forked from M-Labs/artiq
1
0
Fork 0
artiq/artiq/runtime/rtio.c

165 lines
4.2 KiB
C

#include <generated/csr.h>
#include "artiq_personality.h"
#include "rtio.h"
void rtio_init(void)
{
rtio_reset_write(1);
rtio_reset_write(0);
rtio_reset_phy_write(0);
}
long long int rtio_get_counter(void)
{
rtio_counter_update_write(1);
return rtio_counter_read();
}
static void rtio_process_exceptional_status(
long long int timestamp, int channel, int status)
{
if(status & RTIO_O_STATUS_FULL)
while(rtio_o_status_read() & RTIO_O_STATUS_FULL);
if(status & RTIO_O_STATUS_UNDERFLOW) {
rtio_o_underflow_reset_write(1);
artiq_raise_from_c("RTIOUnderflow",
"RTIO underflow at {0} mu, channel {1}, slack {2} mu",
timestamp, channel, timestamp - rtio_get_counter());
}
if(status & RTIO_O_STATUS_SEQUENCE_ERROR) {
rtio_o_sequence_error_reset_write(1);
artiq_raise_from_c("RTIOSequenceError",
"RTIO sequence error at {0} mu, channel {1}",
timestamp, channel, 0);
}
if(status & RTIO_O_STATUS_COLLISION) {
rtio_o_collision_reset_write(1);
artiq_raise_from_c("RTIOCollision",
"RTIO collision at {0} mu, channel {1}",
timestamp, channel, 0);
}
if(status & RTIO_O_STATUS_BUSY) {
rtio_o_busy_reset_write(1);
artiq_raise_from_c("RTIOBusy",
"RTIO busy on channel {0}",
channel, 0, 0);
}
}
void rtio_output(long long int timestamp, int channel, unsigned int addr,
unsigned int data)
{
int status;
rtio_chan_sel_write(channel);
rtio_o_timestamp_write(timestamp);
#ifdef CSR_RTIO_O_ADDRESS_ADDR
rtio_o_address_write(addr);
#endif
rtio_o_data_write(data);
rtio_o_we_write(1);
status = rtio_o_status_read();
if(status)
rtio_process_exceptional_status(timestamp, channel, status);
}
long long int rtio_input_timestamp(long long int timeout, int channel)
{
long long int r;
int status;
rtio_chan_sel_write(channel);
while((status = rtio_i_status_read())) {
if(status & RTIO_I_STATUS_OVERFLOW) {
rtio_i_overflow_reset_write(1);
break;
}
if(rtio_get_counter() >= timeout) {
/* check empty flag again to prevent race condition.
* now we are sure that the time limit has been exceeded.
*/
status = rtio_i_status_read();
if(status & RTIO_I_STATUS_EMPTY)
break;
}
/* input FIFO is empty - keep waiting */
}
if (status & RTIO_I_STATUS_OVERFLOW)
artiq_raise_from_c("RTIOOverflow",
"RTIO input overflow on channel {0}",
channel, 0, 0);
if (status & RTIO_I_STATUS_EMPTY)
return -1;
r = rtio_i_timestamp_read();
rtio_i_re_write(1);
return r;
}
unsigned int rtio_input_data(int channel)
{
unsigned int data;
int status;
rtio_chan_sel_write(channel);
while((status = rtio_i_status_read())) {
if(status & RTIO_I_STATUS_OVERFLOW) {
rtio_i_overflow_reset_write(1);
artiq_raise_from_c("RTIOOverflow",
"RTIO input overflow on channel {0}",
channel, 0, 0);
}
}
data = rtio_i_data_read();
rtio_i_re_write(1);
return data;
}
void rtio_log_va(long long int timestamp, const char *fmt, va_list args)
{
// This executes on the kernel CPU's stack, which is specifically designed
// for allocation of this kind of massive buffers.
int len = vsnprintf(NULL, 0, fmt, args);
char *buf = __builtin_alloca(len + 1);
vsnprintf(buf, len + 1, fmt, args);
rtio_chan_sel_write(CONFIG_RTIO_LOG_CHANNEL);
rtio_o_timestamp_write(timestamp);
int i = 0;
unsigned int word = 0;
while(1) {
word <<= 8;
word |= *buf & 0xff;
if(*buf == 0) {
rtio_o_data_write(word);
rtio_o_we_write(1);
break;
}
buf++;
i++;
if(i == 4) {
rtio_o_data_write(word);
rtio_o_we_write(1);
word = 0;
i = 0;
}
}
}
void rtio_log(long long int timestamp, const char *fmt, ...)
{
va_list args;
va_start(args, fmt);
rtio_log_va(timestamp, fmt, args);
va_end(args);
}