forked from M-Labs/artiq
80 lines
3.0 KiB
Python
80 lines
3.0 KiB
Python
import time
|
|
import random
|
|
|
|
import numpy as np
|
|
from scipy.optimize import curve_fit
|
|
|
|
from artiq.experiment import *
|
|
|
|
|
|
def model(x, F0):
|
|
t = 0.02
|
|
tpi = 0.03
|
|
A = 80
|
|
B = 40
|
|
return A + (B - A)/2/(4*tpi**2*(x - F0)**2+1)*(
|
|
1 - np.cos(np.pi*t/tpi*np.sqrt(4*tpi**2*(x - F0)**2 + 1))
|
|
)
|
|
|
|
|
|
class FloppingF(EnvExperiment):
|
|
"""Flopping F simulation"""
|
|
|
|
def build(self):
|
|
self.setattr_argument("frequency_scan", Scannable(
|
|
default=RangeScan(1000, 2000, 100)))
|
|
|
|
self.setattr_argument("F0", NumberValue(1500, min=1000, max=2000))
|
|
self.setattr_argument("noise_amplitude", NumberValue(
|
|
0.1, min=0, max=100, step=0.01))
|
|
|
|
self.setattr_device("scheduler")
|
|
self.setattr_device("ccb")
|
|
|
|
def run(self):
|
|
l = len(self.frequency_scan)
|
|
self.set_dataset("flopping_f_frequency",
|
|
np.full(l, np.nan),
|
|
broadcast=True, archive=False)
|
|
self.set_dataset("flopping_f_brightness",
|
|
np.full(l, np.nan),
|
|
broadcast=True)
|
|
self.set_dataset("flopping_f_fit", np.full(l, np.nan),
|
|
broadcast=True, archive=False)
|
|
|
|
self.ccb.issue("create_applet", "flopping_f",
|
|
"${artiq_applet}plot_xy "
|
|
"flopping_f_brightness --x flopping_f_frequency "
|
|
"--fit flopping_f_fit")
|
|
|
|
for i, f in enumerate(self.frequency_scan):
|
|
m_brightness = model(f, self.F0) + self.noise_amplitude*random.random()
|
|
self.mutate_dataset("flopping_f_frequency", i, f)
|
|
self.mutate_dataset("flopping_f_brightness", i, m_brightness)
|
|
time.sleep(0.1)
|
|
self.scheduler.submit(due_date=time.time() + 20)
|
|
|
|
def analyze(self):
|
|
# Use get_dataset so that analyze can be run stand-alone.
|
|
brightness = self.get_dataset("flopping_f_brightness")
|
|
try:
|
|
frequency = self.get_dataset("flopping_f_frequency", archive=False)
|
|
except KeyError:
|
|
# Since flopping_f_frequency is not saved, it is missing if
|
|
# analyze() is run on HDF5 data. But assuming that the arguments
|
|
# have been loaded from that same HDF5 file, we can reconstruct it.
|
|
frequency = np.fromiter(self.frequency_scan, np.float)
|
|
assert frequency.shape == brightness.shape
|
|
self.set_dataset("flopping_f_frequency", frequency,
|
|
broadcast=True, archive=False)
|
|
popt, pcov = curve_fit(model, frequency, brightness,
|
|
p0=[self.get_dataset("flopping_freq", 1500.0,
|
|
archive=False)])
|
|
perr = np.sqrt(np.diag(pcov))
|
|
if perr < 0.1:
|
|
F0 = float(popt)
|
|
self.set_dataset("flopping_freq", F0, persist=True, archive=False)
|
|
self.set_dataset("flopping_f_fit",
|
|
np.array([model(x, F0) for x in frequency]),
|
|
broadcast=True, archive=False)
|