("assertion failed at %s: %s\n", builtins.TStr()),
ir.Constant(str(node.loc.begin()), builtins.TStr()),
ir.Constant(str(explanation), builtins.TStr()),
], builtins.TNone()))
for subexpr_node, subexpr_name in assert_subexprs:
subexpr_head = self.current_block
subexpr_value_opt = self.append(ir.GetLocal(assert_env, subexpr_name))
subexpr_cond = self.append(ir.Builtin("is_some", [subexpr_value_opt],
builtins.TBool()))
subexpr_body = self.current_block = self.add_block()
self.append(ir.Builtin("printf", [
ir.Constant(" (%s) = ", builtins.TStr()),
ir.Constant(subexpr_node.loc.source(), builtins.TStr())
], builtins.TNone()))
subexpr_value = self.append(ir.Builtin("unwrap", [subexpr_value_opt],
subexpr_node.type))
self.polymorphic_print([subexpr_value], separator="", suffix="\n")
subexpr_postbody = self.current_block
subexpr_tail = self.current_block = self.add_block()
self.append(ir.Branch(subexpr_tail), block=subexpr_postbody)
self.append(ir.BranchIf(subexpr_cond, subexpr_body, subexpr_tail), block=subexpr_head)
self.append(ir.Builtin("abort", [], builtins.TNone()))
self.append(ir.Unreachable())
tail = self.current_block = self.add_block()
self.append(ir.BranchIf(cond, tail, if_failed), block=head)
def polymorphic_print(self, values, separator, suffix=""):
format_string = ""
args = []
def flush():
nonlocal format_string, args
if format_string != "":
format_arg = [ir.Constant(format_string, builtins.TStr())]
self.append(ir.Builtin("printf", format_arg + args, builtins.TNone()))
format_string = ""
args = []
for value in values:
if format_string != "":
format_string += separator
if types.is_tuple(value.type):
format_string += "("; flush()
self.polymorphic_print([self.append(ir.GetAttr(value, index))
for index in range(len(value.type.elts))],
separator=", ")
if len(value.type.elts) == 1:
format_string += ",)"
else:
format_string += ")"
elif types.is_function(value.type):
format_string += "<closure %p(%p)>"
# We're relying on the internal layout of the closure here.
args.append(self.append(ir.GetAttr(value, 0)))
args.append(self.append(ir.GetAttr(value, 1)))
elif builtins.is_none(value.type):
format_string += "None"
elif builtins.is_bool(value.type):
format_string += "%s"
args.append(self.append(ir.Select(value,
ir.Constant("True", builtins.TStr()),
ir.Constant("False", builtins.TStr()))))
elif builtins.is_int(value.type):
width = builtins.get_int_width(value.type)
if width <= 32:
format_string += "%d"
elif width <= 64:
format_string += "%lld"
else:
assert False
args.append(value)
elif builtins.is_float(value.type):
format_string += "%g"
args.append(value)
elif builtins.is_str(value.type):
format_string += "%s"
args.append(value)
elif builtins.is_list(value.type):
format_string += "["; flush()
length = self.iterable_len(value)
last = self.append(ir.Arith(ast.Sub(loc=None), length, ir.Constant(1, length.type)))
def body_gen(index):
elt = self.iterable_get(value, index)
self.polymorphic_print([elt], separator="")
is_last = self.append(ir.Compare(ast.Lt(loc=None), index, last))
head = self.current_block
if_last = self.current_block = self.add_block()
self.append(ir.Builtin("printf",
[ir.Constant(", ", builtins.TStr())], builtins.TNone()))
tail = self.current_block = self.add_block()
if_last.append(ir.Branch(tail))
head.append(ir.BranchIf(is_last, if_last, tail))
return self.append(ir.Arith(ast.Add(loc=None), index,
ir.Constant(1, length.type)))
self._make_loop(ir.Constant(0, length.type),
lambda index: self.append(ir.Compare(ast.Lt(loc=None), index, length)),
body_gen)
format_string += "]"
elif builtins.is_range(value.type):
format_string += "range("; flush()
start = self.append(ir.GetAttr(value, "start"))
stop = self.append(ir.GetAttr(value, "stop"))
step = self.append(ir.GetAttr(value, "step"))
self.polymorphic_print([start, stop, step], separator=", ")
format_string += ")"
elif builtins.is_exception(value.type):
name = self.append(ir.GetAttr(value, "__name__"))
message = self.append(ir.GetAttr(value, "__message__"))
param1 = self.append(ir.GetAttr(value, "__param0__"))
param2 = self.append(ir.GetAttr(value, "__param1__"))
param3 = self.append(ir.GetAttr(value, "__param2__"))
format_string += "%s(%s, %lld, %lld, %lld)"
args += [name, message, param1, param2, param3]
else:
assert False
format_string += suffix
flush()