artiq/artiq/compiler/builtins.py
2022-04-22 00:12:20 +01:00

347 lines
9.2 KiB
Python

"""
The :mod:`builtins` module contains the builtin Python
and ARTIQ types, such as int or float.
"""
from collections import OrderedDict
from . import types
# Types
class TNone(types.TMono):
def __init__(self):
super().__init__("NoneType")
class TBool(types.TMono):
def __init__(self):
super().__init__("bool")
@staticmethod
def zero():
return False
@staticmethod
def one():
return True
class TInt(types.TMono):
def __init__(self, width=None):
if width is None:
width = types.TVar()
super().__init__("int", {"width": width})
@staticmethod
def zero():
return 0
@staticmethod
def one():
return 1
def TInt32():
return TInt(types.TValue(32))
def TInt64():
return TInt(types.TValue(64))
def _int_printer(typ, printer, depth, max_depth):
if types.is_var(typ["width"]):
return "numpy.int?"
else:
return "numpy.int{}".format(types.get_value(typ.find()["width"]))
types.TypePrinter.custom_printers["int"] = _int_printer
class TFloat(types.TMono):
def __init__(self):
super().__init__("float")
@staticmethod
def zero():
return 0.0
@staticmethod
def one():
return 1.0
class TStr(types.TMono):
def __init__(self):
super().__init__("str")
class TBytes(types.TMono):
def __init__(self):
super().__init__("bytes")
class TByteArray(types.TMono):
def __init__(self):
super().__init__("bytearray")
class TList(types.TMono):
def __init__(self, elt=None):
if elt is None:
elt = types.TVar()
super().__init__("list", {"elt": elt})
class TArray(types.TMono):
def __init__(self, elt=None, num_dims=1):
if elt is None:
elt = types.TVar()
if isinstance(num_dims, int):
# Make TArray more convenient to instantiate from (ARTIQ) user code.
num_dims = types.TValue(num_dims)
# For now, enforce number of dimensions to be known, as we'd otherwise
# need to implement custom unification logic for the type of `shape`.
# Default to 1 to keep compatibility with old user code from before
# multidimensional array support.
assert isinstance(num_dims.value, int), "Number of dimensions must be resolved"
super().__init__("array", {"elt": elt, "num_dims": num_dims})
self.attributes = OrderedDict([
("buffer", types._TPointer(elt)),
("shape", types.TTuple([TInt32()] * num_dims.value)),
])
def _array_printer(typ, printer, depth, max_depth):
return "numpy.array(elt={}, num_dims={})".format(
printer.name(typ["elt"], depth, max_depth), typ["num_dims"].value)
types.TypePrinter.custom_printers["array"] = _array_printer
class TRange(types.TMono):
def __init__(self, elt=None):
if elt is None:
elt = types.TVar()
super().__init__("range", {"elt": elt})
self.attributes = OrderedDict([
("start", elt),
("stop", elt),
("step", elt),
])
class TException(types.TMono):
# All exceptions share the same internal layout:
# * Pointer to the unique global with the name of the exception (str)
# (which also serves as the EHABI type_info).
# * File, line and column where it was raised (str, int, int).
# * Message, which can contain substitutions {0}, {1} and {2} (str).
# * Three 64-bit integers, parameterizing the message (numpy.int64).
# These attributes are prefixed with `#` so that users cannot access them,
# and we don't have to do string allocation in the runtime.
# #__name__ is now a string key in the host. TStr may not be an actual
# CSlice in the runtime, they might be a CSlice with length = i32::MAX and
# ptr = string key in the host.
# Keep this in sync with the function ARTIQIRGenerator.alloc_exn.
attributes = OrderedDict([
("#__name__", TInt32()),
("#__file__", TStr()),
("#__line__", TInt32()),
("#__col__", TInt32()),
("#__func__", TStr()),
("#__message__", TStr()),
("#__param0__", TInt64()),
("#__param1__", TInt64()),
("#__param2__", TInt64()),
])
def __init__(self, name="Exception", id=0):
super().__init__(name)
self.id = id
def fn_bool():
return types.TConstructor(TBool())
def fn_int():
return types.TConstructor(TInt())
def fn_int32():
return types.TBuiltinFunction("int32")
def fn_int64():
return types.TBuiltinFunction("int64")
def fn_float():
return types.TConstructor(TFloat())
def fn_str():
return types.TConstructor(TStr())
def fn_bytes():
return types.TConstructor(TBytes())
def fn_bytearray():
return types.TConstructor(TByteArray())
def fn_list():
return types.TConstructor(TList())
def fn_array():
# numpy.array() is actually a "magic" macro that is expanded in-place, but
# just as for builtin functions, we do not want to quote it, etc.
return types.TBuiltinFunction("array")
def fn_Exception():
return types.TExceptionConstructor(TException("Exception"))
def fn_IndexError():
return types.TExceptionConstructor(TException("IndexError"))
def fn_ValueError():
return types.TExceptionConstructor(TException("ValueError"))
def fn_ZeroDivisionError():
return types.TExceptionConstructor(TException("ZeroDivisionError"))
def fn_RuntimeError():
return types.TExceptionConstructor(TException("RuntimeError"))
def fn_range():
return types.TBuiltinFunction("range")
def fn_len():
return types.TBuiltinFunction("len")
def fn_round():
return types.TBuiltinFunction("round")
def fn_abs():
return types.TBuiltinFunction("abs")
def fn_min():
return types.TBuiltinFunction("min")
def fn_max():
return types.TBuiltinFunction("max")
def fn_make_array():
return types.TBuiltinFunction("make_array")
def fn_print():
return types.TBuiltinFunction("print")
def fn_kernel():
return types.TBuiltinFunction("kernel")
def obj_parallel():
return types.TBuiltin("parallel")
def obj_interleave():
return types.TBuiltin("interleave")
def obj_sequential():
return types.TBuiltin("sequential")
def fn_delay():
return types.TBuiltinFunction("delay")
def fn_now_mu():
return types.TBuiltinFunction("now_mu")
def fn_delay_mu():
return types.TBuiltinFunction("delay_mu")
def fn_at_mu():
return types.TBuiltinFunction("at_mu")
def fn_rtio_log():
return types.TBuiltinFunction("rtio_log")
# Accessors
def is_none(typ):
return types.is_mono(typ, "NoneType")
def is_bool(typ):
return types.is_mono(typ, "bool")
def is_int(typ, width=None):
if width is not None:
return types.is_mono(typ, "int", width=width)
else:
return types.is_mono(typ, "int")
def is_int32(typ):
return is_int(typ, types.TValue(32))
def is_int64(typ):
return is_int(typ, types.TValue(64))
def get_int_width(typ):
if is_int(typ):
return types.get_value(typ.find()["width"])
def is_float(typ):
return types.is_mono(typ, "float")
def is_str(typ):
return types.is_mono(typ, "str")
def is_bytes(typ):
return types.is_mono(typ, "bytes")
def is_bytearray(typ):
return types.is_mono(typ, "bytearray")
def is_numeric(typ):
typ = typ.find()
return isinstance(typ, types.TMono) and \
typ.name in ('int', 'float')
def is_list(typ, elt=None):
if elt is not None:
return types.is_mono(typ, "list", elt=elt)
else:
return types.is_mono(typ, "list")
def is_array(typ, elt=None):
if elt is not None:
return types.is_mono(typ, "array", elt=elt)
else:
return types.is_mono(typ, "array")
def is_listish(typ, elt=None):
if is_list(typ, elt) or is_array(typ, elt):
return True
elif elt is None:
return is_str(typ) or is_bytes(typ) or is_bytearray(typ)
else:
return False
def is_range(typ, elt=None):
if elt is not None:
return types.is_mono(typ, "range", {"elt": elt})
else:
return types.is_mono(typ, "range")
def is_exception(typ, name=None):
if name is None:
return isinstance(typ.find(), TException)
else:
return isinstance(typ.find(), TException) and \
typ.name == name
def is_iterable(typ):
return is_listish(typ) or is_range(typ)
def get_iterable_elt(typ):
# TODO: Arrays count as listish, but this returns the innermost element type for
# n-dimensional arrays, rather than the n-1 dimensional result of iterating over
# the first axis, which makes the name a bit misleading.
if is_str(typ) or is_bytes(typ) or is_bytearray(typ):
return TInt(types.TValue(8))
elif types._is_pointer(typ) or is_iterable(typ):
return typ.find()["elt"].find()
else:
assert False
def is_collection(typ):
typ = typ.find()
return isinstance(typ, types.TTuple) or \
types.is_mono(typ, "list")
def is_allocated(typ):
return not (is_none(typ) or is_bool(typ) or is_int(typ) or
is_float(typ) or is_range(typ) or
types._is_pointer(typ) or types.is_function(typ) or
types.is_external_function(typ) or types.is_rpc(typ) or
types.is_method(typ) or types.is_tuple(typ) or
types.is_value(typ))