datasheets/4410-4412.tex

989 lines
39 KiB
TeX

\documentclass[10pt]{datasheet}
\usepackage{palatino}
\usepackage{textgreek}
\usepackage{minted}
\usepackage{tcolorbox}
\usepackage{etoolbox}
\BeforeBeginEnvironment{minted}{\begin{tcolorbox}[colback=white]}%
\AfterEndEnvironment{minted}{\end{tcolorbox}}%
\usepackage[justification=centering]{caption}
\usepackage[utf8]{inputenc}
\usepackage[english]{babel}
\usepackage[english]{isodate}
\usepackage{graphicx}
\usepackage{subfigure}
\usepackage{tikz}
\usepackage{pgfplots}
\usepackage{circuitikz}
\usepackage{pifont}
\usetikzlibrary{calc}
\usetikzlibrary{fit,backgrounds}
\title{4410/4412 Urukul}
\author{M-Labs Limited}
\date{November 2021}
\revision{Revision 1}
\companylogo{\includegraphics[height=0.73in]{artiq_sinara.pdf}}
\begin{document}
\maketitle
\section{Features}
\begin{itemize}
\item{4 channels 1GS/s DDS.}
\item{Output frequency ranges from \textless 1 to \textgreater 400 MHz.}
\item{Sub-Hz frequency resolution.}
\item{Controlled phase steps.}
\item{Accurate output amplitude control.}
\end{itemize}
\section{Applications}
\begin{itemize}
\item{Dynamic low-noise RF source.}
\item{Driving RF electrodes in ion traps.}
\item{Driving acousto-optic modulators.}
\item{Form a laser intensity servo with 5108 Sampler.}
\end{itemize}
\section{General Description}
The 4410/4412 Urukul card is a 4hp EEM module part of the ARTIQ Sinara family.
It adds frequency generation capabilities to carrier cards such as 1124 Kasli and 1125 Kasli-SoC.
It provides 4 channels of DDS at 1GS/s.
Output frequency from \textless 1 to \textgreater 400 MHz are supported.
The nominal maximum output power of each channel is 10dBm.
Each channel can be attenuated from 0 to -31.5 dB by a digital attenuator.
RF switches (1ns temporal resolution) on each channel provides 70 dB isolation.
4410 Urukul comes with AD9910 chips, while 4412 Urukul comes with AD9912 chips instead.
% Switch to next column
\vfill\break
\newcommand*{\MyLabel}[3][2cm]{\parbox{#1}{\centering #2 \\ #3}}
\newcommand*{\MymyLabel}[3][4cm]{\parbox{#1}{\centering #2 \\ #3}}
\begin{figure}[h]
\centering
\scalebox{0.88}{
\begin{circuitikz}[european, scale=0.95, every label/.append style={align=center}]
\begin{scope}[]
% Node to pin-point the locations of SMA symbols
\draw[color=white, text=black] (-0.1, 0) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (ext_clk) {};
\draw[color=white, text=black] (-0.1, -0.35) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (mmcx) {};
\draw[color=white, text=black] (-0.1, -1.75) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (rf0) {};
\draw[color=white, text=black] (-0.1, -2.45) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (rf1) {};
\draw[color=white, text=black] (-0.1, -3.15) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (rf2) {};
\draw[color=white, text=black] (-0.1, -3.85) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (rf3) {};
% Labels for female EXT_CLK, MMCX, RF {0, 1, 2, 3}
\node [label=left:\tiny{EXT CLK}] at (0.35, 0) {};
\node [label=left:\tiny{MMCX}] at (0.35, -0.35) {};
\node [label=left:\tiny{RF 0}] at (0.35, -1.75) {};
\node [label=left:\tiny{RF 1}] at (0.35, -2.45) {};
\node [label=left:\tiny{RF 2}] at (0.35, -3.15) {};
\node [label=left:\tiny{RF 3}] at (0.35, -3.85) {};
% draw female EXT_CLK, MMCX, RF {0, 1, 2, 3}
\begin{scope}[scale=0.07 , rotate=-90, xshift=0cm, yshift=2cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
\end{scope}
\begin{scope}[scale=0.07 , rotate=-90, xshift=5cm, yshift=2cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
\end{scope}
\begin{scope}[scale=0.07 , rotate=-90, xshift=25cm, yshift=2cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
\end{scope}
\begin{scope}[scale=0.07 , rotate=-90, xshift=35cm, yshift=2cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
\end{scope}
\begin{scope}[scale=0.07 , rotate=-90, xshift=45cm, yshift=2cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
\end{scope}
\begin{scope}[scale=0.07 , rotate=-90, xshift=55cm, yshift=2cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
\end{scope}
% Draw the internal oscillator
\draw (0.02, -0.8) node[twoportshape, t={OSC}, circuitikz/bipoles/twoport/width=0.8, scale=0.4] (xo) {};
% Draw the clock buffers as selector
% \tikzset{demux/.style={muxdemux, muxdemux def={Lh=6, Rh=6, NL=3, NT=1, NB=0, NR=1, w=2.5}, no input leads, scale=0.4}};
% \draw (1.55, -0.35) node[demux]{\rotatebox[origin=c]{-90}{CLK BUFFERS}};
\draw (1.45, -0.35) node[twoportshape, t={CLK Buffers}, circuitikz/bipoles/twoport/width=2.2, scale=0.4, rotate=-90] (clk_buf) {};
% Connect CLK_IN to DDS clock buffers
\draw [-latexslim] (ext_clk.east) -- ++(1,0);
\draw [-latexslim] (mmcx.east) -- ++(1,0);
\draw [-latexslim] (xo.east) -- ++(1,0);
% Connect CPLD clk_sel to DDS clock buffers
\draw [-latexslim] (clk_buf.east) -- ++(0,-0.42);
% Signal path: From control signals / clock of DDS to output of the RF switches
\draw (1.35, -1.75) node[twoportshape, t={DDS Signal Path}, circuitikz/bipoles/twoport/width=2, scale=0.4] (sig0) {};
\draw (1.35, -2.45) node[twoportshape, t={DDS Signal Path}, circuitikz/bipoles/twoport/width=2, scale=0.4] (sig1) {};
\draw (1.35, -3.15) node[twoportshape, t={DDS Signal Path}, circuitikz/bipoles/twoport/width=2, scale=0.4] (sig2) {};
\draw (1.35, -3.85) node[twoportshape, t={DDS Signal Path}, circuitikz/bipoles/twoport/width=2, scale=0.4] (sig3) {};
% Extra node to expand the dotted area eastward
\draw[color=white, text=black] (2.1, -3.85) node[twoportshape, circuitikz/bipoles/twoport/width=0.4, scale=0.4 ] (sig3_east) {};
% Connect RF to DDS block
\draw [latexslim-] (rf0.east) -- (sig0.west);
\draw [latexslim-] (rf1.east) -- (sig1.west);
\draw [latexslim-] (rf2.east) -- (sig2.west);
\draw [latexslim-] (rf3.east) -- (sig3.west);
% DDS signal path dotted area
\node[draw, dotted, thick, rounded corners, inner xsep=0.7em, inner ysep=0.4em, fit=(rf3)(sig0)(sig3_east.east)] (abs_dds) {};
\node[fill=white, rotate=-90, scale=0.7] at (abs_dds.west) {DDS Channels};
% CPLD
\draw (3.8, -0.35) node[twoportshape, t={CPLD}, circuitikz/bipoles/twoport/width=1.1, scale=0.8, rotate=-90] (cpld) {};
% Synthronization clock buffer for DDS block
\draw (3.5, -2.5) node[twoportshape, t=\MymyLabel{Sync}{Buffer}, circuitikz/bipoles/twoport/width=1.2, scale=0.5] (sync_buf) {};
% Connect CPLD to:
% DDS clock buffer
\draw [latexslim-] (clk_buf.north) -- (cpld.south);
% DDS signal path
\draw [latexslim-latexslim] (3.4, -0.7) -- ++ (-1.5, 0) -- ++ (0,-0.72);
% Draw to intersection point, then complete the connection to sync buffer
\draw [-] (4.2, -0.7) -- (4.55, -0.7) -- (4.55, -2.5);
\draw [-latexslim] (4.55, -2.5) -- (sync_buf.east);
% Connect sync buffer to DDS block
\draw [-latexslim] (sig0.east) -- (3.35, -1.75) -- ++ (0, -0.5);
\draw [-latexslim] (sync_buf.south) -- ++ (0, -0.3) -- ++ (-1.05, 0);
% LVDS Transceivers
\draw (6, 0) node[twoportshape, t=\MymyLabel{LVDS}{Transceiever}, circuitikz/bipoles/twoport/width=1.8, scale=0.5] (lvds0) {};
\draw (6, -0.7) node[twoportshape, t=\MymyLabel{LVDS}{Transceiever}, circuitikz/bipoles/twoport/width=1.8, scale=0.5] (lvds1) {};
\draw (6, -2.5) node[twoportshape, t=\MymyLabel{LVDS}{Transceiever}, circuitikz/bipoles/twoport/width=1.8, scale=0.5] (lvds2) {};
\draw (6, -3.2) node[twoportshape, t=\MymyLabel{LVDS}{Transceiever}, circuitikz/bipoles/twoport/width=1.8, scale=0.5] (lvds3) {};
% Connect CPLD to transceivers
\draw [latexslim-latexslim] (lvds0.west) -- ++ (-1.13, 0);
\draw [latexslim-latexslim] (lvds1.west) -- ++ (-0.35, 0) -- ++ (0, 0.6) -- ++ (-0.78, 0);
\draw [latexslim-latexslim] (lvds2.west) -- ++ (-0.45, 0) -- ++ (0, 2.3) -- ++ (-0.68, 0);
\draw [latexslim-latexslim] (lvds3.west) -- ++ (-0.55, 0) -- ++ (0, 2.9) -- ++ (-0.58, 0);
% EEPROMs
\draw (6, -1.4) node[twoportshape, t={EEPROM}, circuitikz/bipoles/twoport/width=1.8, scale=0.5] (eeprom0) {};
\draw (6, -3.9) node[twoportshape, t={EEPROM}, circuitikz/bipoles/twoport/width=1.8, scale=0.5] (eeprom1) {};
% Repeaters for DDS0 sync clock & DDS sync output from sync buffer
\draw (3.5, -3.85) node[twoportshape, t={Repeaters}, circuitikz/bipoles/twoport/width=1.2, scale=0.5] (rep) {};
% Connect DDS0 to repeaters
\draw [-latexslim] (sig0.east) -- ++ (0.3, 0) -- ++ (0, -1.55) -- (3.35, -3.3) -- ++ (0, -0.3);
% Connect sync_buf to repeaters
\draw [-latexslim] (sync_buf.south) -- ++ (0, -0.3) -- ++ (0.15, 0) -- ++ (0, -0.55);
% EEMs
\draw (8, -0.9) node[twoportshape, t={EEM Port 0}, circuitikz/bipoles/twoport/width=3.2, scale=0.5, rotate=-90] (eem0) {};
\draw (8, -3.4) node[twoportshape, t={EEM Port 1}, circuitikz/bipoles/twoport/width=3.2, scale=0.5, rotate=-90] (eem1) {};
% Connect LVDS and EEM
\draw [latexslim-latexslim] (lvds0.east) -- (7.75, 0);
\draw [latexslim-latexslim] (lvds1.east) -- (7.75, -0.7);
\draw [latexslim-latexslim] (lvds2.east) -- (7.75, -2.5);
\draw [latexslim-latexslim] (lvds3.east) -- (7.75, -3.2);
% Connect EEPROM to EEM
\draw [latexslim-latexslim] (eeprom0.east) -- (7.75, -1.4);
\draw [latexslim-latexslim] (eeprom1.east) -- (7.75, -3.9);
% Connect EEM0 to sync_buf
\draw [latexslim-] (3.65, -2.25) -- (3.65, -1.85) -- (7.75, -1.85);
% Connect repeaters output to EEM1
\draw [-latexslim] (rep.south) -- (3.5, -4.35) -- (7.75, -4.35);
% Synchronization ICs encased in another dotted area
\node[draw, dotted, thick, rounded corners, inner xsep=0.7em, inner ysep=0.4em, fit=(rep.south west)(sync_buf.north east)] (sync_path) {};
\node[fill=white, rotate=-90, scale=0.5] at (sync_path.east) {AD9910 Only};
\end{scope}
\end{circuitikz}
}
\caption{Simplified Block Diagram}
\end{figure}
\begin{figure}[h]
\centering
\scalebox{0.88}{
\begin{circuitikz}[european, scale=0.95, every label/.append style={align=center}]
\begin{scope}[]
% RF switches {0, 1, 2, 3} for SMA {0, 1, 2, 3}
\draw (1.4, 0) node[twoportshape, t={RF Switch}, circuitikz/bipoles/twoport/width=1.5, scale=0.6] (sw) {};
% Amplifiers {0, 1, 2, 3} for RF switches {0, 1, 2, 3}
\draw (3, 0) node[buffer, circuitikz/bipoles/twoport/width=1.2, scale=-0.5] (amp) {};
% Attenuators {0, 1, 2, 3} for amplifiers {0, 1, 2, 3}
\draw (4.6, 0) node[twoportshape, t=\MymyLabel{Digital}{Attenuator}, circuitikz/bipoles/twoport/width=2, scale=0.6, rotate=-90] (att) {};
% DDS {0, 1, 2, 3} for attenuators {0, 1, 2, 3}
\draw (6.6, 0) node[twoportshape, t={DDS}, circuitikz/bipoles/twoport/width=1.2, scale=0.7] (dds) {};
% Connect main signal path
\draw [-latexslim] (dds.west) -- (att.north);
\draw [-latexslim] (att.south) -- (amp.west);
\draw [-latexslim] (amp.east) -- (sw.east);
% Connect abstract DDS clock input
\node [label=above:\tiny{CLK Buffers}] at (8, -0.2) {};
\draw [latexslim-] (dds.east) -- (8, 0);
% Insert CPLD signal to relevant components
\node [label=above:\tiny{CPLD}] at (8, 1.1) {};
\draw [-] (1.4, 1.3) -- (8, 1.3);
\draw [-latexslim] (1.4, 1.3) -- (sw.north);
\draw [-latexslim] (4.6, 1.3) -- (att.west);
\draw [-latexslim] (6.6, 1.3) -- (dds.north);
% Connect sync_buf signal to DDS
\draw [latexslim-] (6.9, -1.35) -- (6.9, -0.35);
\draw [-latexslim] (6.3, -1.35) -- (6.3, -0.35);
\node [label=below:\tiny{Sync Buffer /}] at (6.6, -1.15) {};
\node [label=below:\tiny{Repeaters}] at (6.6, -1.4) {};
\node [label={[rotate=-90]above:\tiny{DDS 0}}] at (6.8, -0.9) {};
\node [label={[rotate=-90]above:\tiny{Only}}] at (6.55, -0.9) {};
\end{scope}
\end{circuitikz}
}
\caption{Simplified DDS Signal Path}
\end{figure}
\begin{figure}[hbt!]
\centering
\includegraphics[height=2.2in]{Urukul_FP.png}
\includegraphics[height=2.2in]{photo4410.jpg}
\caption{Urukul Card photo}
\end{figure}
% For wide tables, a single column layout is better. It can be switched
% page-by-page.
\onecolumn
\section{Electrical Specifications}
\begin{table}[h]
\begin{threeparttable}
\caption{Recommended Operating Conditions}
\begin{tabularx}{\textwidth}{l | c | c c c | c | X}
\thickhline
\textbf{Parameter} & \textbf{Symbol} & \textbf{Min.} & \textbf{Typ.} & \textbf{Max.} &
\textbf{Unit} & \textbf{Conditions} \\
\hline
Clock input & & & & & &\\
\hspace{3mm} Input frequency & $f_{clk}$ & 10 & & 1000 & MHz & PLL disabled \\
& & 3.2 & & 60 & MHz & AD9910, PLL enabled, no clock division \\
& & 12.8 & & 240 & MHz & AD9910, PLL enabled, 4x clock division \\
& & 11 & & 200 & MHz & AD9912, PLL enabled, no clock division \\
& & 44 & & 800 & MHz & AD9912, PLL enabled, 4x clock division \\
\hspace{3mm} Nominal input power & $P_{in}$ & & 10 & & dBm & \\
\thickhline
\end{tabularx}
\end{threeparttable}
\end{table}
\begin{table}[h]
\begin{threeparttable}
\caption{RF Output Specifications}
\begin{tabularx}{\textwidth}{l | c | c c c | c | X}
\thickhline
\textbf{Parameter} & \textbf{Symbol} & \textbf{Min.} & \textbf{Typ.} & \textbf{Max.} &
\textbf{Unit} & \textbf{Conditions} \\
\hline
Low frequency power & $P(f)$ & & & -20 & dBm & 100 kHz output \\
& & & & 10 & dBm & 1 MHz output \\
\hline
Frequency & $f_{in}$ & 1 & & 400 & MHz & \\
\hline
Attenuation & $\frac{P_{out}}{P_{dds}}$ & -31.5 & & 0 & dB & \\
\hline
Resolution & & & & & & \\
\hspace{3mm} Frequency & $Q_f$ & & 0.25 & & Hz & AD9910 \\
& & & 8 & & $\mu$Hz & AD9912 \\
\hspace{3mm} Phase offset & $Q_\theta$ & & 16 & & bits & AD9910 \\
& & & 14 & & bits & AD9912 \\
\hspace{3mm} Digital amplitude & $M_{asf}$ & & 14 & & bits & AD9910 \\
\hspace{3mm} DAC full scale current & $M_{I}$ & & 8 & & bits & AD9910 \\
& & & 10 & & bits & AD9912 \\
\hspace{3mm} Temporal (I/O Update) & $\Delta t$ & & 4 & & ns & \\
\hspace{3mm} Digital attenuation & $Q_{att}$ & & 0.5 & & dB & \\
\thickhline
\end{tabularx}
\end{threeparttable}
\end{table}
\newpage
The tabulated performance characteristics are produced using the following setup unless otherwise noted.
\begin{itemize}
\item 100 MHz input clock into SMA, 10 dBm.
\item Input clock divided by 4.
\item PLL with x40 multiplier.
\item Output frequency at 80 MHz or 81 MHz.
\end{itemize}
\begin{table}[h]
\begin{threeparttable}
\caption{Electrical Characteristics}
\begin{tabularx}{\textwidth}{l | c | c c c | c | X}
\thickhline
\textbf{Parameter} & \textbf{Symbol} & \textbf{Min.} & \textbf{Typ.} & \textbf{Max.} &
\textbf{Unit} & \textbf{Conditions} \\
\hline
Digital attenuator glitch duration & $t_s$ & & 100 & & ns & \\
\hline
RF switch & & & & & &\\
\hspace{3mm} Rise to 90\% & $t_{on}$ & & 100 & & ns & \\
\hspace{3mm} Isolation & $\frac{P_{off}}{P_{dds}}$ & & 70 & & dB & \\
\hspace{3mm} Turn-on chirp & $\gamma$ & & & 0.1 & deg/s & Excluding the first $\mu$s\\
\hline
Crosstalk & $\frac{P_X}{P_{out}}$ & & -84 & & dB & Victim RF switch opened \\
& & & -110 & & dB & Victim RF switch closed \\
\hline
Cross-channel-intermodulation & $IM$ & & -90 & & dB & \\
\hline
Phase noise & $\mathcal{L}(f)$ & & -85 & & dBc/Hz & 0.1 Hz \\
& & & -95 & & dBc/Hz & 1 Hz \\
& & & -107 & & dBc/Hz & 10 Hz \\
& & & -116 & & dBc/Hz & 100 Hz \\
& & & -126 & & dBc/Hz & 1 kHz \\
& & & -133 & & dBc/Hz & 10 kHz \\
& & & -135 & & dBc/Hz & 100 kHz \\
& & & -128 & & dBc/Hz & 1 MHz \\
& & & -149 & & dBc/Hz & 10 MHz \\
\hline
Second-order harmonics & $\frac{P_{n=2}}{P_{n=1}}$ & & -40 & & dB & 6 dBm output \\
& & & -34 & & dB & 10.5 dBm output \\
\hline
Third-order harmonics & $\frac{P_{n=3}}{P_{n=1}}$ & & -54 & & dB & 6 dBm output \\
& & & -28 & & dB & 10.5 dBm output \\
\hline
Power consumption (AD9910) & $P$ & & 7 & & W & 4x 400 MHz, 10.5 dBm, 52\degree C\\
Power consumption (AD9912) & $P$ & & 6.5 & & W & 4x 400 MHz, 10.5 dBm, 52\degree C\\
\thickhline
\end{tabularx}
\end{threeparttable}
\end{table}
\newpage
Harmonic content of the DDS signals from 4410 Urukul is tabulated below. An external 125 MHz clock signal were supplied.
\newcommand{\ts}{\textsuperscript}
\newcolumntype{Y}{>{\centering\arraybackslash}X}
\begin{table}[h]
\begin{threeparttable}
\caption{Harmonic content with 0.0 dB digital attenuation}
\begin{tabularx}{\textwidth}{| c | Y | Y | Y | Y | Y | Y | Y | Y | Y |}
\thickhline
\multirow{2}{*}{\textbf{Frequency (MHz)}} &
\multicolumn{9}{c|}{\textbf{Output power (dBm) of the n\ts{th}-order harmonic}}\\
\cline{2-10} & 1\ts{st} & 2\ts{nd} & 3\ts{rd} & 4\ts{th} & 5\ts{th} & 6\ts{th} &
7\ts{th} & 8\ts{th} & 9\ts{th} \\
\hline
0.1 & -21.14 & -59.03 & -54.93 & -93.07 & -73.38 & -94.07 & -84.78 & -91.77 & -96.61 \\
\hline
0.5 & 4.51 & -15.45 & -11.61 & -25.02 & -24.35 & -51.70 & -35.14 & -34.46 & -37.85 \\
\hline
1 & 7.67 & -16.80 & -12.32 & -18.27 & -29.25 & -30.87 & -34.51 & -39.28 & -39.84 \\
\hline
10 & 10.67 & -12.69 & -13.94 & -26.12 & -27.76 & -36.11 & -55.32 & -43.85 & -42.65 \\
\hline
20 & 10.86 & -24.90 & -13.65 & -22.87 & -28.67 & -47.68 & -35.85 & -35.45 & -38.48 \\
\hline
50 & 10.74 & -14.18 & -15.01 & -27.57 & -29.01 & -38.05 & -51.52 & -44.53 & -42.71 \\
\hline
100 & 9.70 & -33.59 & -16.72 & -34.36 & -26.81 & -40.14 & -41.07 & -43.88 & -56.89 \\
\hline
200 & 8.97 & -22.22 & -16.23 & -24.89 & -30.49 & -37.97 & -37.79 & -38.80 & -40.14 \\
\hline
300 & 8.27 & -19.17 & -19.51 & -29.80 & -34.75 & -38.90 & -51.92 & -53.38 & -57.95 \\
\hline
400 & 7.68 & -17.82 & -21.60 & -33.04 & -37.80 & -50.37 & -57.45 & -59.80 & -64.68 \\
\hline
500 & -1.80 & -41.57 & -51.71 & -72.36 & -89.35 & -91.63 & -93.15 & -84.54 & -107.57 \\
\thickhline
\end{tabularx}
\end{threeparttable}
\end{table}
\begin{table}[hbt!]
\begin{threeparttable}
\caption{Harmonic content with 10.0 dB digital attenuation}
\begin{tabularx}{\textwidth}{| c | Y | Y | Y | Y | Y | Y | Y | Y | Y |}
\thickhline
\multirow{2}{*}{\textbf{Frequency (MHz)}} &
\multicolumn{9}{c|}{\textbf{Output power (dBm) of the n\ts{th}-order harmonic}}\\
\cline{2-10} & 1\ts{st} & 2\ts{nd} & 3\ts{rd} & 4\ts{th} & 5\ts{th} & 6\ts{th} &
7\ts{th} & 8\ts{th} & 9\ts{th} \\
\hline
0.1 & -27.06 & -81.35 & -62.09 & -97.37 & -84.11 & -103.78 & -91.37 & -100.48 & -104.22 \\
\hline
0.5 & -3.2 & -37.82 & -52.21 & -66.76 & -77.86 & -85.92 & -86.37 & -97.59 & -120.76 \\
\hline
1 & -0.43 & -34.47 & -47.80 & -75.28 & -86.45 & -101.91 & -93.22 & -96.14 & -106.71 \\
\hline
10 & 1.95 & -31.04 & -28.23 & -51.76 & -57.29 & -76.26 & -78.15 & -83.85 & -80.20 \\
\hline
20 & 2.10 & -33.05 & -28.30 & -54.50 & -52.31 & -72.39 & -70.96 & -82.98 & -82.58 \\
\hline
50 & 1.89 & -33.24 & -28.50 & -52.67 & -48.35 & -74.77 & -77.26 & -79.33 & -73.58 \\
\hline
100 & 0.80 & -38.51 & -63.22 & -61.73 & -71.97 & -97.45 & -97.67 & -107.40 & -93.03 \\
\hline
200 & 0.05 & -38.25 & -42.16 & -63.01 & -84.55 & -82.66 & -108.85 & -116.62 & -99.45 \\
\hline
300 & -0.51 & -35.91 & -48.83 & -82.43 & -100.53 & -111.79 & -118.62 & -120.05 & -97.72 \\
\hline
400 & -1.20 & -38.37 & -49.77 & -89.45 & -74.66 & -108.12 & -116.75 & -114.08 & -102.29 \\
\hline
500 & -11.20 & -61.47 & -77.59 & -74.73 & -100.23 & -93.12 & -99.83 & -86.71 & -112.63 \\
\thickhline
\end{tabularx}
\end{threeparttable}
\end{table}
\newpage
\begin{table}[h]
\begin{threeparttable}
\caption{Harmonic content with 20.0 dB digital attenuation}
\begin{tabularx}{\textwidth}{| c | Y | Y | Y | Y | Y | Y | Y | Y | Y |}
\thickhline
\multirow{2}{*}{\textbf{Frequency (MHz)}} &
\multicolumn{9}{c|}{\textbf{Output power (dBm) of the n\ts{th}-order harmonic}}\\
\cline{2-10} & 1\ts{st} & 2\ts{nd} & 3\ts{rd} & 4\ts{th} & 5\ts{th} & 6\ts{th} &
7\ts{th} & 8\ts{th} & 9\ts{th} \\
\hline
0.1 & -31.06 & -82.29 & -68.34 & -109.04 & -92.48 & -111.23 & -99.94 & -109.85 & -112.36 \\
\hline
0.5 & -11.99 & -56.69 & -71.73 & -95.76 & -101.86 & -114.37 & -102.81 & -106.94 & -116.72 \\
\hline
1 & -9.94 & -54.54 & -56.49 & -89.12 & -105.94 & -110.93 & -102.79 & -107.01 & -117.29 \\
\hline
10 & -7.89 & -50.19 & -57.35 & -91.36 & -97.88 & -107.95 & -103.53 & -96.04 & -108.26 \\
\hline
20 & -7.79 & -52.72 & -58.03 & -90.75 & -99.82 & -102.07 & -101.55 & -104.73 & -103.31 \\
\hline
50 & -7.96 & -52.36 & -59.26 & -84.44 & -87.55 & -86.88 & -97.76 & -92.61 & -83.19 \\
\hline
100 & -9.04 & -57.40 & -61.76 & -78.50 & -91.80 & -117.64 & -107.40 & -112.64 & -102.07 \\
\hline
200 & -9.73 & -57.39 & -72.31 & -72.66 & -93.26 & -95.95 & -125.22 & -122.35 & -130.24 \\
\hline
300 & -10.27 & -58.65 & -74.60 & -109.24 & -107.74 & -115.75 & -125.36 & -124.54 & -98.86 \\
\hline
400 & -10.94 & -59.62 & -79.36 & -98.48 & -74.72 & -111.95 & -119.18 & -114.63 & -104.34 \\
\hline
500 & -21.00 & -78.52 & -99.07 & -74.91 & -99.55 & -92.91 & -103.02 & -87.33 & -114.87 \\
\thickhline
\end{tabularx}
\end{threeparttable}
\end{table}
\begin{table}[hbt!]
\begin{threeparttable}
\caption{Harmonic content with 31.5 dB digital attenuation}
\begin{tabularx}{\textwidth}{| c | Y | Y | Y | Y | Y | Y | Y | Y | Y |}
\thickhline
\multirow{2}{*}{\textbf{Frequency (MHz)}} &
\multicolumn{9}{c|}{\textbf{Output power (dBm) of the n\ts{th}-order harmonic}}\\
\cline{2-10} & 1\ts{st} & 2\ts{nd} & 3\ts{rd} & 4\ts{th} & 5\ts{th} & 6\ts{th} &
7\ts{th} & 8\ts{th} & 9\ts{th} \\
\hline
0.1 & -37.89 & -85.04 & -77.41 & -122.04 & -114.29 & -115.58 & -110.65 & -120.06 & -123.70 \\
\hline
0.5 & -22.38 & -71.24 & -89.84 & -107.81 & -108.76 & -127.83 & -114.12 & -118.34 & -127.07 \\
\hline
1 & -21.01 & -72.10 & -90.08 & -111.97 & -111.30 & -127.43 & -114.38 & -118.07 & -128.06 \\
\hline
10 & -19.22 & -72.13 & -90.74 & -110.14 & -105.28 & -114.04 & -113.51 & -94.85 & -116.15 \\
\hline
20 & -19.28 & -75.95 & -94.72 & -91.71 & -107.55 & -112.85 & -112.24 & -116.33 & -114.02 \\
\hline
50 & -19.27 & -74.93 & -92.21 & -95.77 & -101.06 & -97.92 & -108.30 & -103.60 & -93.96 \\
\hline
100 & -20.27 & -79.05 & -87.48 & -89.73 & -104.00 & -117.98 & -112.12 & -110.51 & -105.80 \\
\hline
200 & -21.19 & -78.33 & -106.81 & -82.70 & -92.31 & -109.93 & -133.86 & -120.94 & -102.95 \\
\hline
300 & -21.58 & -80.96 & -112.44 & -110.40 & -108.11 & -115.68 & -122.51 & -125.25 & -99.63 \\
\hline
400 & -22.44 & -82.73 & -105.55 & -98.03 & -74.84 & -113.93 & -119.41 & -114.93 & -104.55 \\
\hline
500 & -31.73 & -93.37 & -99.74 & -75.03 & -99.27 & -92.84 & -104.14 & -87.46 & -116.22 \\
\thickhline
\end{tabularx}
\end{threeparttable}
\end{table}
\newpage
\begin{multicols}{2}
\begin{figure}[H]
\includegraphics[width=3.3in]{urukul_xo_phase_noise.jpg}
\caption{Phase noise of Urukul clocked by\\internal oscillator}
\end{figure}
\begin{figure}[H]
\includegraphics[width=3.3in]{urukul_clock_phase_noise.jpg}
\caption{Phase noise of 200 MHz DDS Output}
\end{figure}
\begin{figure}[H]
\includegraphics[width=3.3in]{urukul_harmonics.png}
\caption{Harmonic content of 200 MHz DDS Output}
\end{figure}
\begin{figure}[H]
\includegraphics[width=3.3in]{urukul_6dbm_harmonics.png}
\caption{Harmonic content of 80 MHz DDS Output (6 dBm)}
\end{figure}
\begin{figure}[H]
\includegraphics[width=3.3in]{urukul_10dbm_harmonics.png}
\caption{Harmonic content of 80 MHz DDS Output (10 dBm)}
\end{figure}
\begin{figure}[H]
\includegraphics[width=3.3in]{rf_transient.jpg}
\caption{RF switch turn on transient}
\end{figure}
\begin{figure}[H]
\includegraphics[width=3.3in]{nyquist_rejection_400mhz.png}
\caption{Nyquist rejection 400 MHz to 600 MHz}
\end{figure}
\end{multicols}
\begin{figure}[H]
\centering
\includegraphics[width=3.3in]{nyquist_rejection_450mhz.png}
\caption{Nyquist rejection 450 MHz to 550 MHz}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width=3.3in]{att_glitch_bitflip.png}
\caption{Attenuator step from 20 to 60 digital\\(16+4dB switch glitch)}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width=3.3in]{att_glitch_carry.png}
\caption{Attenuator step from 31 to 32 digital\\(major carry glitch)}
\end{figure}
\newpage
\section{Front Panel Drawings}
\begin{figure}[hbt!]
\centering
\includegraphics[height=2.5in]{Urukul_drawings.jpg}
\includegraphics[height=2.5in]{Urukul_assembly.jpg}
\caption{4410 Urukul front panel drawings}
\end{figure}
\section{Urukul Mode Configurations}
Mode of operation is specified by a DIP switch.
The DIP switch can be found at the top right corner of the card.
The following table summarizes the required setting for each mode.
\ding{51} indicates ON, while \ding{53} indicates OFF.
\begin{multicols}{2}
\begin{center}
\captionof{table}{DIP switch configurations}
\begin{tabular}{|l|cccc|}
\hline
\multicolumn{1}{|c|}{\multirow{2}{*}{Mode}} & \multicolumn{4}{c|}{DIP Switch} \\ \cline{2-5}
\multicolumn{1}{|c|}{} & \multicolumn{1}{c|}{1} & \multicolumn{1}{c|}{2} & \multicolumn{1}{c|}{3} & 4 \\ \hline
Default & \multicolumn{1}{c|}{\ding{53}} & \multicolumn{1}{c|}{\ding{53}} & \multicolumn{1}{c|}{\ding{53}} & \ding{53} \\ \hline
SU-Servo & \multicolumn{1}{c|}{\ding{53}} & \multicolumn{1}{c|}{\ding{51}} & \multicolumn{1}{c|}{\ding{53}} & \ding{53} \\ \hline
\end{tabular}
\end{center}
\columnbreak
\begin{center}
\centering
\includegraphics[height=1.5in]{urukul_dip_switch.jpg}
\captionof{figure}{Position of DIP switch}
\end{center}
\end{multicols}
\newpage
\section{Example ARTIQ code}
The sections below demonstrate simple usage scenarios of the 4410 Urukul card with the ARTIQ control system.
They do not exhaustively demonstrate all the features of the ARTIQ system.
The full documentation for the ARTIQ software and gateware is available at \url{https://m-labs.hk}.
\subsection{10 MHz Sinusoidal Wave}
Generate a 10MHz sinusoid from RF0 with full scale amplitude, attenuated by 6 dB.
Both the CPLD and the DDS channels should be initialized.
By default, AD9910 single-tone profiles are programmed to profile 7.
\begin{minted}{python}
@kernel
def run(self):
self.core.reset()
self.cpld.init()
self.dds0.init()
self.dds0.cfg_sw(True)
self.dds0.set_att(6.*dB)
self.dds0.set(10*MHz)
\end{minted}
If the synchronization feature of AD9910 was enabled, RF signal across different channels of the same Urukul can be synchronized.
For example, phase-coherent RF signal can be produced on both channel 0 and channel 1 after configuring an appropriate phase mode.
\begin{minted}{python}
@kernel
def run(self):
self.core.reset()
self.cpld.init()
self.dds0.init()
self.dds0.cfg_sw(True)
self.dds0.set_phase_mode(PHASE_MODE_TRACKING)
self.dds0.set_att(6.*dB)
self.dds1.init()
self.dds1.cfg_sw(True)
self.dds1.set_phase_mode(PHASE_MODE_TRACKING)
self.dds1.set_att(6.*dB)
self.dds0.set(frequency=10*MHz, phase=0.0)
self.dds1.set(frequency=10*MHz, phase=0.25) # 0.25 turns phase offset
\end{minted}
Note that the phase difference between the 2 channels might not be exactly 0.25 turns, but it is a constant.
It can be negated by adjusting the \texttt{phase} parameter.
\newpage
\subsection{Periodic RF pulse (AD9910 Only)}
This examples demonstrates that the RF signal can be modulated by amplitude using the RAM modulation feature of AD9910.
By default, RAM profiles are programmed to profile 0.
\begin{minted}{python}
from artiq.coredevice.ad9910 import RAM_MODE_CONT_RAMPUP
def prepare(self):
self.amp = [0.0, 0.0, 0.0, 0.7, 0.0, 0.7, 0.7] # Reversed Order
self.asf_ram = [0] * len(self.amp)
@kernel
def init_dds(self, dds):
self.core.break_realtime()
dds.init()
dds.set_att(6.*dB)
dds.cfg_sw(True)
@kernel
def configure_ram_mode(self, dds):
self.core.break_realtime()
dds.set_cfr1(ram_enable=0)
self.cpld.io_update.pulse_mu(8)
self.cpld.set_profile(0) # Enable the corresponding RAM profile
# Profile 0 is the default
dds.set_profile_ram(start=0, end=len(self.asf_ram)-1,
step=250, profile=0, mode=RAM_MODE_CONT_RAMPUP)
self.cpld.io_update.pulse_mu(8)
dds.amplitude_to_ram(self.amp, self.asf_ram)
dds.write_ram(self.asf_ram)
self.core.break_realtime()
dds.set(frequency=5*MHz, ram_destination=RAM_DEST_ASF)
# Pass osk_enable=1 to set_cfr1() if it is not an amplitude RAM
dds.set_cfr1(ram_enable=1, ram_destination=RAM_DEST_ASF)
self.cpld.io_update.pulse_mu(8)
@kernel
def run(self):
self.core.reset()
self.core.break_realtime()
self.cpld.init()
self.init_dds(self.dds0)
self.configure_ram_mode(self.dds0)
\end{minted}
The generated RF output of the above example consists of the following features in sequence:
\begin{enumerate}
\item A 5 MHz RF pulse for 2 microseconds.
\item No signal for 1 microseconds.
\item A 5 MHz RF pulse for 1 microseconds.
\item No signal for 3 microseconds.
\item Go back to item 1.
\end{enumerate}
The expected waveform is plotted on the following figure.
Note that phase of the RF pulses may drift gradually.
Urukul was operated with a 50$\Omega$ termination to produce the waveform.
\begin{tikzpicture}[
declare function={
func(\x)= (\x<0) * (0) +
and(\x>=0, \x<2) * (0.42*cos(deg(10*pi*\x))) +
and(\x>=2, \x<3) * (0) +
and(\x>=3, \x<4) * (0.42*cos(deg(10*pi*\x)))) +
and(\x>=4, \x<7) * (0) +
and(\x>=7, \x<7.5) * (0.42*cos(deg(10*pi*\x)));
}
]
\begin{axis}[
axis x line=middle, axis y line=middle,
every axis x label/.style={
at={(ticklabel* cs:1.05)},
anchor=west,
},
every axis y label/.style={
at={(ticklabel* cs:1.05)},
anchor=south,
},
height=5cm,
width=16cm,
ymin=-0.5, ymax=0.5, ytick={-0.42,0.42}, ylabel=Voltage ($V$),
xmin=-0.5, xmax=7.5, xtick={0,...,7}, xlabel=Time ($\mu s$),
]
\addplot[blue, samples=1000, domain=-0.5:7.5]{func(x)};
\end{axis}
\end{tikzpicture}
\subsection{Simple Amplitude Ramp (AD9910 Only)}
An amplitude ramp of an RF signal can be generated by modifying the \texttt{self.amp} array in the previous example.
\begin{minted}{python}
def prepare(self):
# Reversed Order
self.amp = [1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.0]
self.asf_ram = [0] * len(self.amp)
\end{minted}
The generated RF output has an incrementing amplitude scale factor (ASF), increasing by 0.1 at every microsecond.
Once the ASF reaches 1.0, it drops back to 0.0 at the next microsecond.
The expected waveform over 1 cycle is plotted on the following figure.
Note that phase of the RF pulses may drift gradually.
Urukul was operated with a 50$\Omega$ termination to produce the waveform.
\begin{tikzpicture}[
declare function={
func(\x)= and(\x>=0, \x<1) * (0) +
and(\x>=1, \x<2) * (0.05*cos(deg(10*pi*\x))) +
and(\x>=2, \x<3) * (0.1*cos(deg(10*pi*\x))) +
and(\x>=3, \x<4) * (0.15*cos(deg(10*pi*\x))) +
and(\x>=4, \x<5) * (0.2*cos(deg(10*pi*\x))) +
and(\x>=5, \x<6) * (0.25*cos(deg(10*pi*\x))) +
and(\x>=6, \x<7) * (0.3*cos(deg(10*pi*\x))) +
and(\x>=7, \x<8) * (0.35*cos(deg(10*pi*\x))) +
and(\x>=8, \x<9) * (0.4*cos(deg(10*pi*\x))) +
and(\x>=9, \x<10) * (0.45*cos(deg(10*pi*\x))) +
and(\x>=10, \x<11) * (0.5*cos(deg(10*pi*\x)));
}
]
\begin{axis}[
axis x line=middle, axis y line=middle,
every axis x label/.style={
at={(ticklabel* cs:1.05)},
anchor=west,
},
every axis y label/.style={
at={(ticklabel* cs:1.05)},
anchor=south,
},
minor tick num=4,
grid=both,
height=8cm,
width=16cm,
ymin=-0.7, ymax=0.7, ytick={-0.5,...,0,...,0.5}, ylabel=Voltage ($V$),
xmin=0, xmax=11.5, xtick={0,...,11}, xlabel=Time ($\mu s$),
]
\addplot[blue, samples=1500, domain=0:11]{func(x)};
\end{axis}
\end{tikzpicture}
\newpage
\subsection{RAM Synchronization (AD9910 Only)}
Multiple RAM channels can also be synchronized.
Similar to the 10 MHz single-tone RF signals, specify \texttt{phase} when calling \texttt{dds.set()} in \texttt{configure\char`_ram\char`_mode}.
For example, set phase to 0 for the channels (\texttt{phase=0.0}).
\begin{minted}{python}
dds.set(frequency=5*MHz, phase=0.0, ram_destination=RAM_DEST_ASF)
\end{minted}
Then, replace the \texttt{run()} function with the following.
\begin{minted}{python}
@kernel
def run(self):
self.core.reset()
self.core.break_realtime()
self.cpld.init()
self.init_dds(self.dds0)
self.init_dds(self.dds1)
self.dds0.set_phase_mode(PHASE_MODE_TRACKING)
self.dds1.set_phase_mode(PHASE_MODE_TRACKING)
self.configure_ram_mode(self.dds0)
self.configure_ram_mode(self.dds1)
\end{minted}
Two phase-coherent RF signal with the same waveform as the previous figure (from either RAM examples) should be generated.
\subsection{Voltage-controlled DDS Amplitude (SU-Servo Only)}
The SU-Servo feature can be enabled by integrating the 4410 Urukul with a 5108 Sampler.
Amplitude of the DDS output can be controlled by the ADC input of the Sampler through PI control, characterised by the following transfer function.
\[H(s)=k_p+\frac{k_i}{s+\frac{k_i}{g}}\]
In the following example, the amplitude of DDS is proportional to the ADC input from Sampler.
First, initialize the RTIO, SU-Servo and its channel.
Note that the programmable gain of the Sampler is $10^0=1$, the input range is [-10V, 10V].
\begin{minted}{python}
@kernel
def run(self):
self.core.reset()
self.core.break_realtime()
self.suservo.init()
self.suservo.set_pgia_mu(0, 0) # unity gain
self.suservo.cplds[0].set_att(0, 15.)
self.channel.set_y(profile=0, y=0.) # Clear integrator
\end{minted}
Next, setup the PI control as an IIR filter. It has -1 proportional gain $k_p$ and no integrator gain $k_i$.
\begin{minted}{python}
self.channel.set_iir(
profile=0,
adc=0, # take data from Sampler channel 0
kp=-1., # -1 P gain
ki=0./s, # no integrator gain
g=0., # no integrator gain limit
delay=0. # no IIR update delay after enabling
)
\end{minted}
Then, configure the DDS frequency to 10 MHz with 3V input offset.
When input voltage $\geq$ offset voltage, the DDS output amplitude is 0.
\begin{minted}{python}
self.channel.set_dds(
profile=0,
offset=-.3, # 3V with above PGIA settings
# Note the inverted sign
frequency=10*MHz,
phase=0.)
\end{minted}
SU-Servo encodes the ADC voltage in a linear scale [-1, 1].
Therefore, 3V is converted to 0.3.
Note that the ASF of all DDS channels are capped at 1.0, the amplitude clips when ADC input $\leq -7V$ with the above IIR filter.
Finally, enable the SU-Servo channel with the IIR filter programmed beforehand.
\begin{minted}{python}
self.channel.set(en_out=1, en_iir=1, profile=0)
self.suservo.set_config(enable=1)
\end{minted}
A 10 MHz DDS signal is generated from the example above, with amplitude controllable by ADC.
The RMS voltage of the DDS channel against the ADC voltage is plotted.
The DDS channel is terminated with 50\textOmega.
\begin{center}
\begin{tikzpicture}[
declare function={
func(\x)= and(\x>=-10, \x<-7) * (160) +
and(\x>=-7, \x<3) * (16*(3-x)) +
and(\x>=3, \x<10) * (0);
}
]
\begin{axis}[
axis x line=middle, axis y line=middle,
every axis x label/.style={
at={(axis description cs:0.5,-0.1)},
anchor=north,
},
every axis y label/.style={
at={(ticklabel* cs:1.05)},
anchor=south,
},
minor x tick num=3,
grid=both,
height=8cm,
width=12cm,
ymin=0, ymax=180, ytick={0,16,...,160}, ylabel=DDS RMS Voltage ($mV_{rms}$),
xmin=-10, xmax=10, xtick={-10,-8,...,10}, xlabel=Sampler Voltage ($V$),
]
\addplot[blue, samples=21, domain=-10:10]{func(x)};
\end{axis}
\end{tikzpicture}
\end{center}
Note: DDS signal should be attenuated. High output power may affect the linearity.
\section{Ordering Information}
To order, please visit \url{https://m-labs.hk} and select the 4410 Urukul in the ARTIQ Sinara crate configuration tool.
The default chip is AD9910 (4410 Urukul), which supports more features.
If you need the higher frequency resolution of the AD9912 (4412 Urukul), leave us a note when placing the order.
To enable SU-Servo feature between 4410 Urukul and 5108 Sampler, specify that SU-Servo is to be integrated into the gateware when placing the order.
The cards may also be ordered separately by writing to \url{mailto:sales@m-labs.hk}.
\section*{}
\vspace*{\fill}
\begin{footnotesize}
Information furnished by M-Labs Limited is believed to be accurate and reliable. However, no responsibility is assumed by M-Labs Limited for its use, nor for any infringements of patents or other rights of third parties that may result from its use.
Specifications subject to change without notice.
\end{footnotesize}
\end{document}