forked from M-Labs/artiq
1
0
Fork 0
artiq/artiq/examples/no_hardware/repository/flopping_f_simulation.py

80 lines
3.0 KiB
Python

import time
import random
import numpy as np
from scipy.optimize import curve_fit
from artiq.experiment import *
def model(x, F0):
t = 0.02
tpi = 0.03
A = 80
B = 40
return A + (B - A)/2/(4*tpi**2*(x - F0)**2+1)*(
1 - np.cos(np.pi*t/tpi*np.sqrt(4*tpi**2*(x - F0)**2 + 1))
)
class FloppingF(EnvExperiment):
"""Flopping F simulation"""
def build(self):
self.setattr_argument("frequency_scan", Scannable(
default=RangeScan(1000, 2000, 100)))
self.setattr_argument("F0", NumberValue(1500, min=1000, max=2000))
self.setattr_argument("noise_amplitude", NumberValue(
0.1, min=0, max=100, step=0.01))
self.setattr_device("scheduler")
self.setattr_device("ccb")
def run(self):
l = len(self.frequency_scan)
self.set_dataset("flopping_f_frequency",
np.full(l, np.nan),
broadcast=True, archive=False)
self.set_dataset("flopping_f_brightness",
np.full(l, np.nan),
broadcast=True)
self.set_dataset("flopping_f_fit", np.full(l, np.nan),
broadcast=True, archive=False)
self.ccb.issue("create_applet", "flopping_f",
"${artiq_applet}plot_xy "
"flopping_f_brightness --x flopping_f_frequency "
"--fit flopping_f_fit")
for i, f in enumerate(self.frequency_scan):
m_brightness = model(f, self.F0) + self.noise_amplitude*random.random()
self.mutate_dataset("flopping_f_frequency", i, f)
self.mutate_dataset("flopping_f_brightness", i, m_brightness)
time.sleep(0.1)
self.scheduler.submit(due_date=time.time() + 20)
def analyze(self):
# Use get_dataset so that analyze can be run stand-alone.
brightness = self.get_dataset("flopping_f_brightness")
try:
frequency = self.get_dataset("flopping_f_frequency", archive=False)
except KeyError:
# Since flopping_f_frequency is not saved, it is missing if
# analyze() is run on HDF5 data. But assuming that the arguments
# have been loaded from that same HDF5 file, we can reconstruct it.
frequency = np.fromiter(self.frequency_scan, np.float)
assert frequency.shape == brightness.shape
self.set_dataset("flopping_f_frequency", frequency,
broadcast=True, archive=False)
popt, pcov = curve_fit(model, frequency, brightness,
p0=[self.get_dataset("flopping_freq", 1500.0,
archive=False)])
perr = np.sqrt(np.diag(pcov))
if perr < 0.1:
F0 = float(popt)
self.set_dataset("flopping_freq", F0, persist=True, archive=False)
self.set_dataset("flopping_f_fit",
np.array([model(x, F0) for x in frequency]),
broadcast=True, archive=False)